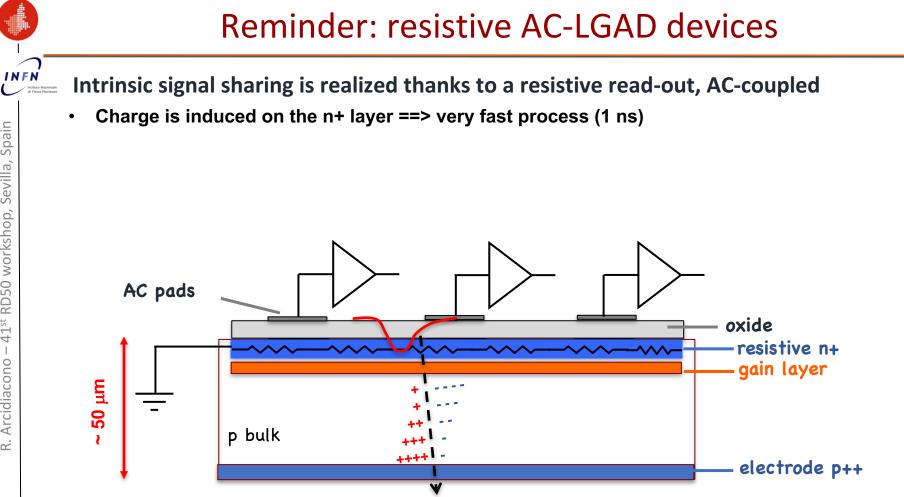
4D tracking with thin Resistive Silicon Detectors (RSD2): recent performance studies and future potentials

Speaker: **R. Arcidiacono** Universita' del Piemonte Orientale & INFN Torino

Roberta Arcidiacono; Giacomo Borghi; Maurizio Boscardin; Nicolo Cartiglia; Matteo Centis Vignali; Marco Ferrero; Francesco Ficorella; Giulia Gioachin; Leonardo Lanteri; Marco Mandurrino; Luca Menzio; Roberto Mulargia; Giovanni Paternoster; Federico Siviero; Valentina Sola; Marta Tornago

RSD ------

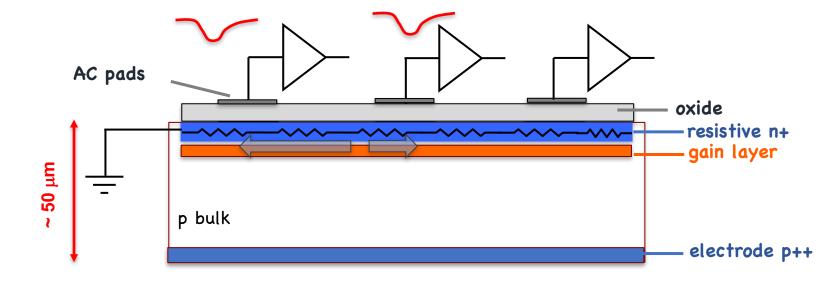
Sevilla,


RD50 workshop,

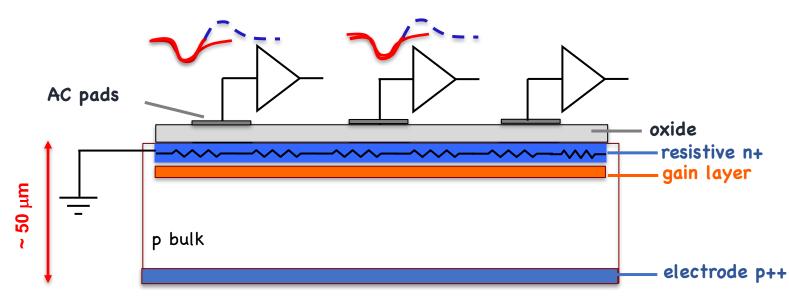
 41^{st}

Arcidiacono

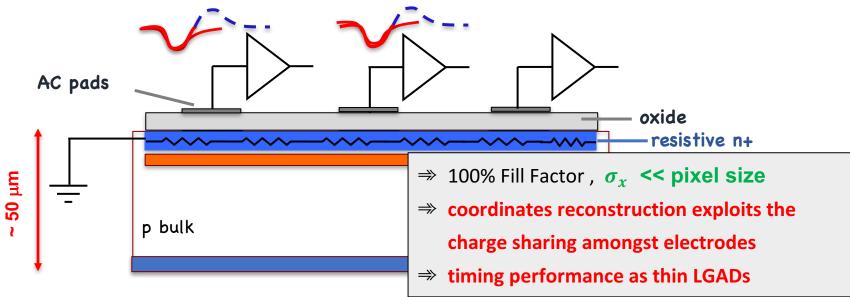
[®] What is an RSD? Resistive read-out AC-LGAD Silicon Detector


- ⇒ Thin LGAD with a resistive read-out AC-coupled, where the design of the read-out pads (shape and segmentation) defines the segmentation and can easily adapt to many geometries
- ⇒ 100% Fill Factor (continuous gain), reduced material budget and enhanced timing performance by design
- \Rightarrow spatial resolutions better than $\sigma_x = k \frac{\text{pitch}}{\sqrt{12}}$, $k \simeq 0.5 1$

Intrinsic signal sharing is realized thanks to a resistive read-out, AC-coupled


- Charge is induced on the n+ layer ==> very fast process (1 ns)
- This generates signals on the near-by AC pads (fast component capacitive coupling)

Intrinsic signal sharing is realized thanks to a resistive read-out, AC-coupled


- Charge is induced on the n+ layer ==> very fast process (1 ns)
- This generates signals on the near-by AC pads (fast component capacitive coupling)
- The charge flows to ground (slow component)

Intrinsic signal sharing is realized thanks to a resistive read-out, AC-coupled

- Charge is induced on the n+ layer ==> very fast process (1 ns)
- This generates signals on the near-by AC pads (fast component capacitive coupling)
- The charge flows to ground (slow component)

INFN

RSD productions at FBK

- RSD1 production (2019) demonstrated the soundness of the idea. Several lessons learned:
- reconstruction is biased when the sharing involves too many pads
- > variable number of pads compromises the uniformity of the response
- metal of read-out pads should be minimized
- leakage current collected by the DC contact at the periphery of the device may create baseline fluctuation in large devices

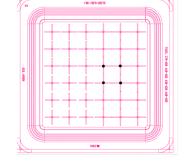
INFN

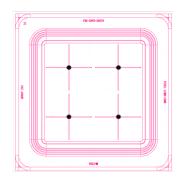
Spain

Sevilla,

RD50 workshop,

41st


Arcidiacono


 \sim

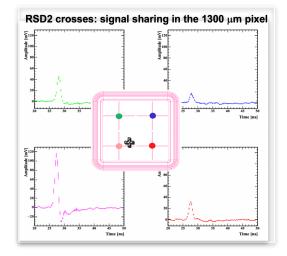
RSD productions at FBK

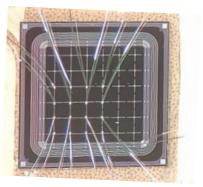
- RSD1 production (2019) demonstrated the soundness of the idea. Several lessons learned:
- reconstruction is biased when the sharing involves too many pads
- variable number of pads compromises the uniformity of the response
- metal of read-out pads should be minimized
- leakage current collected by the DC contact at the periphery of the device may create baseline fluctuation in large devices
- RSD2 production (2021) optimized the design (parameters that drive the sharing) and improved performance: various non-conventional electrodes shapes implemented

Our best so far (and most recent) results **have been obtained** with the **crosses.**

 \sim

RSD2 with crosses: Lab and testbeam studies


Signal formation and performance studied in the lab using a TCT-setup with **picosecond laser** (spot ~ 8 um; Intensity 1-3 MIPs), mounted on a movable x-y stage ($\sigma_{x - laser} \sim 2 \mu m$). 16 electrodes read out (FNAL read-out board + digitizer) Typically signals from 4 adjacent electrodes are used in the


reconstruction.

Position and time coordinates are reconstructed with the methods briefly described in the following.

More details in this paper http://arxiv.org/abs/2211.13809

A few devices have been tested at DESY (3-6 GeV electrons), on testbeam lines equipped with a EUDET pixel telescope (2-15 micron of spatial resolution) -> analysis ongoing. Today some preliminary results

Parametrization of the resolutions

SPACE

$$\sigma_{hit\ pos}^2 = \sigma_{jitter}^2 + \sigma_{rec}^2 + \sigma_{setup}^2 + \sigma_{sensor}^2$$

- jitter term: related to the variation of signal amplitude induced by the electronic noise (this biases the space-amplitude correlation) Noise/(dV/dx)
 - σ_{rec} : accuracy of the reconstruction method used, which might have a position-dependent systematic offset
 - σ_{setup} : related to changes in the relative signal sharing due to the experimental set-up.
- σ_{sensor} : all sensor imperfections contributing to an uneven signal sharing among pads

<u>n</u>

Parametrization of the resolutions

SPACE

$$\sigma_{hit\ pos}^2 = \sigma_{jitter}^2 + \sigma_{rec}^2 + \sigma_{setup}^2 + \sigma_{sensor}^2$$

- jitter term: related to the variation of signal amplitude induced by the electronic noise (this biases the space-amplitude correlation)
 - Noise/(dV/dx)
 - σ_{rec} : accuracy of the reconstruction method used, which might have a position-dependent systematic offset
- σ_{setup} : related to changes in the relative signal sharing due to the experimental set-up.
- σ_{sensor} : all sensor imperfections contributing to an uneven signal sharing among pads

TIME

$$\sigma_{hit \; time}^2 = \sigma_{jitter}^2 + \sigma_{Landau}^2 + \sigma_{delay}^2$$

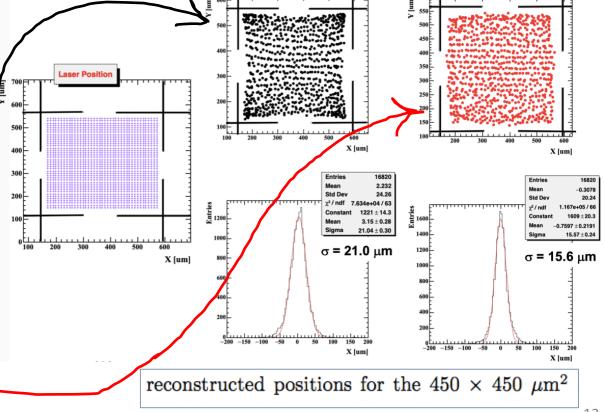
Uncertainty on hit time seen by a single pad

- *jitter term*: due to the electronics
 ~Noise/(dV/dt)
- Landau term: due to non-uniform ionization, about ~30 ps for a 50 μm thick sensor
- σ_{delay} : the delay, due to the propagation time to the read-out pad, has un uncertainty induced by the hit position reconstruction.

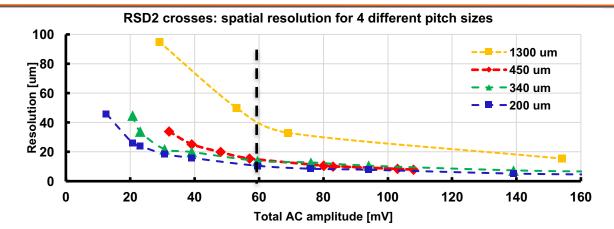
Reconstruction method for the position (1) SPACE RESOLUTION x-y coordinates reconstructed using only **4 neighboring** Laser Position electrodes with the larger signals. 600 L 500F X [um] 400[†] Method: "charge asymmetry" 300 Entries 16820 2.232 $x_i = x_{center} + k_x \frac{pitch}{2} * \frac{Q_3 + Q_4 - (Q_1 + Q_2)}{O_{tot}}$ 200 24.26 7.634e+04 / 6 L 1200 100 3.15 ± 0.28 $\textbf{21.04} \pm \textbf{0.30}$ $y_i = y_{center} + k_y \frac{pitch}{2} * \frac{Q_1 + Q_3 - (Q_2 + Q_4)}{Q_{abs}}$ σ = 21.0 μm X [um] $\sigma_x \sim \frac{pitch}{\sqrt{12}} \sim 130 micron$ X [um] reconstructed positions for the 450 \times 450 μ m²

Reconstruction method for the position (2)

SPACE RESOLUTION

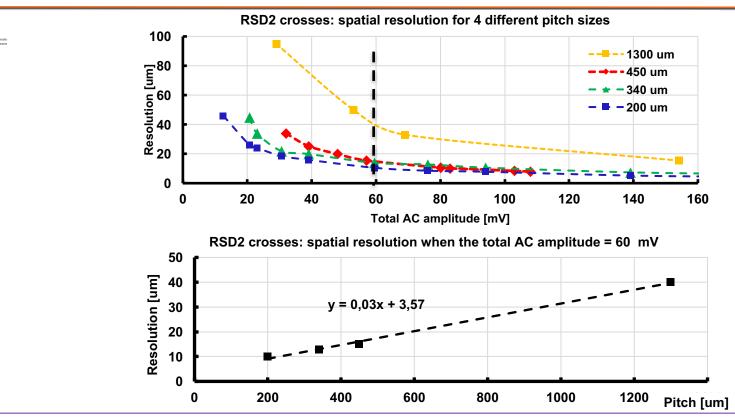

x-y coordinates reconstructedusing only 4 neighboringelectrodes with the larger signals.

Method: "charge asymmetry"


$$x_{i} = x_{center} + k_{x} \frac{pitch}{2} * \frac{Q_{3} + Q_{4} - (Q_{1} + Q_{2})}{Q_{tot}}$$
$$y_{i} = y_{center} + k_{y} \frac{pitch}{2} * \frac{Q_{1} + Q_{3} - (Q_{2} + Q_{4})}{Q_{tot}}$$

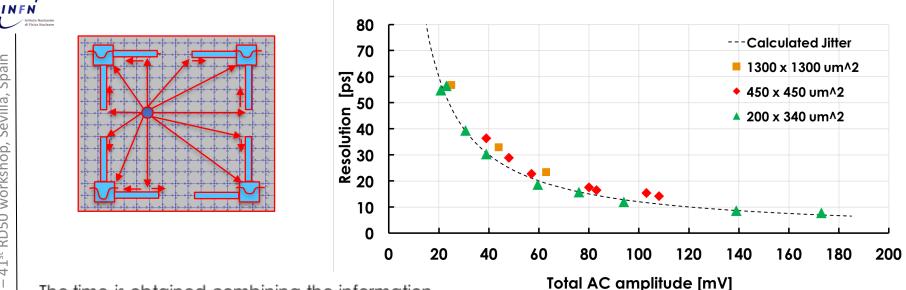
The coordinates are then corrected

using a migration matrix (measured always with the laser setup – independent set of data)


Spatial resolution from the TCT measurements

INFN

istituto Nazional di Fisica Nuclear


Spatial resolution from the TCT measurements

Spatial resolution versus pitch size when the total AC amplitude equals 60 mV.

At a fixed amplitude, the resolution depends linearly on the pixel size (terms σ _setup, σ _sensor are zero)

Time resolution from the TCT measurements

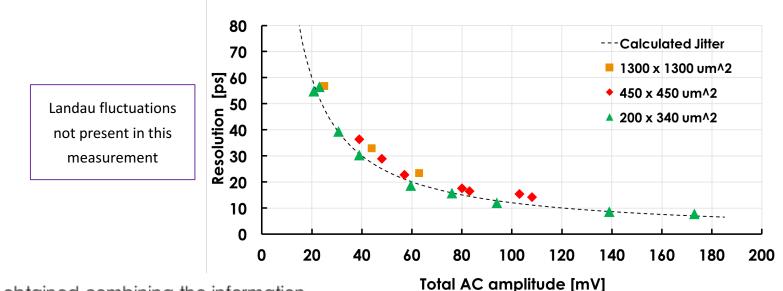
The time is obtained combining the information from the 4 read-out pads, minimizing the chi 2

$$t_{rec} = \frac{\sum_i^4 t_{rec}^i * A_i^2}{\sum_i^4 A_i^2}$$

Spain

Sevilla,

RD50 workshop,


 41^{st}

Arcidiacono

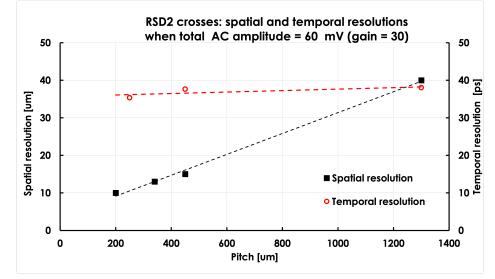
÷

where $t_{rec}^i = t_{meas}^i + t_{delay}^i$

Time resolution from the TCT measurements

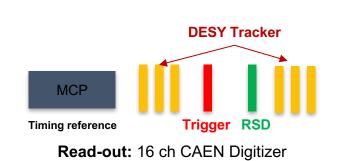
The time is obtained combining the information from the 4 read-out pads, minimizing the chi 2

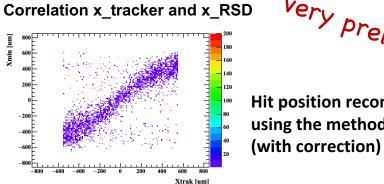
 $t_{rec} = \frac{\sum_i^4 t_{rec}^i * A_i^2}{\sum_i^4 A_i^2}$


where
$$t_{rec}^i = t_{meas}^i + t_{delay}^i$$

The resolution (jitter + delay term) depends mostly upon the signal size and weakly on the pixel size σ_{delay} is very small

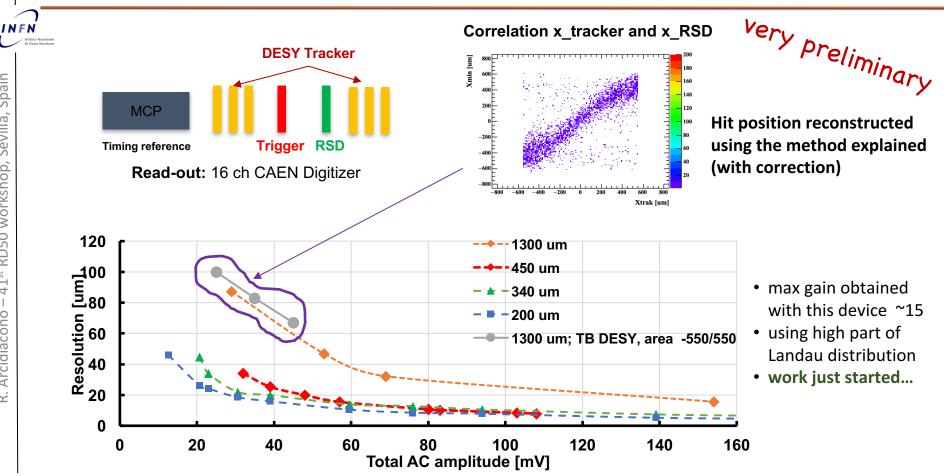
RSD2 crosses at gain = 30 achieve a time jitter of 20 ps


- Extrapolated resolutions for the determination of the position and time coordinates
- time resolution: computed by adding the Landau noise term (σ_{Landa noise} = 30 ps)
- spatial resolution: computed adding $\sigma_{setup} + \sigma_{sensor} = 5 \ \mu m$ in quadrature



Spatial resolution is about 3% of the pixel size

Time resolution is fairly constant at about 38 ps as a function of the pixel size


Test beam @ DESY, 1.3 x 1.3 mm² crosses

Test beam @ DESY, 1.3 x 1.3 mm² crosses

Spain

Sevilla,

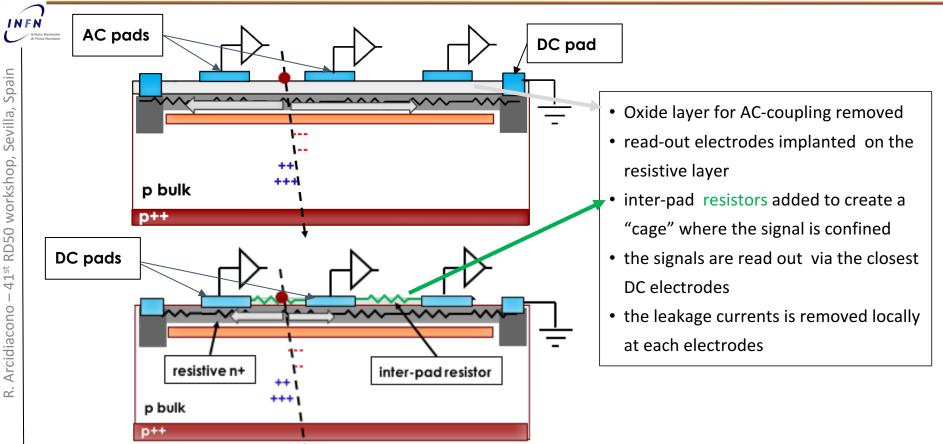
RD50 workshop,

St 41

Arcidiacono

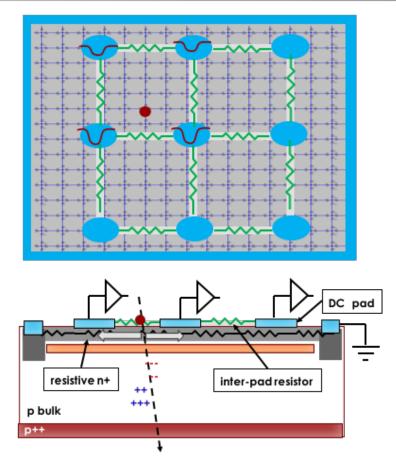
<u>n</u>

Next step: DC-coupled resistive LGAD

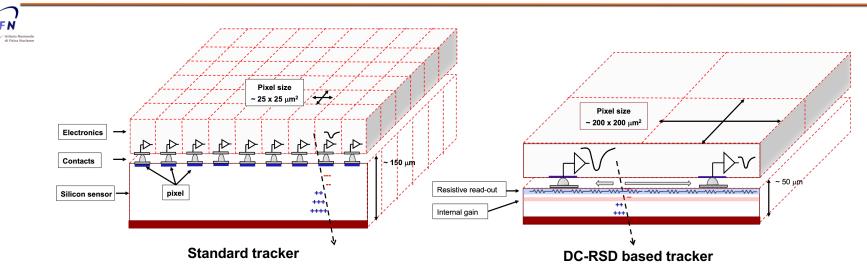

DC-RSDs

- studies started within the Italian project PRIN 2017 (2017L2XKTJ 4DinSiDe)
- now supported by INFN CSN5 project 4DSHARE
- see Tommaso Croci's talk "A two-prong approach to the simulation of DC-RSD: TCAD and Spice"

main objectives for the DC-coupled resistive read-out LGADs


- overcome the limitations or drawbacks observed studying the resistive AC-LGADS key points:
- **obtain intrinsic controlled signal sharing**, in a predetermined (not too large) number of pads
- avoid the collection of the leakage current only at the periphery of the sensor

From AC to DC-coupled LGAD: what's new



DC-RSD from above

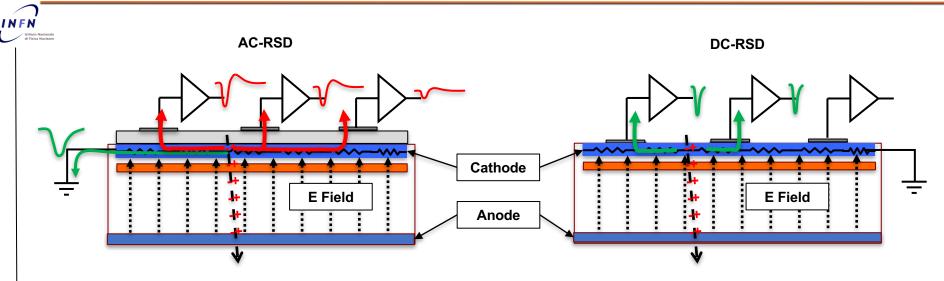
23

A look at the next generation 4D-trackers?

The design of a tracker based on RSD:

- Delivers ~ 30 ps time resolution
- Can easily deliver position resolution of a few microns, but with much larger pixels (number of pixel is reduced by 50-100)
- The electronic circuitry can be easily accomodated (power consumption ~ 0.1-0.2 W/cm²)
- The sensors can be really thin

We kindly acknowledge the following funding agencies, collaborations:


- INFN Gruppo V RSD
- H2020 project AIDA-2020, GA no. 654168
- Dipartimenti di Eccellenza, Univ. of Torino (ex L. 232/2016, art. 1, cc. 314, 337)
- Ministero della Ricerca, Italia , PRIN 2017, progetto 2017L2XKTJ 4DinSiDe
- RD50 Collaboration, CERN
- INFN Gruppo V 4DSHARE
- Compagnia San Paolo, Bando TRAPEZIO 21

> / Istituto Nazionale di Fisica Nucleare

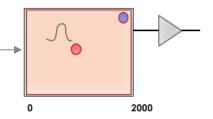
BACK-UP

From RSD to DC-RSD

DC-RSD wants to improve the RSD design:

- Move to DC-coupled read-out
 - DC signal
 - Remove the leakage current at each node and not at the periphery
- Limit the signal sharing to the closest neighboring pads
- Improve reconstruction accuracy

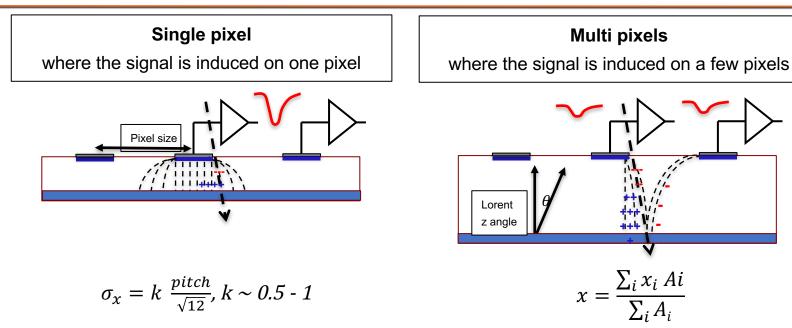
Study of the propagation on the resistive layer


INFN

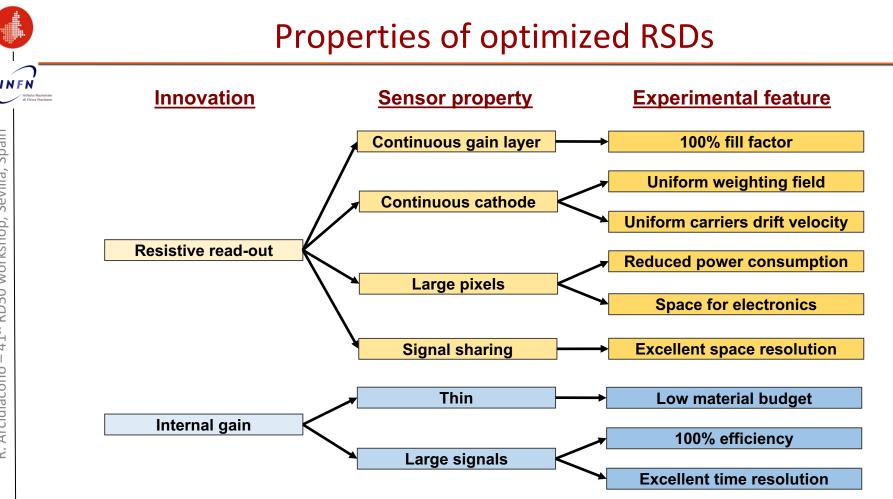
In RSD1 there is a device without electrodes, ideal for this study: an area 2x2 mm² read out only at the DC contact only

Study of the signal (laser induced) propagation/deformation as a function of

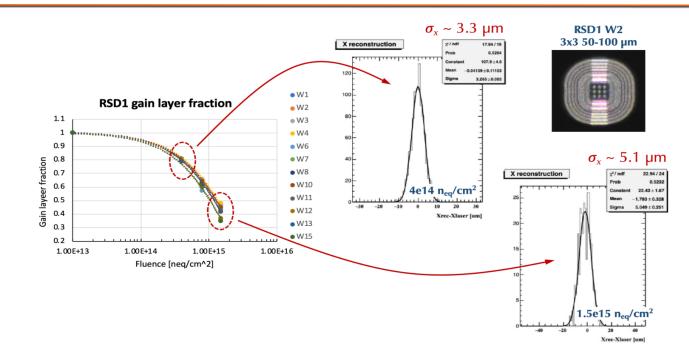
position on the surface, for wafers with different resistivities


Profile Profile W13 (low) W7 (high 18.48 5.857 7.00 Stat Day 3,753 17.4 0.89/54 80.477.54 44 - 1.44 08.9 + 0. 4.89 2357 ± 0.0074 16.74 - 0.0 3044 - 0.007 Time [ns] Time [ns]

Read= shot in the center Blue = shot on one side

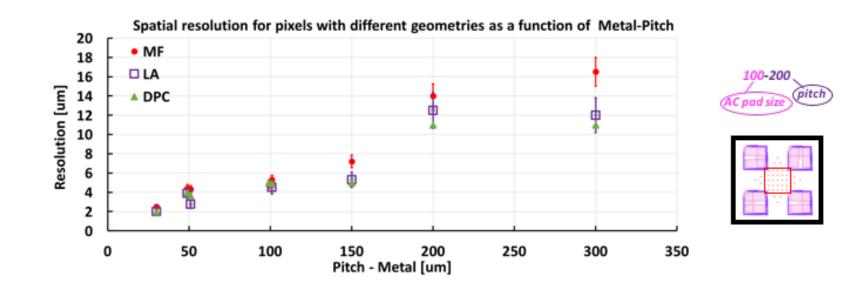

Even a propagation over a large pixel (O(mm)), and on the most resistive n+ surface, does not degrade the signal significantly \rightarrow key point to pursue the DC-RSD idea --> this device represent well one DC-RSD pixel

Position measurement: Single and Multi Pixels Read-out



- σ_x depend on the pixel size pixel = 100 $\mu m \rightarrow \sigma_x = 20 \ \mu m$
- σ_x << pixel size
 Same σ_x can be obtained with larger

pixels


RSD1 radiation resistance

- The radiation resistance of RSD1 is similar to that of standard LGAD
- The space and time resolutions decrease due to the signal being smaller
- No "RSD specific" effects have been found, resistive read-out is not sensitive to radiation damage up to 1E15 n/cm² → Study to be extended to check the limits

NFN

RSD1- position resolution

In RSD1 Position resolution (within the red square) is about 5% of the distance between electrodes

-