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ü High radiation hardness

ü Low dark current

ü high temperature resistance

ü High saturated carrier velocity -> fast response

Characteristic Si 4H-SiC

Eg (eV) 1.12 3.26

Thermal conductivity 1.5 4.9

Ebreakdown (V/cm) 0.5 3

Saturated electron velocity (cm/s) 1×107 2×107

ionization energy for e-h pair (eV) 3.64 7.8

displacement energy 13 21.8

Silicon & 4H-SiC Potential application for fast MIPs detection

Saturated Carrier Velocity: 4H-SiC  > Silicon ~ 55 e-h pairs/ um for MIPs in SiC

Good time resolution of 4H-SiC detector
100 μm 4H-SiC PIN for MIPs (measurement) 3D 4H-SiC Detector for MIPs (simulation)

doi: 10.3390/mi13010046doi: 10.3389/fphy.2022.718071

Why 4H-SiC ？

https://www.mdpi.com/2072-666X/13/1/46%7d%7b10.3390/mi13010046
https://www.frontiersin.org/article/10.3389/fphy.2022.718071
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Introduction of DEVSIM

u DEVSIM is a TCAD device simulation package written in C++, with a Python front end. It is capable for simulating 1D, 
2D, 3D structures with models describing  advanced physical effects https://devsim.org/

Advantages: 
uOpen Source;
u Strong expandability;
uEasily interact with 

Gennt4 for detector 
simulation;

Drawbacks:
u Finite element 

physical equations 
written by users

u DEVSIM uses the control volume approach for assembling partial-differential equations (PDE’s)

u Node model
• The simplest model
• Represents the solution 

variables being solved for

u Edge model 
• Reference node models

defined on the ends of the edge
• The two nodes on the edge, n0 

and n1

u Element Edge model

𝒏, 𝒑,𝝋 … 𝑬(𝝋)… 𝝁𝒏 𝑬 , 𝝁𝒑 𝑬 …

• Cannot be specified on both 
nodes of the edge,

• The three nodes on each 
triangle edge and are denoted 
as en0, en1, and en2

https://devsim.org/
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Simulation roadmap

Measured 
C-V

Measured 
I-V

measure

Geometry information

Effective Doping 

Verify geometry & doping input  

RASER Package based on 
DEVSIM

Simulated C-V

Simulated I-V

Study the influence of traps , carrier 

lifetime … to leakage current

Reproduce the leakage current in simulation

4H-SiC Device 
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4H-SiC PIN under study  

10.3389/fphy.2022.718071

Geometry I-V performance C-V performance

The NJU 100 μm PIN with 5mm*5mm size as device to study. 

A time resolution 𝝈𝑻=𝟗𝟒𝐩𝐬 indicates 4H-SiC sensor has potential application of fast MIPs detection.

10.3389/fphy.2022.718071
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DEVSIM Simulation of 4H-SiC PIN detector 

u Good agreement between measurement and simulation！

u Verify the geometry & doping input to SICAR is correct.

C-V performance & simulation I-V performance & simulation

~1016

u The influence of Carrier Recombination & Generation to 
leakage current should be considered.

u Large discrepancy between measurement and simulation！
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Shockley-Read-Hall G&R to Leakage Current

Recombination

Default carrier lifetime: 

I-V performance & simulation

u The calibration of carrier lifetime could increase the leakage current.
u The SRH is not dominated term of leakage current.

106 to carrier lifetime

Nigam, Saurav,  Carrier lifetimes in silicon 
carbide, PhD Thesis, 2008

https://www.proquest.com/docview/304667731?parentSessionId=vFQ8W5NX%2F1G2dmnasuyg0ZD7igMFPWK0Uf3sSUxcVSc%3D
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Bulk Defects G&R to Leakage Current

Trap level Type Et (eV) Nt (cm-3) σinter(cm2)

Z1/2 Electron 0.62-0.68 1e15~1e13 1e-12~1e-16

u Nt and σ of Z1/2have no effect on the leakage current

u σ of Z1/2have no effect on the leakage current

Z1/2 electron defects observed by Deep Level Transient Spectroscopy (DLTS) 

Recombination

http://aip.scitation.org/doi/10.1063/1.114800

http://aip.scitation.org/doi/10.1063/1.364397

http://aip.scitation.org/doi/10.1063/1.1334907

http://aip.scitation.org/doi/10.1063/1.114800
http://aip.scitation.org/doi/10.1063/1.364397
http://aip.scitation.org/doi/10.1063/1.1334907
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Bulk Defects G&R to Leakage Current

Trap level Type Et (eV) Nt (cm-3) σinter(cm2)

EH6/7 Electron 1.25-1.73 1e15~1e17 1e-12~1e-15

u σ of EH6/7 have no effect on the leakage current

u Nt of EH6/7 has little effect on the leakage current

u Deep level defects not the main factor affecting 
leakage current!

EH6/7 electron defects observed by Deep Level Transient Spectroscopy (DLTS) 

Recombination

https://linkinghub.elsevier.com/retrieve/pii/S
0921452699006018

http://aip.scitation.org/doi/10.1063/1.1543240

http://aip.scitation.org/doi/10.1063/1.2170144

https://linkinghub.elsevier.com/retrieve/pii/S0921452699006018
http://aip.scitation.org/doi/10.1063/1.1543240
http://aip.scitation.org/doi/10.1063/1.2170144
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Calibration the leakage current

Constant G&R rate 1012 cm-3 —— Same leakage current level 

Macroscopic defects may have a greater 
impact on leakage current.

https://doi.org/10.4028/www.scientific.net/MSF.725.53

Use constant G&R rate to replace the complex traps effects.

~ Constant 

https://doi.org/10.4028/www.scientific.net/MSF.725.53
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NJU 4H-SiC LGAD under study 

Designed doping Effective doping

Fluctuations of process
SIMS of NJU 4H-SiC LGAD

Effective dopingPrototype Structure of NJU 4H-SiC LGAD  

By Nanjing university (NJU)

u The NJU 4H-SiC LGAD  could be fully 
depleted when U > 200 V.

VGL: Gain Layer depletion voltage

VCC: Charge Control Layer depletion voltage

VFD: Full Depletion voltage
The 40th RD50 Workshop (CERN) Development of
4H-SiC Low Gain Avalanche Diode · Indico

https://indico.cern.ch/event/1157463/contributions/4922751/
https://indico.cern.ch/event/1157463/contributions/4922751/
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Simulation of NJU 4H-SiC LGAD

u To simulate the impact ionization of 4H-SiC LGAD, the Hatakeyama avalanche model was selected due to the 
anisotropic behavior in 4H-SiC devices. 

Impact ionization coefficient 

The driving force F is defined as the straight electric field E

u holes share a greater multiplication rate than electrons

u The impact ionization of initial holes dominates the carrier multiplication

From database

<0001>
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Simulation of NJU 4H-SiC LGAD

u A certain gap between the designed doping and the effective doping concentration.

u The calibrated effective doping concentration selected in simulation (Synopsys/ DEVSIM).

u Good agreement between measurement and DEVSIM simulation of C-V for 4H-SiC LGAD.

Hatakeyama Hatakeyama
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Simulation of NJU 4H-SiC LGAD

DEVSIM simulation of leakage current
Measurement of leakage current

u A large discrepancy for VBD.

u DEVSIM and SYNOPSYS simulation results at breakdown voltage are consistent

u Leakage current at low 
voltage not tuned

Hatakeyama

T=300K
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Introduction of SICAR— 4H-SiC LGAD for MIP 

Epi structure Thickness [um]
(Design )

Doping [cm-3] 
(Design )

P++ 0.3 2e19

N+ (gain layer) 1.0 1e17

N- (active layer) 50.0 1e14

N buff 5.0 1e18

uSICAR (SIlicon CARbide): 4H-SiC device for MIPs
• Improve low gain issue of NJU
• Independent designed by RASER team [1]
• Fabricate the 4H-SiC LGAD
• Prototype of SICAR1

Distribution of defects

[1] RASER -

Structure of SICAR1 

Design of SICAR1 

https://raser.team/
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Processing technology of SICAR1

u Different device size correspond to different requirement

u Processing is in progress…

Final structure

Lithography mask

Name Type Size (μm x μm) Corner 
Radius(μm) 

SICAR1-1 Single 5000 x 5000 500 
SICAR1-2 5x5 1000 x 1000 100 
SICAR1-3 Single 1000 x 1000 100 
SICAR1-4 2x2 1000 x 1000 100 
SICAR1-5 2x2 1000 x 1000 100 
SICAR1-6 Single 1000 x 1000 100 
SICAR1-7 Single 1000 x 1000 200 
SICAR1-8 Single 1000 x 1000 500 
䴏

SICAR1-1

SICAR1-2

SICAR1-3
SICAR
1-4

SICAR
1-5

SICAR1-6

SICAR1-7

SICAR1-8
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Simulation of SICAR1 

u Good agreement between the DEVSIM 
and SYNOPSYS simulation

Hatakeyama

T=300K

Hatakeyama

T=300K

Hatakeyama

T=300K
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Summary & Plan

DEVSIM Simulation:

1. Good agreement between measurement and DEVSIM simulation for 4H-SiC PIN.

2. Deep level defects aren’t the main factor affecting the leakage current.

3. Good agreement between the DEVISM simulation and SYNOPSYS simulation of the 4H-SiC LGAD.

NEXT:

1. Independently develop the 4H-SiC LGAD (SICAR)

2. Combine the macroscopic defects in DEVSIM to calibrate the leakage current.

3. Calibrate the breakdown voltage of the 4H-SiC LGAD.

Thanks for your attention!
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Backup



Institute of High Energy Physics 19

DEVSIM and SYNOPSYS simulation of NJU 4H-SiC LGAD
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𝜶 particles detection of NJU 4H-SiC LGAD of NJU 4H-SiC LGAD

241Am
p1(oxide)p2(Ni/Al)p3(Au+ Ni/Al)

p1

p2

p3

U = 300V
U = 400V
U = 500V

Collected charges spectrum for v2 Simulated electric field for v2

𝑬𝒈𝒂𝒊𝒏

Ø No collected charges increasing by increase of voltage. -> No gain observed that agrees with the 

simulation by effective doping.

lost “Gain”


