

Determination of impact ionization parameters for low gain avalanche detectors produced by HPK

<u>ALISSA HOWARD</u>, VLADIMIR CINDRO, BOJAN HITI, ŽAN KLJUN, IGOR MANDIĆ, MARKO MIKUŽ

JOŽEF STEFAN INSTITUTE, LJUBLJANA

41st RD50 WORKSHOP, SEVILLE, SPAIN

Motivation

Previous determinations of impact ionization parameters for silicon do not work for charge collection measurements obtained via Strontium-90 measurements on LGADs

- > They were obtained on different devices via different methods (e.g. laser carrier injection)
 - Khodin[1], Van Overstraeten[2], Massey[3]
- > Different methods lead to different charge density -> Charge density can impact that gain, thus impact ionization
 - G. Kramberger et al, "Gain dependence on free carrier concentration in LGADs", Nucl. Instrum. Meth. A, vol. 1046, 2023
- Electrons from strontium-90 source are closer to MIPs, making them more relevant to the operation of LGADs in HGTD
- A new model is required that is applicable to LGADs under the conditions they will be tested and operated in
- This presentation is an update of work presented at <u>39th RD50 workshop(Valencia)</u>
- >Impact ionization coefficients are also being investigated by other groups (see <u>Esteban's 40th RD50 talk</u>)

>All results in this talk are published in Jinst (A. Howard et al 2022 JINST 17 P10036)

[1]Khodin, Alexandre et al. "Silicon avalanche photodiodes for particle detector:: modelling and fabrication." *Nucl. Instrum. Meth. A, vol.* 465, 2001

[2]R. Van Overstraeten et al, "Measurement of the ionization rates in diffused silicon p-n junctions", Solid-State Electronics, Vol. 13, Issue 5, 1970

[3]D.J Massey et al., "Temperature Dependence of Impact Ionization in Submicrometer Silicon Devices", IEEE Transactions on Electron Devices, vol. 53, no. 9, 2006.

Samples

▶ Four wafers from HPK-P2 : 28, 33, 37, & 43

➢All samples are

> 50 μ m thick

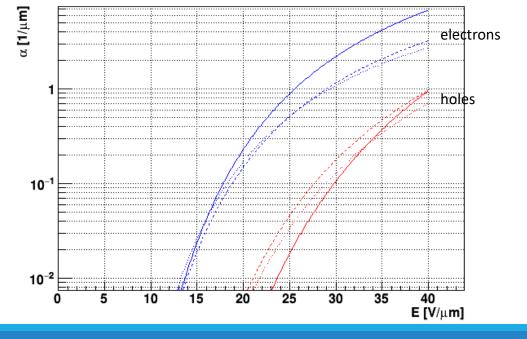
- Single pads with 1.3x1.3 mm² active area
- ≻Gain implant is ~2.5 µm deep
- One sensor from each wafer was irradiated to each fluence: 1E14, 4E14, 8E14, 1.5E15, & 2.5E15
 Only W28 irradiated to 1E14 is missing
- All samples were annealed after irradiation
 Standard annealing time: 80 mins @ 60°C
- Charge collection was measured for all sensors using Sr⁹⁰ source
 - See <u>G. Kramberger's talk at 37th RD50 workshop</u> for setup details

Sensor	Fluences	V _{gl} [V]	V _{fd} [V]
	$[10^{14} \text{ cm}^{-2}]$		
HPK-P2 W28	0, 4, 8,	54.5, 44.4, 37.1,	61.2, 54.2, 54.2,
	15, 25	29.5, 18.9	59.5, 73.9
HPK-P2 W33	0, 1, 4,	53.7, 50.8, 43.2,	60.5, 57.3, 53.3,
	8, 15, 25	36.2, 27.4, 18.9	58.2, 59.0, 60.6
HPK-P2 W37	0, 1, 4,	51.4, 48.3, 40.9,	57.3, 55.0, 55.2,
	8, 15, 25	34.5, 24.8, 15.2	54.9, 57.0, 47.8
HPK-P2 W43	0, 1, 4,	50.8, 47.8, 41.1,	57.3, 57.2, 56.2,
	8, 15, 25	33.0, 25.1, 13.8	55.5, 57.1, 53.7

V_{gl} & V_{fd} determined from CV measurements at 20°C

Chynoweth's model is the most commonly used model -> used as starting point for this study

> It states that the impact ionisation coefficients for electrons, n, and holes, p, is


$$\alpha_{n,p} = a_{n,p} * \exp(\frac{-b_{n,p}}{E})$$

a = prefactor b = critical field E = electric field

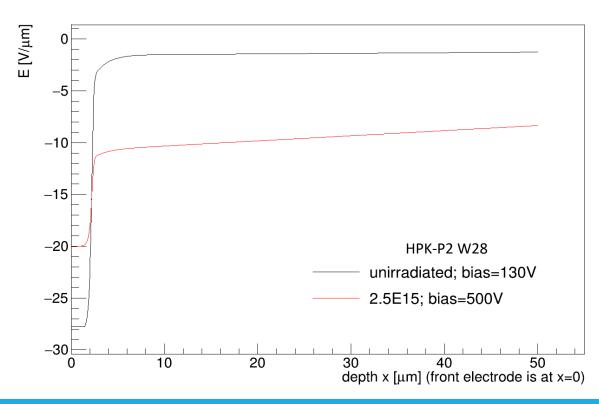
 $\geq a$ and b are the parameters that need to be determined

Since fields in LGADs are rarely >35 V/μm, impact ionization of holes is magnitude smaller than electrons -> can be excluded

 $>a_p$ and b_p set to zero

JSI ubljana

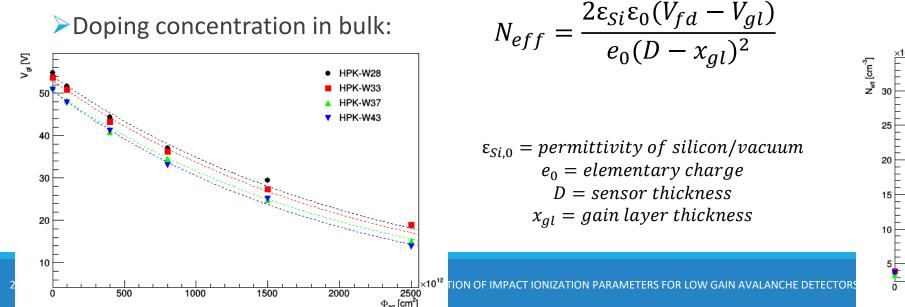
Slovenia

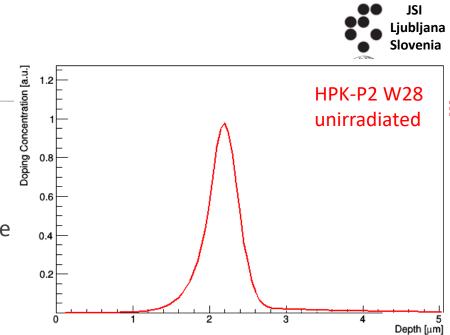

Electric Field

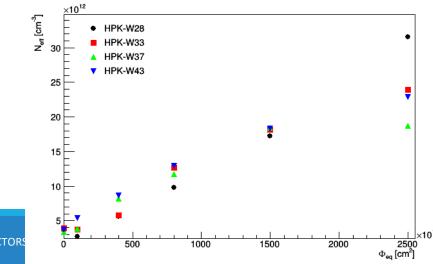
Simulate detector with KDetSim (<u>kdetsim.org</u>)

Detector Simulation Package

>User defines doping profile of the sensor -> KDetSim calculates the electric field






Doping Profile

- Solution Gain layer doping profiles for unirradiated sensors were provided by BNL
 - Absolute values not shown due to NDA
 - \geq Only difference between profile of each wafer is peak concentration shape remains the same
- > For irradiated sensors
 - > shape was assumed to remain unchanged
 - >assumed amplitude decreases with ratio of $V_{gl}(\phi)/V_{gl}(\phi)$

Doping concentration in bulk:

Gain

Calculated analytically

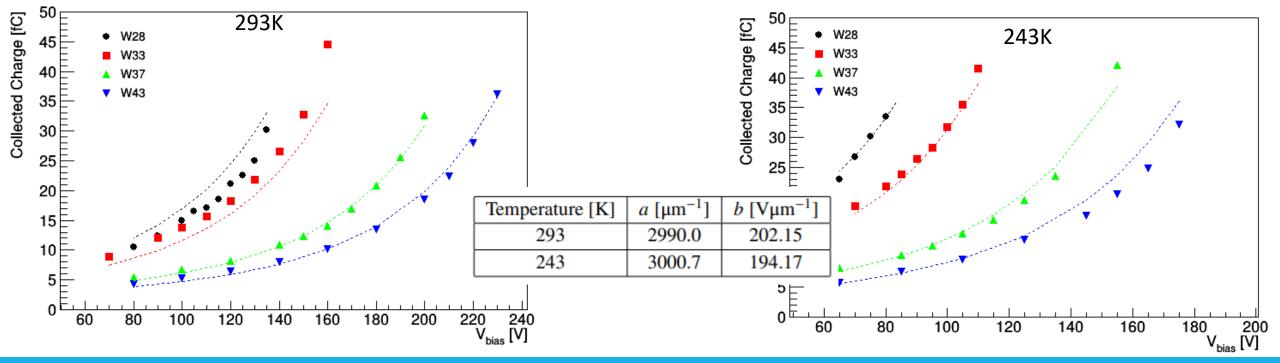
Multiplication coefficient: total number of e-h pairs created by single carrier generated at distance x $exp[\int^{x}(\alpha - \alpha)dx]$

$$M(x) = \frac{\exp[\int_0^w (\alpha_n - \alpha_p) dx]}{1 - \int_x^w \alpha_p \exp[\int_0^x (\alpha_n - \alpha_p) dx] dx}$$

≻Gain:

$$G = \frac{Q_{total}}{Q_{gen}} = \frac{\int_0^D e_0 \rho(x) M(x) dx}{\int_0^D e_0 \rho(x) dx} \qquad \qquad \rho(x) = \text{ionization density}$$

\geq To convert between Gain and Collected Charge: 1 G \approx 0.6 fC


Minimization

Minimization estimator:

$$\chi^{2} = \left(\sum_{all \ voltages} (G_{sim} - G_{meas})^{2}\right) / N$$

 $G_{sim,meas} = simulated/measured gain$ N = no. voltage points

All wafers, unirradiated, at two temperatures used in minimization -> so we can determine temperature dependence

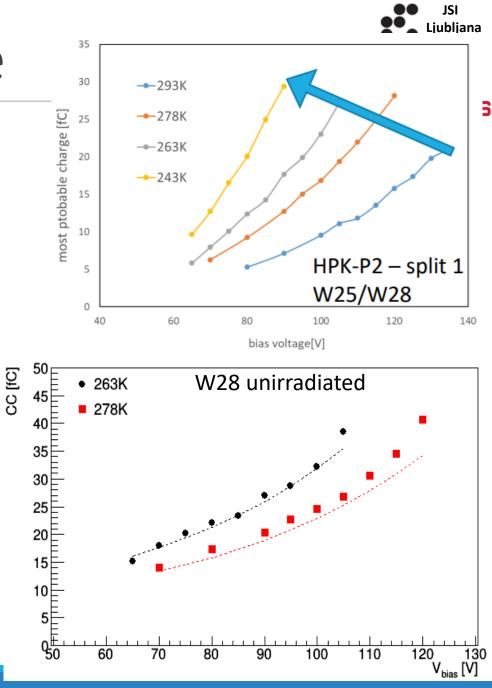
JSI .jubljana

Slovenian Research

аг

Temperature Dependence

➢Gain, hence impact ionisation, appears to be a strong function of temperature.

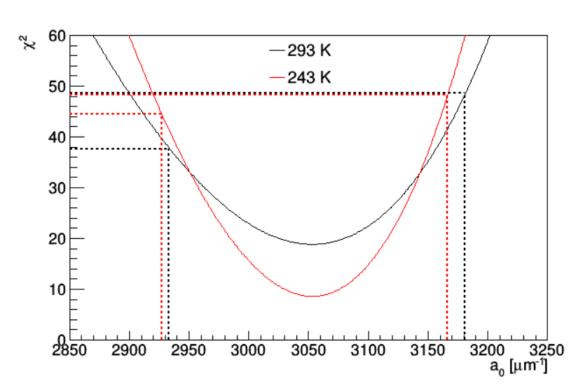

>Assumed linear temperature dependence:

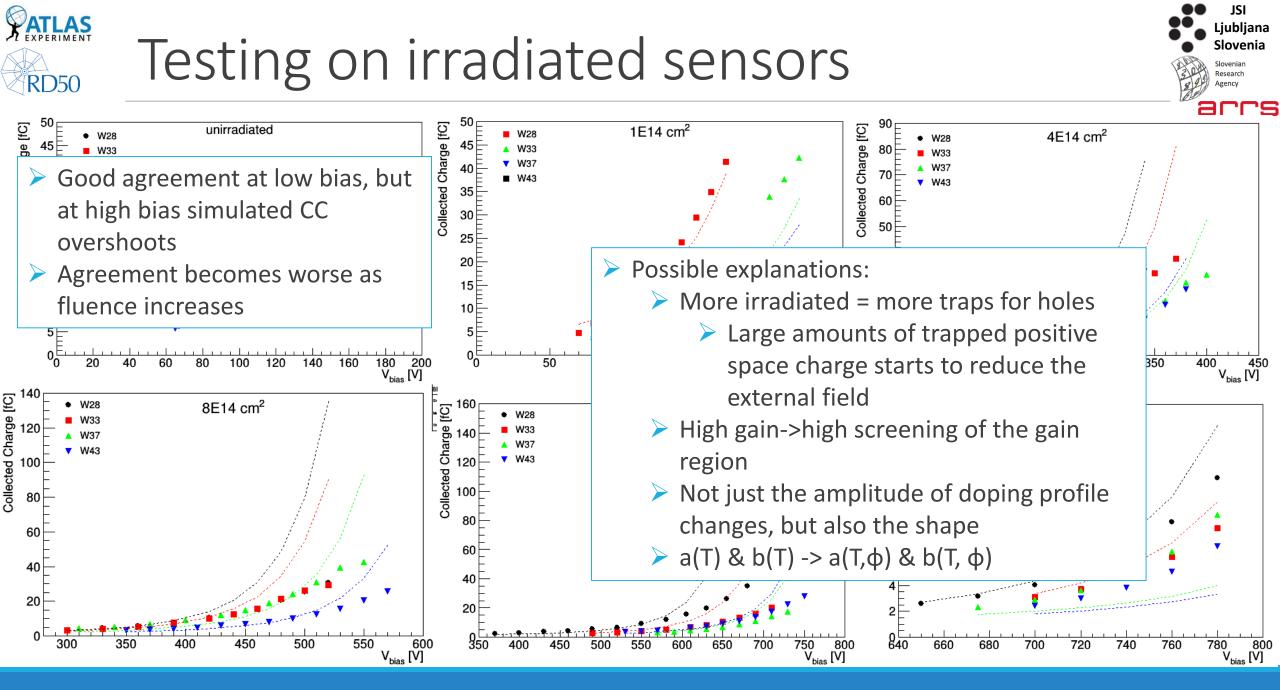
 $a = a_0 + k_a * T$; $b = b_0 + k_b * T$

 a_0 =3053 μm⁻¹; k_a =-0.215 μm⁻¹K⁻¹; b_0 =155.4 Vμm⁻¹; k_b =0.160 V μm⁻¹K⁻¹

➢To test, calculated CC for unirradiated W28 at 263 K & 278 K

Linear dependence gives reasonable agreement




Uncertainty on parameters

- >Uncertainty on measured collected charge, Q_{meas} is ±15%
- ightarrow Use χ^2 to estimate uncertainty
 - > Calculate χ^2 at upper and lower limit of Q_{meas} (for both temperatures to double check)
 - > Find values of a_0 that correspond to upper and lower χ^2 (keeping other three parameters same)
 - Repeat for other three parameters
- Uncertainties:
 - ≽a₀ ±120 μm⁻¹
 - > k_a ±0.45 µm⁻¹K⁻¹
 - >b₀ ±1.1 V μm⁻¹
 - ≻k_b ±0.004 V μm⁻¹K⁻¹

	χ^2		
Temperature [K]	$Q_{\rm meas}$	$Q_{\rm meas} - 15\%$	$Q_{\text{meas}} + 15\%$
293	18.9	37.6	48.6
243	8.6	44.5	48.2

Proposed model for impact ionization of electrons in LGADs uses Chynoweth's model and the following parameters

 $\alpha = a * \exp(^{-b}/_E)$

 $a = (3053 \pm 120) - (0.215 \pm 0.45) * T$ $b = (-155.4 \pm 1.1) + (0.160 \pm 0.004) * T$

> Temperature dependence was shown to be valid on unirradiated sensors

> Testing on irradiated sensors showed that further work should be done to develop a model for irradiated sensors:

> Does doping profile shape/concentration change with irradiation?

> Are the parameters also dependent on fluence?

This model was only tested on HPK-P2 sensors -> needs to be tested on sensors from different producers and runs