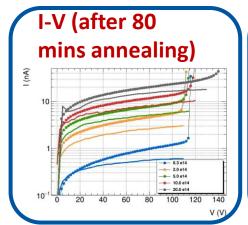
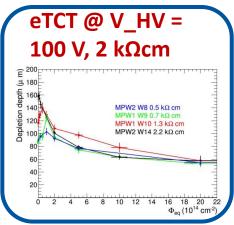
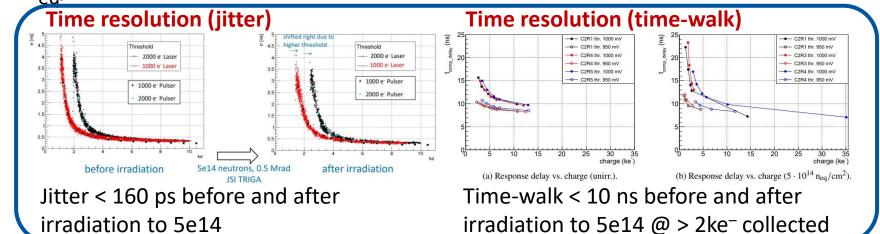

CERN-RD50 – Monolithic CMOS

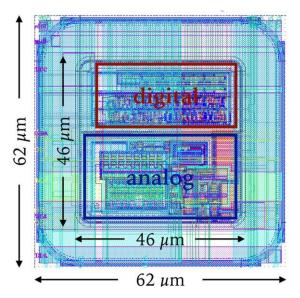

R&D programme to study and develop radiation hard High Voltage CMOS devices for very high luminosity colliders (HL-LHC, FCC)

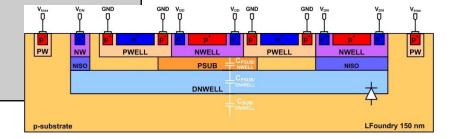

RD50-MPW3



RD50-MPW2

- Prototype HV-CMOS sensor with <u>test structures and a small active pixel matrix</u>, fabricated in high resistivity substrates in a Multi-Project Wafer submission with LFoundry.
 - Aim to study and improve time resolution and radiation tolerance with 60 μm x 60 μm pixels
 - Evaluated in the lab before and after neutron irradiation up to 2e15 n_{eq}/cm²




RD50-MPW3

Chip	RD50-MPW3
Technology	150 nm HV-CMOS LFoundry
Pixel size	62 μm x 62 μm (has analogue and digital readout)
Pixel matrix	64 rows x 64 columns
Chip size	5.1 mm x 7.6 mm (prototype size)

Third prototype iteration

- FE-I3 style readout (pixel coordinates + time-stamp)
- Pixels organised in double columns
- Minimises crosstalk noise
- Test structures with advanced guard rings to improve
 V_BD and radiation tolerance (V_BD > 400 V)

RD50-MPW3

- Readout boards
 - New chip board production (January 2023)
 - Piggy board production (early 2023)
 - To make an RD50-MPW3 telescope and evaluate it at test beams
- Irradiation campaign (early 2023)
 - Neutrons
 - Protons
- Test beams
 - DESY (spring 2023)
 - CERN (autumn 2023)
- Defect evaluation (2023)

RD50-MPW4?

- New RD50 project, currently baking in the oven...
- Goal
 - Provide a fully functional HV-CMOS pixel chip
 - Evaluate HV-CMOS sensors to very high fluence

RD50-MPW4?

To fix issues observed in RD50-MPW3

- Interface between matrix and periphery
 - We know the solution already (longer pull-down)
- Easy generation of global time-stamp
 - We know the solution already (64-bit counter in the chip)
- High noise in lower half of matrix
 - Currently studying this both in simulations and lab measurements

■ To further improve V_BD and therefore radiation tolerance too (V_BD > 400 V is possible)

- Improve rings around the chip as in test structures in RD50-MPW3
- Improve HV distribution to the pixels (V_BD should not depend on the p/n pixel electrodes spacing any more)

To do backside biasing (thin beyond the 280 μm?)

It is possible with MPW submissions (Liverpool experience with UKRI-MPW0 HV-CMOS chip)

LF15A MPW shuttle run – 2023 Schedule

- Put in new RD50 funding request (~75 kEUR)
 - If institutes are interested, please get in touch with me [Eva]
- New Cadence Design Share Agreement?
 - Inquire Europractice asap [Eva]

FPGAs for monolithic CMOS control

- New RD50 project, currently baking in the oven...
 - Repository for common code
 - Explore low-cost FPGA (e.g. Intel)
 - ~15 kEUR
 - If institutes are interested, please get in touch with Rogelio