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New Structures

New structures based on silicon substrates are, possibly together with
materials other than silicon, the most promising options to extend
radiation tolerance to the region of 7-8x10%" n,/cm?.

- Milestones [2018-2022]
- WP3.1 3D sensors [6 MS]
- WP 3.2 LGAD [4 MS]
- WP 3.3 CMOS [6 MS]
- WP 3.4 New Materials [5 MS]



New Structures
- WP 3.1. 3D detectors

« MZ1: full radiation tolerance study of 3D pixels connected to the RD53A chip (Q3/2019).

« M2: radiation tolerance studies of 25x250 um2 pixel cell design and feasibility (yield)
studies for the 25x100 um2 pixel cell layout (Q4/2019).

« M5: Evaluation of the time performances of new 3D geometries (Q3/2020).

* M®6: Design and simulation of new 3D detectors geometries for operation at 8x10*"n,./cm?
(Q4/2022).

- WP 3.2. Sensors with intrinsic gain

M1: Understand the effect of Carbon and Gallium on gain after irradiation (Q1/2019)
« M2: Model the acceptor removal effect after irradiation (Q3/2019)
« M3: Produce new LGAD design to increase the fill factor (Q2/2020)
+ M4: Design and simulate new LGAD geometries for operation at 1x10'7n,/cm? (Q4/2022)
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New Structures ;RDSO
- WP 3.3. CMOS and monolithic devices Ston

M1: Characterization of the diodes and readout electronics of unirradiated and irradiated
RD50-MPW1 samples (Q4/2018).

M2: Design and submission for fabrication of RD50-ENGRUN1 (Q4/2018).

M3: Characterization of unirradiated and irradiated RD50-ENGRUN1 samples (Q3/2019,
Q3/2020).

M4. Characterization of irradiated backside biased RD50-ENGRUN1 samples for operation
beyond 1016 neqg/cm2 (Q4/2020).

M5: Studies of stitching process options (Q4/2021).
M6: Characterization of unirradiated and irradiated stitched samples (Q4/2022).

- WP 3.2. New Materials

M1: Fabricate new radiation detectors in different Wide Band Gap (WBG) high quality materials
(Q4/2019).

M3: Understand the feasibility of large areas detectors based on WBG materials (Q2/2021)

M5: Explore operations at 8x1017 neqg/cm2 (Q4/2022) using innovative materials.
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'Y CHAPTER 3 SOLID STATE DETECTORS
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First SiC with Epitaxial graphene fabricated and tested-> more work to do (lvan
Lopez)

Good agreement between measurement and DEVSIM simulation (Xiyuan
Zhang), no good models are available in Sentaurus TCAD. Work in progress
SiC for Proton Beam Monitor, efficiency to be obtimized (Ye He), medical
applications are being explored by different groups (Thomas Bergauer).

TPA measurements show the degradation with neutron irradiation of the charge
collected (Cristian Quintana)-> Gain would be a obvious solution to use SiC for
tracking and timing applications.

After irradiation charge collected higher in forward bias (C.Q)
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Introduction of SICAR— 4H-SiC LGAD for MIP

® SICAR (Sllicon CARbide): 4H-SiC device for MIPs

Improve low gain issue of NJU

Independent designed by RASER team [1]

Fabricate the 4H-SiC LGAD
Prototype of SICAR1
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[1] RASER -
Institute of High Energy Physics
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. SiC-LGAD: The Idea

+  Silicon carbide well suited already for SFLGAD: | cunee o
— Spectrometric measurements of alpha radiation m
— Beam monitor for O(MeV) ions due to higher signals | A\ *
» Applications in HEP Pl 4]
— Signal very small due to limited thickness of epi growth e |, T
process ‘o i
§ =
L] e
- - g . F
» Implement a gain layer into Silicon Carbide to — 14 L
mitigate the small signals Y - e
M. Cartiglia
Challenges:
— Only n-type substrates available, which implies N-LGAD
structure (see also Jairo's talk tomorrow on Si-N-LGAD) e o e Epl Growing

— Creation of deep gain layer not achievable by “normal” ion
implantation (as usually done for Si-LGAD) due to high
displacement energy and thermal conductivity of SiC

— Gain layer could be implemented during epitaxial growth

« involvement of wafer supplier necessary in formation of 1
gain layer
+  We know that wafer supplier can grow sandwich of N-/P 107
layers.

« Alternative: high-energy implantation and high-energy
annealing

Silicon
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Call for Abstracts 4H-Silicon Carbide, when considered as a material for the fabrication of Low Gain Avalanche Detectors for particle timing and
position measurement, offers potential advantages over Silicon, including faster response and higher temperature operation
We discuss an ongoing study of this material aimed at the fabrication and test of prototype fast timing sensors. Recently we
have fabncaled our flrsl devices and will present prehmmary results on their behavior. This work is well aligned with technical
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