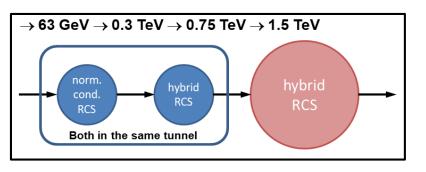


High energy muon acceleration chain – issues and questions –


F. Batsch, H. Damerau, I. Karpov

22/02/22

High-energy acceleration parameters

- Input/output energy of RCS chain: 60 GeV \rightarrow <u>1.5 TeV</u> \rightarrow 5 TeV
- 2 or 3 acceleration stages to 1.5 TeV? + 1 stage to 5 TeV
- Combination of normal conducting and two hybrid RCS?
 - First two RCS in the same tunnel?
 - Major design constraints due to that choices?
 - Options: HTS fast ramping magnets? What is ramp rate of cycling RCS magnets?
 - Find transition energy between normal conducting and hybrid RCS!
- How to optimize intermediate energies?
 - Minimize losses through entire RCS chain
- Make educated-guess assumptions for unknown parameters, e.g., feasibility of huge ramp rates?
 - Shape of magnetic ramp?
 - Power consumption?

CERN

Potential show-stoppers

- Muon decay: could it exclude superconducting RF cavities? → Question for WP RF!
- Are the huge ramp rates realistic?

→ Power converters? Expensive!

 How strong is the induced voltage from the short-range wakefields? Possible cures?

 \rightarrow Short range wake of TESLA cavities (K. Bane et al.)

• Challenges of first hybrid RCS being built?

Transverse beam dynamics aspects

- Impact of energy dependent trajectory?
 - Required aperture
 - Orbit length change due to hybrid RCS design?
- Cell length is very important!
 - Constraints on momentum compaction?
- Separate vacuum chambers for μ⁺/ μ⁻?

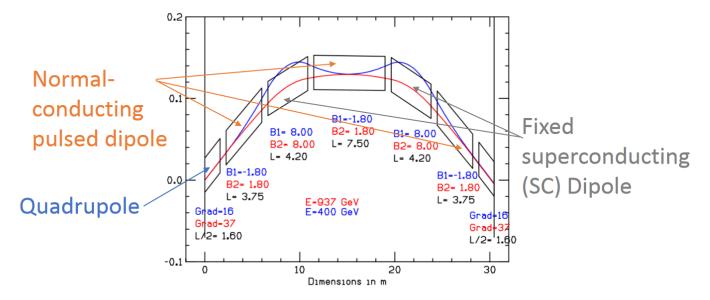


Diagram Ref: Summers, D.J., Cremaldi, L.M., Godang, R., Kipapa, B.R. & Rice, H.E., Muon acceleration to 750 GeV in the Tevatron tunnel for a 1.5 TeV $\mu^+\mu^-$ collider, Particle Accelerator Conference (PAC 07), Albuquerque, NM, 25-29 June 2007, THPMS082.

From:

https://indico.cern.ch/event/867138/contributions/3654250/attachments/2003892/3346162/RCS_MC_JAI_Presentation _FINAL.pdf

4

Longitudinal aspects and RF system design

- Number of RF sections/stations?
 - Just 1-2 or a large number distributed around the ring?
 - Large synchrotron tune or small phase slip factor, η ?
 - Maximum energy difference of counter-rotating beams, before/after RF section?
 - Consequences on energy gain per turn and synchrotron tune
- Bunch rotation required to achieve short bunches?
- Possible reuse of RF section(s) for at least two RCS stages?
- Uncontrolled (longitudinal, and transverse) emittance blowup during transfer between RCS. If unavoidable, by how much smaller emittance should be at the start of acceleration (smaller emittance → stronger collective effects)

5

Simulation techniques

- Coordination of longitudinal and transverse simulations?
 - BLonD code to explore longitudinal plane, then 6D-tracking?
- Which assumptions built into conventional simulation codes may not be correct?
 - Multiple RF stations per turn combined with intensity effects
 - Very large energy gain per turn
 - Impact of kA/s ramp rate? Betatron acceleration?

Agenda

- How to define goals and plans, e.g.
 - Self-consistent parameter table
 - What do we consider as basic machine design?

7

www.cern.ch