Statistics for Particle Physicists Lecture 2: Parameter Estimation

Summer Student Lectures CERN / Zoom 28 June – 1 July 2022

https://indico.cern.ch/event/1132545/

Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

Outline

Lecture 1: Introduction, probability,

→ Lecture 2: Parameter estimation

Lecture 3: Hypothesis tests

Lecture 4: Introduction to Machine Learning

Hypothesis, likelihood

Suppose the entire result of an experiment (set of measurements) is a collection of numbers *x*.

A (simple) hypothesis is a rule that assigns a probability to each possible data outcome:

 $P(\mathbf{x}|H)$ = the likelihood of H

Often we deal with a family of hypotheses labeled by one or more undetermined parameters (a composite hypothesis):

$$P(\mathbf{x}|oldsymbol{ heta}) = L(oldsymbol{ heta})$$
 = the "likelihood function"

Note:

- 1) For the likelihood we treat the data x as fixed.
- 2) The likelihood function $L(\theta)$ is not a pdf for θ .

The likelihood function for i.i.d.* data

* i.i.d. = independent and identically distributed

Consider *n* independent observations of *x*: $x_1, ..., x_n$, where *x* follows $f(x; \theta)$. The joint pdf for the whole data sample is:

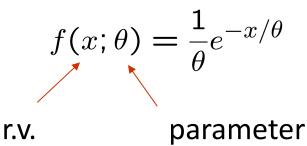
$$f(x_1,\ldots,x_n;\theta) = \prod_{i=1}^n f(x_i;\theta)$$

In this case the likelihood function is

$$L(\vec{\theta}) = \prod_{i=1}^{n} f(x_i; \vec{\theta}) \qquad (x_i \text{ constant})$$

Parameter estimation

The parameters of a pdf are any constants that characterize it,



i.e., θ indexes a set of hypotheses.

Suppose we have a sample of observed values: $x = (x_1, ..., x_n)$

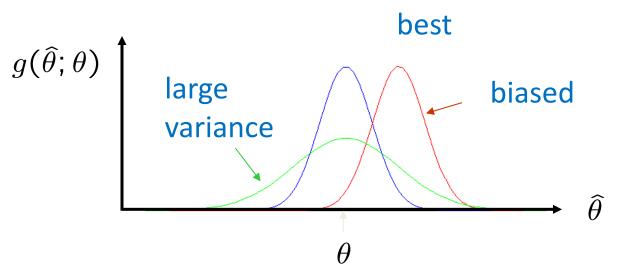
We want to find some function of the data to estimate the parameter(s):

 $\hat{\theta}(\vec{x}) \leftarrow \text{estimator written with a hat}$

Sometimes we say 'estimator' for the function of $x_1, ..., x_n$; 'estimate' for the value of the estimator with a particular data set.

Properties of estimators

If we were to repeat the entire measurement, the estimates from each would follow a pdf:



We want small (or zero) bias (systematic error): $b = E[\hat{\theta}] - \theta$

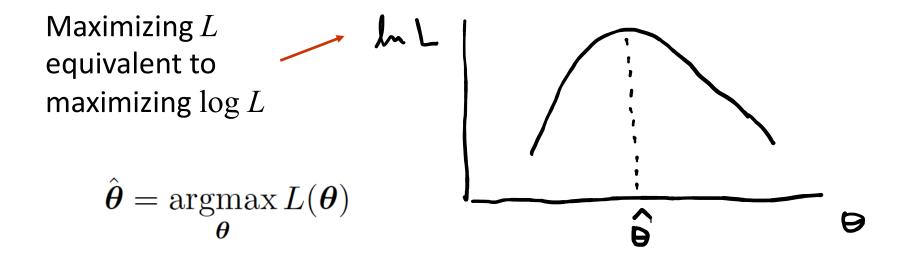
 \rightarrow average of repeated measurements should tend to true value.

And we want a small variance (statistical error): $V[\hat{\theta}]$

 \rightarrow small bias & variance are in general conflicting criteria

Maximum Likelihood Estimators (MLEs)

We *define* the maximum likelihood estimators or MLEs to be the parameter values for which the likelihood is maximum.



Could have multiple maxima (take highest).

MLEs not guaranteed to have any 'optimal' properties, (but in practice they're very good).

MLE example: parameter of exponential pdf

Consider exponential pdf,
$$f(t; \tau) = \frac{1}{\tau}e^{-t/\tau}$$

and suppose we have i.i.d. data, t_1, \ldots, t_n

The likelihood function is
$$L(\tau) = \prod_{i=1}^{n} \frac{1}{\tau} e^{-t_i/\tau}$$

The value of τ for which $L(\tau)$ is maximum also gives the maximum value of its logarithm (the log-likelihood function):

$$\ln L(\tau) = \sum_{i=1}^{n} \ln f(t_i; \tau) = \sum_{i=1}^{n} \left(\ln \frac{1}{\tau} - \frac{t_i}{\tau} \right)$$

MLE example: parameter of exponential pdf (2)

Find its maximum by setting

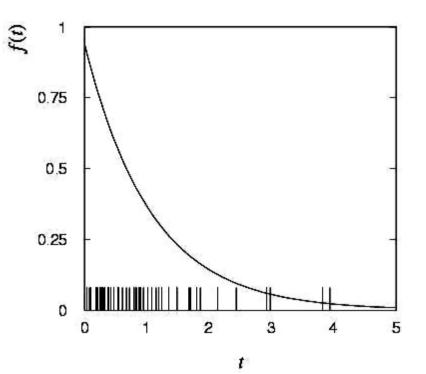
 $\rightarrow \hat{\tau} = \frac{1}{n} \sum_{i=1}^{n} t_i$

$$\frac{\partial \ln L(\tau)}{\partial \tau} = 0 ,$$

Monte Carlo test: generate 50 values using $\tau = 1$:

We find the ML estimate:

$$\hat{\tau} = 1.062$$



MLE example: parameter of exponential pdf (3)

For the exponential distribution one has for mean, variance:

$$E[t] = \int_0^\infty t \, \frac{1}{\tau} e^{-t/\tau} \, dt = \tau$$

$$V[t] = \int_0^\infty (t - \tau)^2 \, \frac{1}{\tau} e^{-t/\tau} \, dt = \tau^2$$
For the MLE $\hat{\tau} = \frac{1}{n} \sum_{i=1}^n t_i$ we therefore find
$$E[\hat{\tau}] = E\left[\frac{1}{n} \sum_{i=1}^n t_i\right] = \frac{1}{n} \sum_{i=1}^n E[t_i] = \tau \implies b = E[\hat{\tau}] - \tau = 0$$

$$V[\hat{\tau}] = V\left[\frac{1}{n} \sum_{i=1}^n t_i\right] = \frac{1}{n^2} \sum_{i=1}^n V[t_i] = \frac{\tau^2}{n} \implies \sigma_{\hat{\tau}} = \frac{\tau}{\sqrt{n}}$$

CERN Summer Student Lectures / Statistics Lecture 2

Variance of estimators: Monte Carlo method

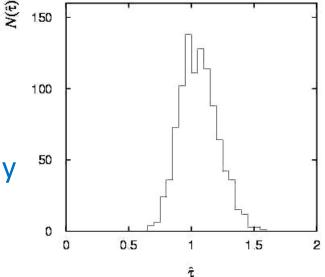
Having estimated our parameter we now need to report its 'statistical error', i.e., how widely distributed would estimates be if we were to repeat the entire measurement many times.

One way to do this would be to simulate the entire experiment many times with a Monte Carlo program (use ML estimate for MC).

For exponential example, from sample variance of estimates we find:

 $\hat{\sigma}_{\hat{\tau}} = 0.151$

Note distribution of estimates is roughly Gaussian – (almost) always true for ML in large sample limit.



Variance of estimators from information inequality

The information inequality (RCF) sets a lower bound on the variance of any estimator (not only ML):

$$V[\hat{\theta}] \ge \left(1 + \frac{\partial b}{\partial \theta}\right)^2 / E\left[-\frac{\partial^2 \ln L}{\partial \theta^2}\right] \qquad \text{Bound (MVB)}$$
$$(b = E[\hat{\theta}] - \theta)$$

Often the bias *b* is small, and equality either holds exactly or is a good approximation (e.g. large data sample limit). Then,

$$V[\widehat{\theta}] \approx -1 \left/ E\left[\frac{\partial^2 \ln L}{\partial \theta^2}\right] \right.$$

Estimate this using the 2nd derivative of $\ln L$ at its maximum:

$$\widehat{V}[\widehat{\theta}] = -\left(\frac{\partial^2 \ln L}{\partial \theta^2}\right)^{-1} \bigg|_{\theta = \widehat{\theta}}$$

CERN Summer Student Lectures / Statistics Lecture 2

MVB for MLE of exponential parameter

Find MVB =
$$-\left(1 + \frac{\partial b}{\partial \tau}\right)^2 / E\left[\frac{\partial^2 \ln L}{\partial \tau^2}\right]$$

We found for the exponential parameter the MLE

$$\hat{\tau} = \frac{1}{n} \sum_{i=1}^{n} t_i$$

and we showed b = 0, hence $\partial b / \partial \tau = 0$.

We find
$$\frac{\partial^2 \ln L}{\partial \tau^2} = \sum_{i=1}^n \left(\frac{1}{\tau^2} - \frac{2t_i}{\tau^3} \right)$$

and since $E[t_i] = \tau$ for all i , $E\left[\frac{\partial^2 \ln L}{\partial \tau^2} \right] = -\frac{n}{\tau^2}$,
and therefore MVB $= \frac{\tau^2}{n} = V[\hat{\tau}]$. (Here MLE is "efficient").

Variance of estimators: graphical method

Expand $lnL(\theta)$ about its maximum:

$$\ln L(\theta) = \ln L(\hat{\theta}) + \left[\frac{\partial \ln L}{\partial \theta}\right]_{\theta = \hat{\theta}} (\theta - \hat{\theta}) + \frac{1}{2!} \left[\frac{\partial^2 \ln L}{\partial \theta^2}\right]_{\theta = \hat{\theta}} (\theta - \hat{\theta})^2 + \dots$$

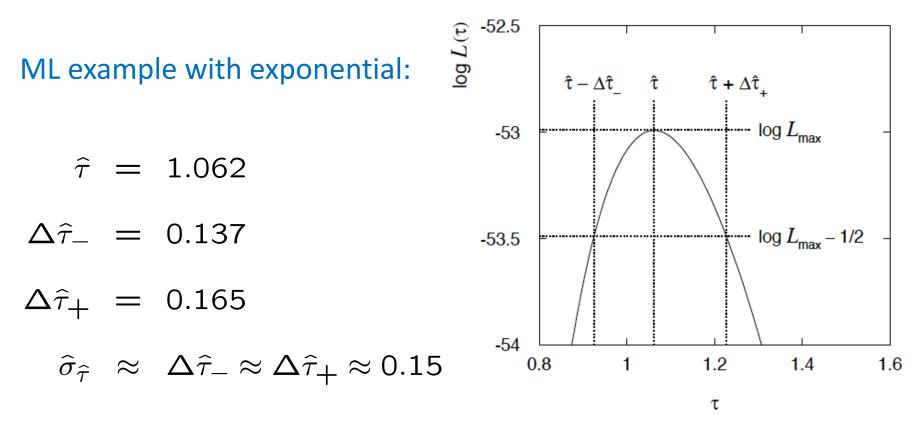
First term is $\ln L_{max}$, second term is zero, for third term use information inequality (assume equality):

$$\ln L(\theta) \approx \ln L_{\max} - \frac{(\theta - \hat{\theta})^2}{2\hat{\sigma}^2_{\hat{\theta}}}$$

i.e.,
$$\ln L(\hat{\theta} \pm \hat{\sigma}_{\hat{\theta}}) \approx \ln L_{\max} - \frac{1}{2}$$

 \rightarrow to get $\hat{\sigma}_{\hat{\theta}}$, change θ away from $\hat{\theta}$ until $\ln L$ decreases by 1/2.

Example of variance by graphical method



Not quite parabolic $\ln L$ since finite sample size (n = 50).

Information inequality for N parameters Suppose we have estimated N parameters $\theta = (\theta_1, ..., \theta_N)$ The Fisher information matrix is

$$I_{ij} = -E\left[\frac{\partial^2 \ln L}{\partial \theta_i \partial \theta_j}\right] = -\int \frac{\partial^2 \ln P(\mathbf{x}|\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j} P(\mathbf{x}|\boldsymbol{\theta}) \, d\mathbf{x}$$

and the covariance matrix of estimators $\hat{\theta}$ is $V_{ij} = ext{cov}[\hat{ heta}_i, \hat{ heta}_j]$

The information inequality states that the matrix

$$M_{ij} = V_{ij} - \sum_{k,l} \left(\delta_{ik} + \frac{\partial b_i}{\partial \theta_k} \right) I_{kl}^{-1} \left(\delta_{lj} + \frac{\partial b_l}{\partial \theta_j} \right)$$

is positive semi-definite:

 $z^{\mathrm{T}}Mz \ge 0$ for all $z \ne 0$, diagonal elements ≥ 0

Information inequality for N parameters (2)

In practice the inequality is ~always used in the large-sample limit: bias $\rightarrow 0$ inequality \rightarrow equality, i.e, M = 0, and therefore $V^{-1} = I$

That is,
$$V_{ij}^{-1} = -E\left[\frac{\partial^2 \ln L}{\partial \theta_i \partial \theta_j}\right]$$

This can be estimated from data using $\hat{V}_{ij}^{-1} = -\frac{\partial^2 \ln L}{\partial \theta_i \partial \theta_j}\Big|_{\hat{\theta}}$

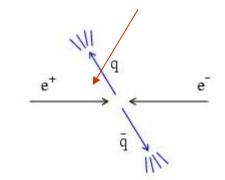
Find the matrix V^{-1} numerically (or with automatic differentiation), then invert to get the covariance matrix of the estimators

$$\widehat{V}_{ij} = \widehat{\text{cov}}[\widehat{\theta}_i, \widehat{\theta}_j]$$

Example of ML with 2 parameters

Consider a scattering angle distribution with $x = \cos \theta$,

$$f(x;\alpha,\beta) = \frac{1+\alpha x + \beta x^2}{2+2\beta/3}$$



or if $x_{\min} < x < x_{\max}$, need to normalize so that

$$\int_{x_{\mathsf{min}}}^{x_{\mathsf{max}}} f(x; lpha, eta) \, dx = \mathbf{1} \; .$$

Example: $\alpha = 0.5$, $\beta = 0.5$, $x_{\min} = -0.95$, $x_{\max} = 0.95$, generate n = 2000 events with Monte Carlo.

$$\ln L(\alpha,\beta) = \sum_{i=1}^{n} \ln f(x_i;\alpha,\beta) \quad \longleftarrow \quad \text{need to find maximum} \\ \text{numerically}$$

G. Cowan / RHUL Physics

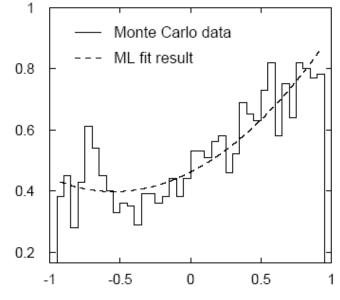
 \widehat{x}

$$\hat{\alpha} = 0.508$$

$$\hat{\beta} = 0.47$$

N.B. No binning of data for fit, but can compare to histogram for goodness-of-fit (e.g. 'visual' or χ^2).

0.11



х

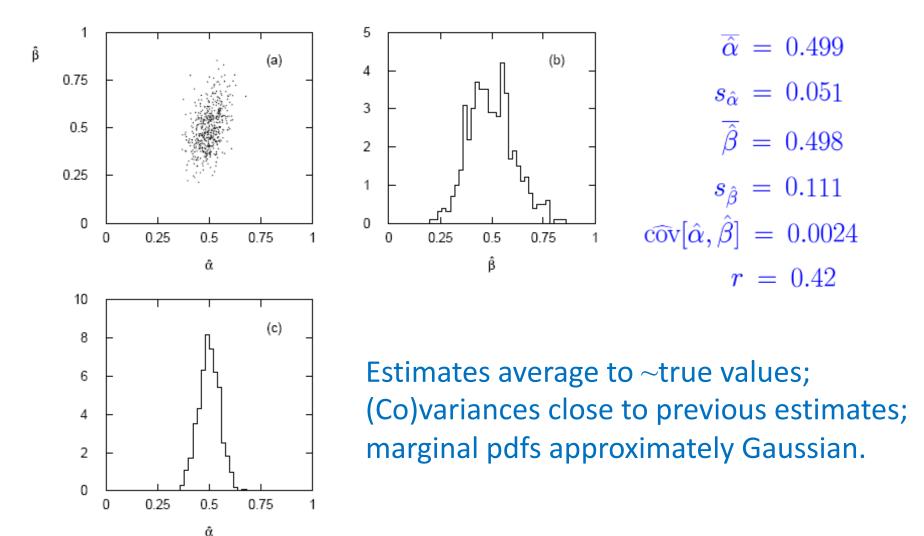
(Co)variances from
$$(\widehat{V^{-1}})_{ij} = -\frac{\partial^2 \ln L}{\partial \theta_i \partial \theta_j}\Big|_{\vec{\theta} = \hat{\vec{\theta}}}$$

 $\hat{\sigma}_{\hat{\alpha}} = 0.052 \quad \operatorname{cov}[\hat{\alpha}, \hat{\beta}] = 0.0026$

r = 0.46 = correlation coefficient

Two-parameter fit: MC study

Repeat ML fit with 500 experiments, all with n = 2000 events:



G. Cowan / RHUL Physics

CERN Summer Student Lectures / Statistics Lecture 2

Multiparameter graphical method for variances

Expand $\ln L(\theta)$ to 2nd order about MLE:

$$\ln L(\boldsymbol{\theta}) \approx \ln L(\hat{\boldsymbol{\theta}}) + \sum_{i} \frac{\partial \ln L}{\partial \theta_{i}} \Big|_{\hat{\boldsymbol{\theta}}} (\theta_{i} - \hat{\theta}_{i}) + \frac{1}{2!} \sum_{i,j} \frac{\partial^{2} \ln L}{\partial \theta_{i} \partial \theta_{j}} \Big|_{\hat{\boldsymbol{\theta}}} (\theta_{i} - \hat{\theta}_{i})(\theta_{j} - \hat{\theta}_{j})$$

$$\int_{\ln L_{\max}} zero relate to covariance matrix of$$

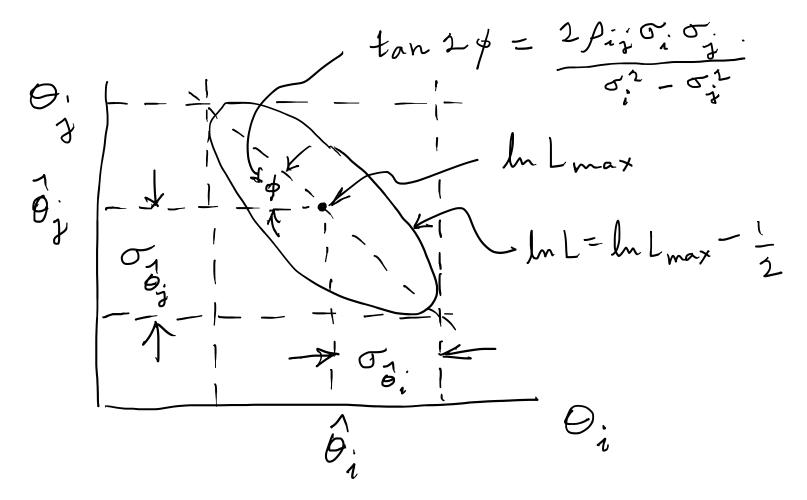
relate to covariance matrix of MLEs using information (in)equality.

Result:
$$\ln L(\boldsymbol{\theta}) = \ln L_{\max} - \frac{1}{2} \sum_{i,j} (\theta_i - \hat{\theta}_i) V_{ij}^{-1} (\theta_j - \hat{\theta}_j)$$

So the surface $\ln L(\theta) = \ln L_{\max} - \frac{1}{2}$ corresponds to

 $(\theta - \hat{\theta})^T V^{-1} (\theta - \hat{\theta}) = 1$, which is the equation of a (hyper-) ellipse.

Multiparameter graphical method (2)



Distance from MLE to tangent planes gives standard deviations.

The $\ln L_{\rm max} - 1/2$ contour for two parameters

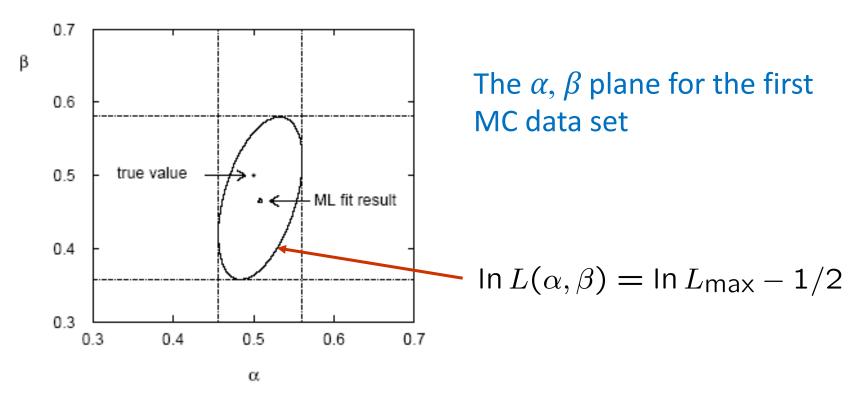
For large n, $\ln L$ takes on quadratic form near maximum:

$$\ln L(\alpha,\beta) \approx \ln L_{\max}$$
$$-\frac{1}{2(1-\rho^2)} \left[\left(\frac{\alpha - \hat{\alpha}}{\sigma_{\hat{\alpha}}} \right)^2 + \left(\frac{\beta - \hat{\beta}}{\sigma_{\hat{\beta}}} \right)^2 - 2\rho \left(\frac{\alpha - \hat{\alpha}}{\sigma_{\hat{\alpha}}} \right) \left(\frac{\beta - \hat{\beta}}{\sigma_{\hat{\beta}}} \right) \right]$$

The contour $\ln L(\alpha,\beta) = \ln L_{\max} - 1/2$ is an ellipse:

$$\frac{1}{(1-\rho^2)}\left[\left(\frac{\alpha-\widehat{\alpha}}{\sigma_{\widehat{\alpha}}}\right)^2 + \left(\frac{\beta-\widehat{\beta}}{\sigma_{\widehat{\beta}}}\right)^2 - 2\rho\left(\frac{\alpha-\widehat{\alpha}}{\sigma_{\widehat{\alpha}}}\right)\left(\frac{\beta-\widehat{\beta}}{\sigma_{\widehat{\beta}}}\right)\right] = 1$$

(Co)variances from In L contour



 \rightarrow Tangent lines to contours give standard deviations.

 \rightarrow Angle of ellipse φ related to correlation: $\tan 2\phi = \frac{2\rho\sigma_{\hat{\alpha}}\sigma_{\hat{\beta}}}{\sigma_{\hat{\alpha}}^2 - \sigma_{\hat{\beta}}^2}$

Extra slides