

From Raw data to Physics Results (2/3)

Paul Laycock

July 4th 2022

@BrookhavenLab

The particle physics cycle

Course outline

Lecture 1

The journey of raw data from the detector to a publication

Lecture 2

 How we reconstruct fundamental physics processes from raw detector data

Lecture 3

 How we extract our signals from the mountain of data, finding needles in the haystack

Data's journey

The ATLAS Detector @ LHC

Millions of detector readout channels read out to reconstruct one "event"

Data Preparation

Three major steps to prepare data for physics analysis and achieve

- reliable, high quality data (yes, we reject low quality data)
- the **best performance** from our detectors
- readiness for *physics analysis*

- 1. Reconstruct physics signals from the data
 - Produce information like how many muons does the event have?

Track fitting

Perfect measurement – ideal

Imperfect measurement – reality

Small errors and more points help to constrain the possibilities

- Quantitatively:
 - Parameterize the track;
 - Find parameters by Least-Squares-Minimization;
 - Obtain also uncertainties on the track parameters.

Data Preparation

Three major steps to prepare data for physics analysis and achieve

- reliable, high quality data (yes, we reject low quality data)
- the best performance from our detectors
- readiness for *physics analysis*

1. Reconstruct physics signals from the data

- Produce information like how many muons does the event have?
- 2. Calibrate the detectors
 - Correct imperfections, account for changes over time...

Real detector effects

Presence of Material

- Coulomb scattering off the core of atoms
- Energy loss due to ionization
- Bremsstrahlung
- Madronic interaction

Misalignment

- Detector elements not positioned in space with perfect accuracy.
- Alignment corrections derived from data and applied in track reconstruction.

Correcting detector effects - calibration

Presence of Material

- Coulomb scattering off the core of atoms
- Energy loss due to ionization
- Bremsstrahlung
- Hadronic interaction

Q. What effects would we see due to the presence of material?

Misalignment

- Detector elements not positioned in space with perfect accuracy.
- Alignment corrections derived from data and applied in track reconstruction.

Real vs perfect tracking detectors

The perfect tracking detector

- is constructed from zero mass material
- has no noise
- is 100% efficient
- and has infinite resolution

A real tracking detector

- is constructed from real material
 - particles interact with the detector and scatter, altering the particle trajectory
- suffers from noise
 - noise can be confused with particle tracks
- has less than 100% efficiency
 - particles are not always detected and there can even be dead regions
- has finite resolution
 - it may not always be possible to resolve two particle trajectories

Calibration

During the break between Run 1 and Run 2, ATLAS inserted the IBL, an extra layer of silicon tracker close to the beam pipe

Calibration

During the break between Run 1 and Run 2, ATLAS inserted the IBL, an extra layer of silicon tracker close to the beam pipe

At the start of data taking in Run 2, it started to move

As time went on, the movement was very significant, much more than the detector precision so the movement could really be seen in physics distributions and data quality

Calibration

During the break between Run 1 and Run 2, ATLAS inserted the IBL, an extra layer of silicon tracker close to the beam pipe

At the start of data taking in Run 2, it started to move

As time went on, the movement was very significant, much more than the detector precision so the movement could really be seen in physics distributions and data quality

ATLAS quickly implemented and commissioned a correction procedure as part of its calibration process

Following the correction the performance of the detector was back to nominal

Calibration quality

Thinking back to the difference between *accuracy* and *precision*, which versions of the data are *accurate*, and which are *precise*? Which are both?

Data Preparation

Three major steps to prepare data for physics analysis and achieve

- reliable, high quality data (yes, we reject low quality data)
- the best performance from our detectors
- readiness for *physics analysis*

- 1. Reconstruct physics signals from the data
 - Produce information like how many muons does the event have?
- 2. Calibrate the detectors
 - Correct imperfections, account for changes over time...
- 3. Make sure that the data quality is excellent, also in real time
 - Maximise the amount of useful data

Data Quality

Check during data taking

Check a fraction of the data with a quick calibration

Check all of the data with the best calibration publish this data!!

What makes good data quality?

The **ATLAS IBL** is a good example of a *data quality* problem Potential data quality issues need to be monitored

We need a reference, here that would be the **black** histogram, how we expect the data to look

If the data quality shifter sees the blue or red histogram, they will raise the alarm!

Reconstruction figures of merit and data quality

	Definition	Example		Needs be:
Efficiency	how often do we reconstruct the object	electron identification efficiency = (number of reconstructed electrons) / (number of true electrons) in bins of transverse momentum	0.95 0.85 0.8 ATLAS Simulation Preliminary $Loose$ 0.75 $Vs = 13 \text{ TeV}$ $Z \rightarrow \text{ ee Simulation}$ $Tight$ 20 30 40 50 60 70 $E_T [\text{GeV}]$	High
Resolution	how accurately do we reconstruct the quantity	energy resolution = (measured energy – true energy) / (true energy)	σ = (1.12 ± 0.03)% 150 100 50 -0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2 (Ε-Ε-μ)/Εμα	Good
Fake rate	how often we reconstruct a different object as the object we are interested in	a jet faking an electron, fake rate = (Number of jets reconstructed as an electron) / (Number of jets) in bins of pseudorapidity	0.5 ATLAS Before isolation cut 0.35 0.25 0.1	Low

Data Preparation

Three major steps to prepare data for physics analysis and achieve

- reliable, high quality data (yes, we reject low quality data)
- the best performance from our detectors
- readiness for *physics analysis*

- 1. Reconstruct physics signals from the data
 - Produce information like how many muons does the event have?
- 2. Calibrate the detectors
 - Correct imperfections, account for changes over time...
- 3. Make sure that the **data quality** is excellent, also in real time
 - Maximise the amount of useful data

At the LHC: more than one proton collision - more than one vertex

Run Number: 265545, Event Number: 5720351

Date: 2015-05-21 10:39:54 CEST

called "pileup"

LHC collisions

Figures adapted from Michaela Schaumann's <u>third lecture</u> (11/07/19) on "Particle Accelerators and Beam Dynamics"

• The LHC accelerates bunches of 10¹¹ protons separated by 25ns gaps

Z->μμ event; 2011 data.

The more bunches are squeezed, the higher the luminosity, the larger the number of simultaneous proton collisions in one recorded event

Track pT > 0.5 GeV

Run Number: 180164, Event Number: 146351094

Date: 2011-04-24 01:43:39 CEST

Z->μμ event; 2011 data.

Most proton collisions are low momentum and uninteresting. We can remove them simply by making a cut on the transverse momentum.

Track pT > 2 GeV

Date: 2011-04-24 01:43:39 CEST

Z->µµ event; 2011 data.

Once we increase the transverse momentum cut sufficiently, we are left with only the interesting proton collision.

Track pT > 10 GeV

11 reconstructed vertices

Jet reconstruction

Quarks and gluons *hadronize* quickly and we detect *sprays of hadronic particles* in our detectors - we call these *jets*

Jets are used as proxies for the initial particle(s), we reconstruct them using jet algorithms

Jet algorithms are effectively clustering algorithms with special properties (infra-red safe)

- Perfecting these algorithms is an active field of research for several decades
- The original idea has been extended to e.g. reconstruction of top quarks

We run **several** jet algorithms in reconstruction and then choose the best one depending on the **physics case**

Modern jet reconstruction uses Machine Learning!

Cluster-finding in practice

Algorithms and thresholds need careful study and tuning, especially early on in the experiment's lifetime

• Particularly need to study the sensitivity to noise (depends on the detector and the environment)

If thresholds are too low - pick up noise

If thresholds are too high - lose too much of the energy actually deposited by the particle

 The loss of some of the energy needs to be corrected for (calibrated) and large calibration factors lead to large measurement uncertainties

Calorimeter calibration takes a lot of work!

Neutrinos

Let's look at the simplest case for reconstructing neutrinos

Remember, we are looking down the beam pipe, so the plane of the display is transverse to the proton beam direction

Recall: Can you quantify the momentum in this plane before the proton collision

- What does that tell you about the distribution of momentum after the collision?
 - Q. How would this look if we had a W boson instead of a Z boson?

Today - Machine Learning

Modern simulation, reconstruction and analysis employ heavy use of Machine Learning techniques. See Foundations of Statistics for an introduction to the key concepts. There are also some excellent resources online, e.g.:

Google Machine Learning Crash Course

Machine Learning and AI for Scientists

Track Reconstruction @ Connect the Dots

Data's journey - next time, analysis!

Contact details

Dr Paul Laycock, based at CERN

Office: B40 4-C-16

email: laycock@bnl.gov or paul.james.laycock@cern.ch

In-person Q&A:

Monday 13:30-15:00 in Salle Anderson, B40 S2-A01

Q&A time