

(Nuclear) Physics at the ISOLDE-CERN facility (1/2)

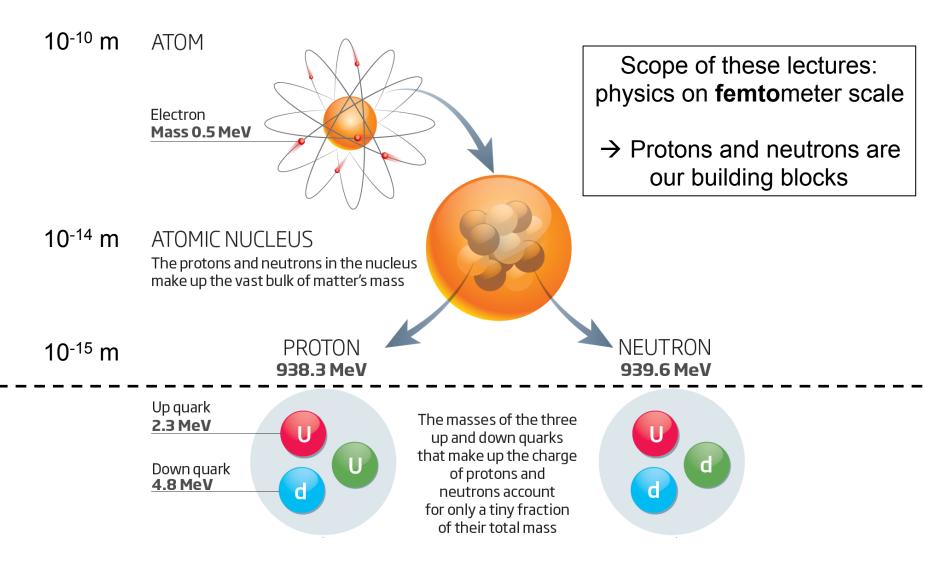
Stephan Malbrunot-Ettenauer CERN, TRIUMF, and University of Toronto

on behalf of the ISOLDE-CERN group http://isolde.web.cern.ch

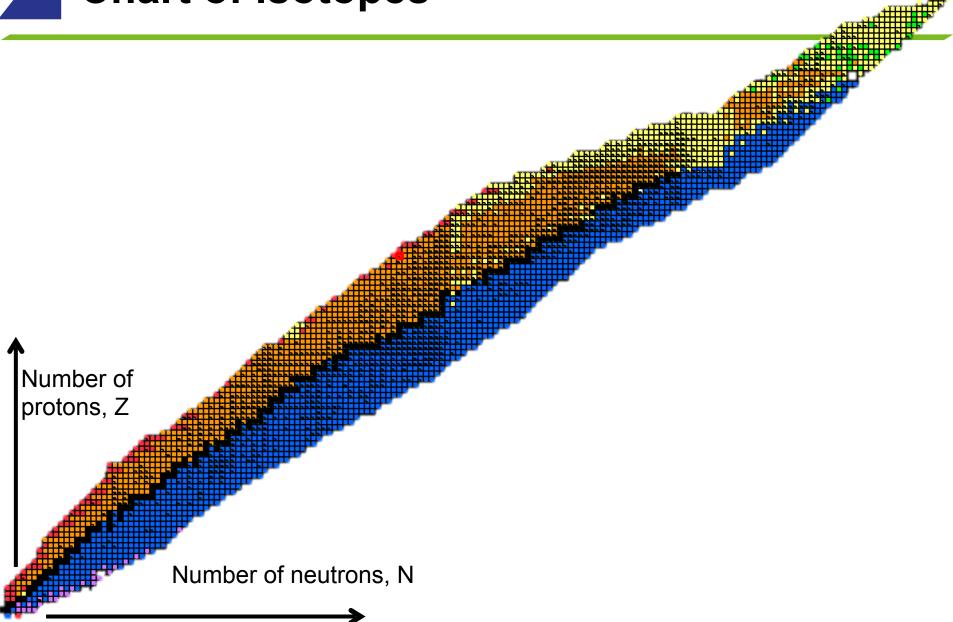
(Lecture 1 based on slides by Hanne Heylen)

Lecture 1: ISOLDE-CERN: radioactive ion beam production

Lecture 2: Nuclear Physics and Applications at ISOLDE


Stephan Malbrunot-Ettenauer stephan.ettenauer@cern.ch

- 2007 '12: PhD in experimental nuclear physics, University of British Columbia & TRIUMF, Vancouver, Canada
- Since 2012 based at CERN
 - 2012-'14 Postdoctoral Researcher at Harvard, stationed at the AD@CERN
 - 2014-'16 CERN Research Fellow at ISOLDE
 - 2017-'22 CERN Research Physicist at ISOLDE
 - 2022- now Research Physicist at TRIUMF, Vancouver Adjunct Professor at the University of Toronto,
- Research Interest
 - low energy, high precision measurements at accelerator facility
 - ion traps, laser spectroscopy, exotic atoms, ...


1. Introduction

Atomic nuclei: the heart of matter

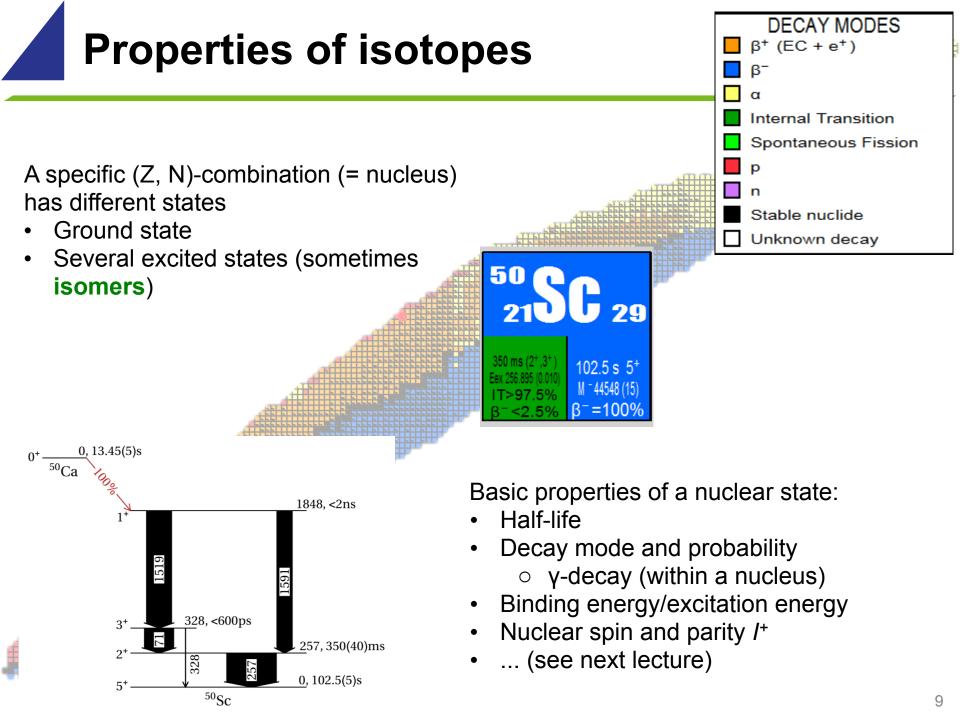
NewScientist, vol 226, issue 3024, June 2015

Chart of isotopes

Nucleus/Isotope:

- Z protons \rightarrow element X
- N neutrons
- Atomic number A = N+Z
- Nucleons = protons and neutrons
- Isotopes = nuclei with the same number of protons, but not neutrons
 - 1913 F. Soddy: iso + topos: "same place in periodic table"

 48 -	49 💶 -	50 T	51	52	53 - 22 31	54	55
22 26	22 27	22 28	22 29	22 30	22 31	22 32	
M ⁻ 48491.7 (0.4) Abundance=73.72 (3)%	M ⁻ 48562.8 (0.4) Abundance=5.41 (2)%	M ⁻ 51430.7 (0.4) Abundance=5.18 (2)%	M ⁻ 49731.9 (0.6) β ⁻ =100%	M ⁻⁴⁹⁴⁶⁹ (7) β ⁻ =100%	M ⁻⁴⁶⁸³⁰ (100) β ⁻ =100%	M ⁻ 45600 (120) β ⁻ =100%	M = 4167 = 50) β ⁻ = −50% β ⁻ n?
⁴⁷ 21SC 26	⁴⁸ 21SC 27	⁴⁹ 21SC 28	⁵⁰ 21SC 29	⁵¹ 21SC 30	⁵² 21SC 31	⁵³ 21SC 32	⁵⁴ 21SC 33
272 ns (3/2) ⁺ Eex 766.83 (0.09) M ⁻ 44335.6 (2.0) IT=100% β ⁻ =100%	43.67 h 6⁺ M [~] 44503 (5) β⁻=100%	57.18 m 7/2⁻ M ⁻46561.1 (2.7) β⁻=100%	$\begin{array}{c} 350 \text{ ms} (2^{+},3^{+}) \\ \text{Ex} 256.85 (0.010) \\ 1\text{ T} > 97.5\% \\ \beta^{-} < 2.5\% \end{array} \begin{array}{c} 102.5 \text{ s} \ 5^{+} \\ \text{M}^{-} 44548 (15) \\ \beta^{-} = 100\% \end{array}$	12.4 s (7/2) ⁻ M ⁻ 43229 (20) β ⁻ =100% β ⁻ n?	8.2 s 3(⁺) M ⁻ 40170 (140) β ⁻ =100% β ⁻ n?	2.4 s (7/2 ⁻) M ⁻ 38110 (270) β ⁻ =100% β ⁻ n?	2.77 us (4.5) ⁺ Eex 1105 (0.3) IT=100% β ⁻ =100% β ⁻ =16 (9)%
46 20 Ca 26	⁴⁷ Ca 27	48 20 Ca 28	⁴⁹ Ca 29	⁵⁰ Ca 30	⁵¹ Ca 31	⁵² Ca 32	⁵³ Ca 33
 stable 0 ⁺ M ⁻ 43138.4 (2.3) Abundance=0.004 (3)% 2β ⁻ ?	4.536 d 7/2 [−] M [−] 42343.5 (2.2) β [−] =100%	53 Ey 0 ⁺ M ⁻ 44224.76 (0.12) Abundance=0.187 (21)% 2β ⁻ =75 (⁺ 25 ⁻ 38)%	8.718 m 3/2 ⁻ M ⁻ 41299.89 (0.21) β ⁻ =100%	13.9 s 0⁺ M [−] 39589.2 (1.6) β⁻=100%	10.0 s (3/2 ⁻) M ⁻ 36339 (22) β ⁻ =100% β ⁻ n?	4.6 s 0 ⁺ M ⁻ 34260 (60) β ⁻ =100% β ⁻ n<2%	461 ms 3/2 [−] # M [−] 28460# (400#) β [−] =100% β [−] n>30%


Chart of isotopes

Nucleus/Isotope:

- Z protons \rightarrow element X
- N neutrons
- Atomic number A = N+Z
- Nucleons = protons and neutrons
- Isotopes = nuclei with the same number of protons, but not neutrons
- Isotones = nuclei with the same number of neutrons, but not protons
- Isobars = nuclei with the same number of nucleons A (but different Z and N)

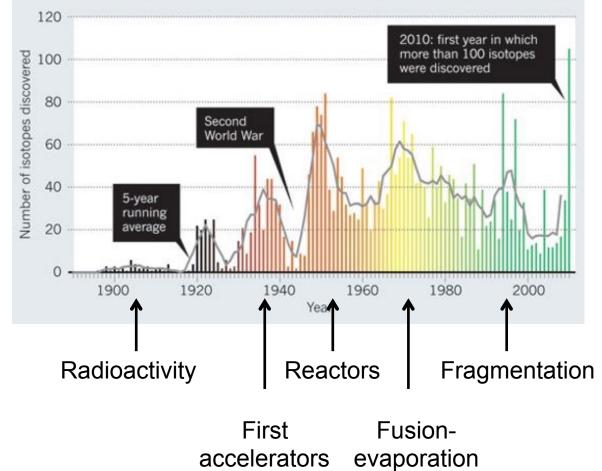
2222. 2. 2222			~					
48 - 22 26	49 22	- 07	50	51	52 -	53	54	55
22 20 20			22 28	22 29	22 1 30	22 . 31	22 8 32	22 33
M ⁻ 48491.7 (0.4) Abundance=73.72 (3)%	M ⁻⁴⁸ Abundan	2.8 (0.4) =5.41 (2)%	M ⁻ 51430.7 (0.4) Abundance=5.18 (2)%	M ⁻ 49731.9 (0.6) β ⁻ =100%	M ⁻ 49469 (7) β ⁻ =100%	M ⁻ 46830 (100) β ⁻ =100%	M ⁻ 45600 (120) β ⁻ =100%	M =416=00) β==0% β=n?
⁴⁷ SC 26			⁴⁹ 21SC 28	⁵⁰ Sc	⁵¹ SC	⁵² Sc	⁵³ Sc	⁵⁴ Sc
2100 26		U 27	21 UU 28	2100 29	2100 30	2100 31	2100 32	2100 33
272 ns (3/2) ⁺ Eex 766.83 (0.09) M ⁻ 44335.6 (2.0)	43.0 M ⁻ 4	h 03 (57.18 m 7/2⁻ M ⁻46561.1 (2.7)	350 ms (2 ⁺ ,3 ⁺) Eex 256 895 (0.010) IT>97, 596 № -44548 (15)	12.4 s (7/2) ⁻ M ⁻ 43229 (20) β ⁻ =100%	8.2 s 3(⁺) M ⁻ 40170 (140) β ⁻ =100%	2.4 s (7/2 ⁻) M ⁻ 38110 (270) β ⁻ =100%	2.77 us (4,5) ⁺ Eex 110.5 (0.3) B [−] =100%
IT=100% β ⁻ =100%	<u>β</u> -	00%	β ⁻ =100%	β ⁻ <2.5% β ⁻ =100%	β⁻n?	β ⁻ n?	β ⁻ n?	IT=100% β ⁻ n=16 (9)%
⁴⁶ Ca	47	2	⁸ Ga 28	⁴⁹ C2	⁵⁰ Ca	⁵¹ C9	⁵² Co	⁵³ P.9
2000 26	20	27	2 VU 28	2000 29	20 UU 30	2000 31	2000 32	2000 33
stable 0 ⁺ M ⁻ 43138.4 (2.3)	4.53	7/2-	53 E 1+ M = 44224 +6 (0 12)	8.718 m 3/2 ⁻	13.9 s 0*	10.0 s (3/2) M 36339 (22)	4.6 s 0 ⁺ M ⁻ 34260 (60)	461 ms 3/2 ⁻ # M ⁻ 28460# (400#)
Abundance=0.004 (3)% 2β ⁻ ?	M = 42	3.5 (2.2) 00%	Abundance=0.187 (21)% 2β ⁻ =75 (+25 ⁻ 38)%	M ⁻ 41299.89 (0.21) β ⁻ =100%	M ⁻ 39589.2 (1.6) β ⁻ =100%	β ⁻ =100% β ⁻ n?	β [−] =100% β [−] n<2%	β ⁻ =100% β ⁻ n>30%

The nuclear landscape

- ~300 stable isotopes exist
- ~3000 unstable isotopes discovered
- Over 7000 isotopes predicted to exist
- \rightarrow Artificial production

Radioactive ion beam facilities

Research with radioactive isotopes


Some vocabulary

- Nuclei far from (β-)stability
- Rare isotopes
- Exotic nuclei
- RIB (Radioactive Ion Beam)

Thoennessen and Sherrill, Nature 473, 25 (2011)

THE NUCLIDE TRAIL

Isotope discovery over the past 100 years (below) has jumped with each introduction of new technol 2,700 radioactive isotopes have been discovered so far (below right), but about 3,000 more are pred

2. Production of radioactive isotopes

Radioactive ion beam production

Experimentalists dreams

- Pure beams of 1 isotopic species
- Intense beams
- Good ion optical quality (low energy spread, low angular distribution)

Challenges

- Low production cross section
- Overwhelming production of unwanted species in the same nuclear reaction
- Short half-lives

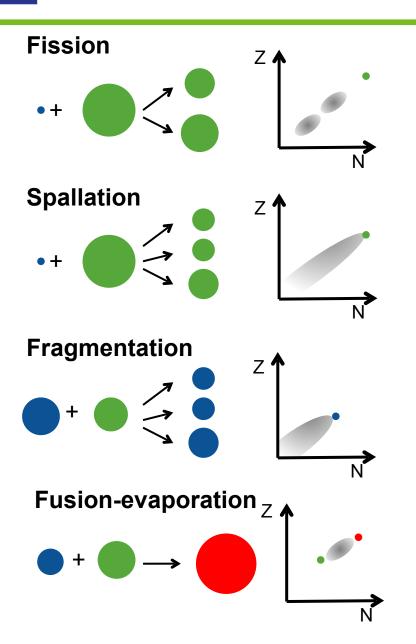
More info: Y Blumenfeld et al., Phys. Scr. 014023 (2013)

Radioactive ion beam production

General steps

- 1) Production
- 2) Beam purification and preparation
- 3) Transport to experimental set-up
- 4) Do measurement

Within a few half-lives (ms)

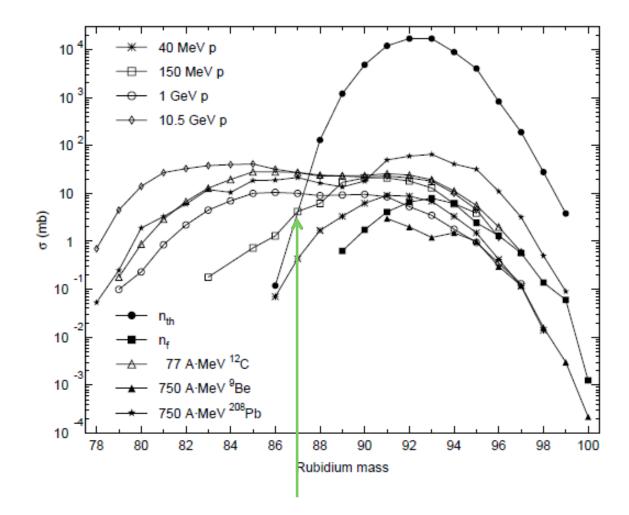

Key words

- Efficient
- Selective
- Fast

Homework

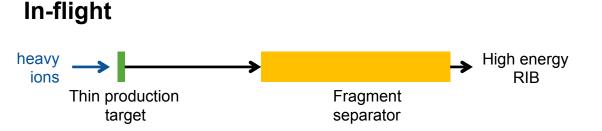
What are the factors that determine the final ion beam intensity in your set-up? \rightarrow Focus on ISOLDE

Production: nuclear reactions

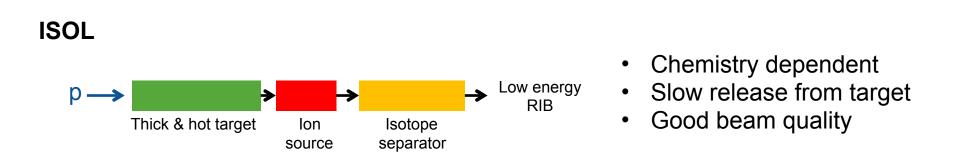


Accelerated primary beam (projectile)

 Proton, neutrons, alpha-particles, heavy ions

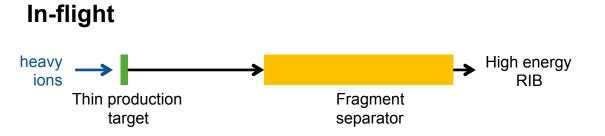

TargetHeavy nuclei

Production: nuclear reactions



Primary beam type and energy are important!

RIB production methods

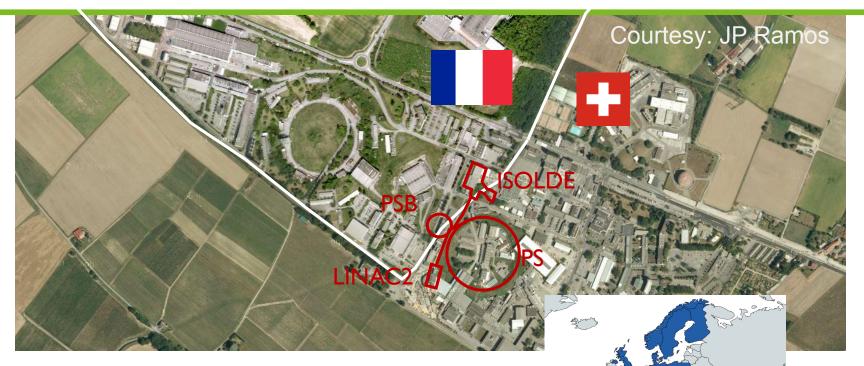


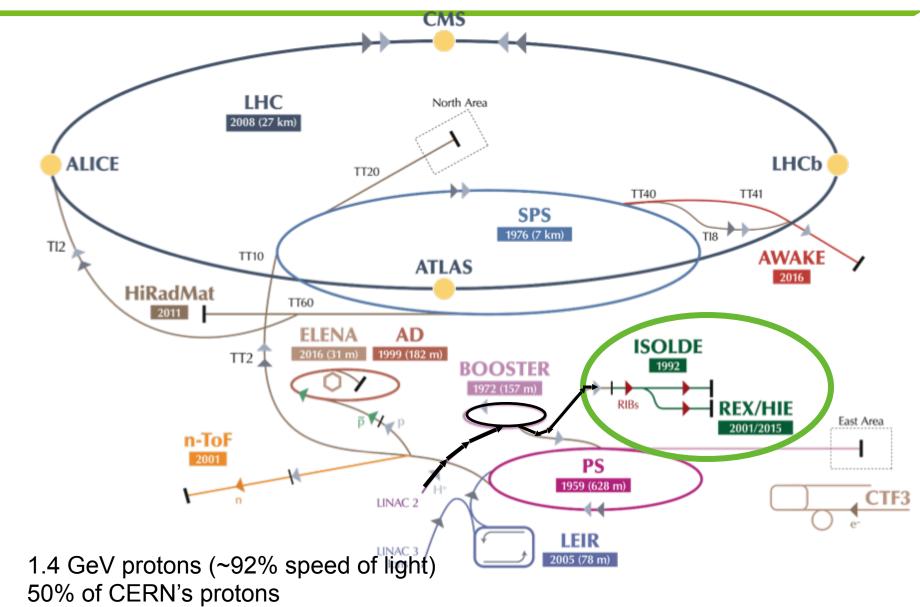
- Chemistry independent
- Fast
- Poor beam quality
- Discovery of new isotopes



- 2 complementary approaches
- Extensions, adaptations, mixtures of components of the two schemes are possible as well

RIB production methods

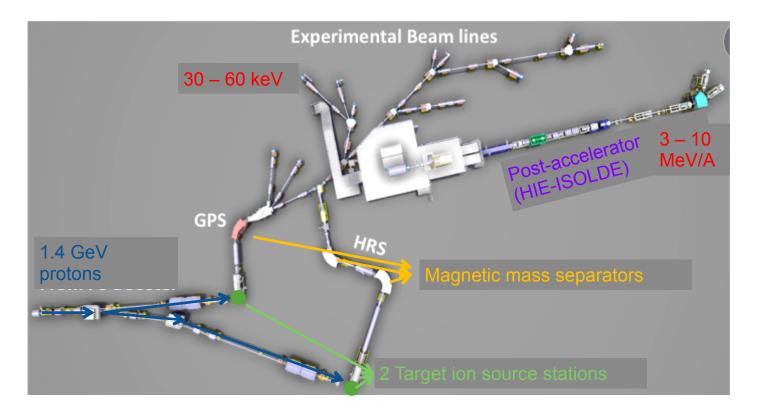

- Chemistry independent
- Fast
- Poor beam quality
- Discovery of new isotopes


3. ISOLDE-CERN

ISOLDE at CERN

- Isotope Separator On-line Device
- First beam in 1967: more than 50 years of expertise
 - Originally at SC, Moved to PSB in 1992
 - World-wide reference for RIB production
 - First isol-facility
 - Continuous upgrades
- ~50 staff/fellows/students few 100 users each year

ISOLDE at CERN



Isotope production at ISOLDE

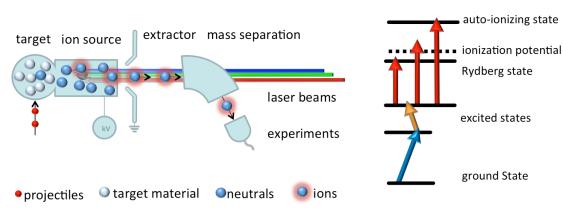
- 1. Production and extraction from target
- 2. Ionisation (singly-charged)
- 3. Mass separation
- 4. Low-energy RIB (30 60 keV)
 - a. To experimental set-ups
 - b. Post-acceleration 3 10 MeV/A

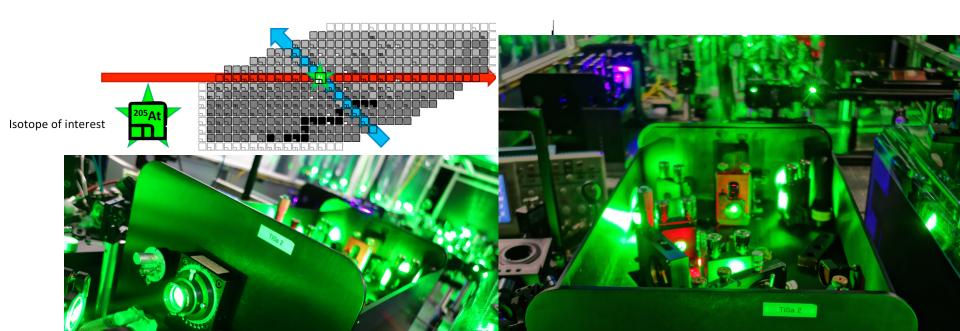
Not to forget

- Ion optical elements (steerers, focussing elements, ...)
- Beam diagnostics (faraday cups, wire grids)

Isotope production at ISOLDE

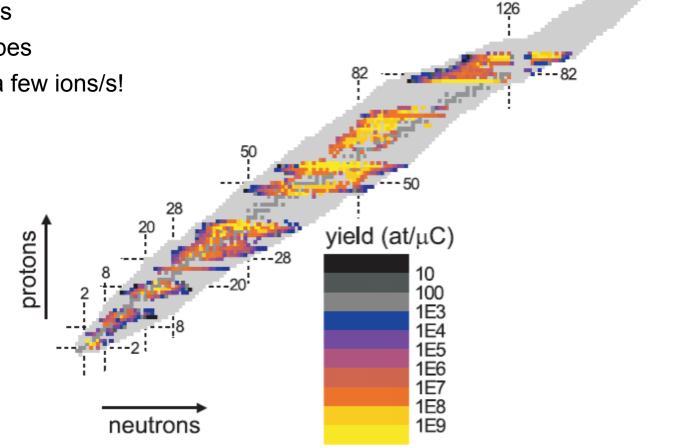
- Over 20 target materials and ionizers, depending on beam of interest
- Target heating to enhance diffusion/effusion
- Target area is highly irradiated
 - Lasts ~1 week
 - Well shielded from rest of experimental hall
 - Operations by robots




Ionisation

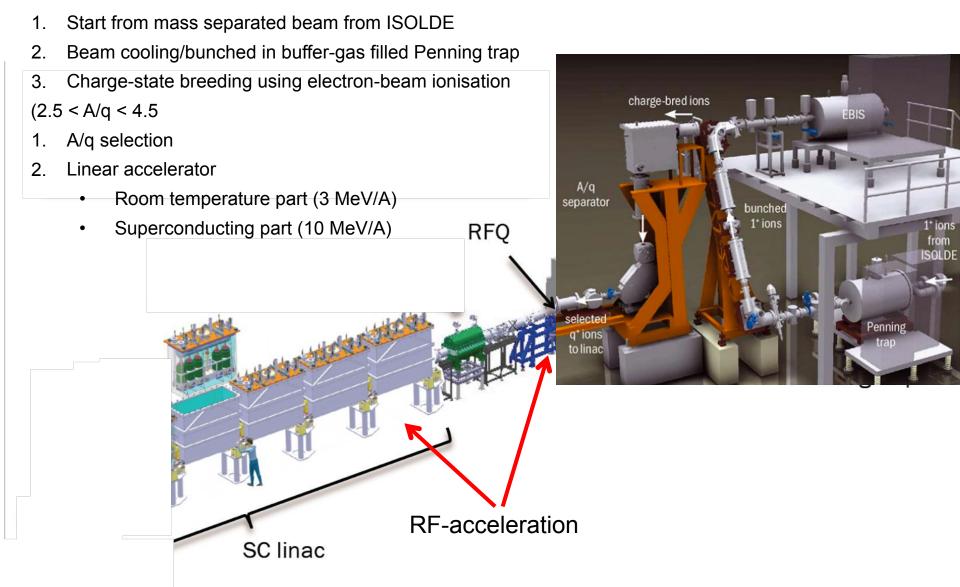
• Several options (chemistry)

- Surface
- Plasma
- Laser (RILIS)
- Laser ion source advantages
 - \circ Selectivity
 - \circ Efficiency



Atomic (electronic) structure = Fingerprint of element

RIBs at ISOLDE

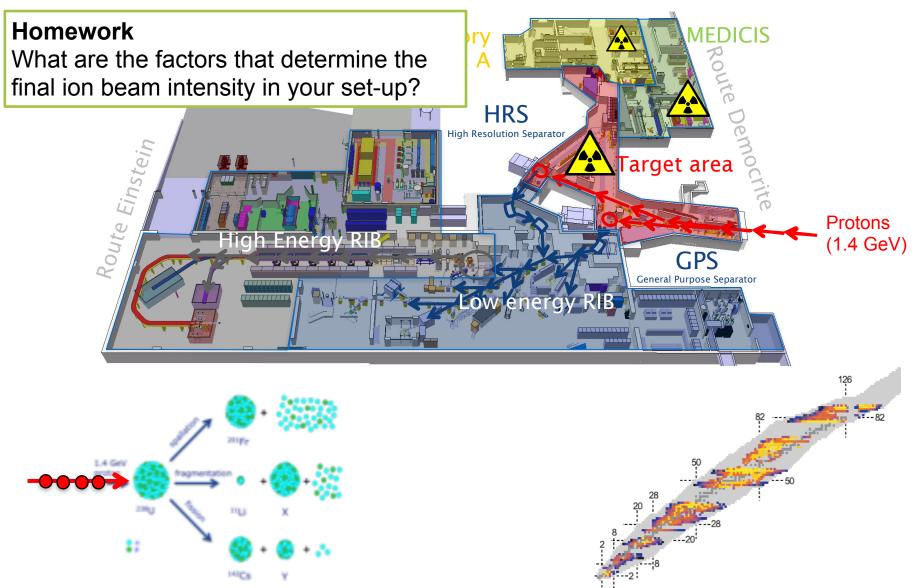

- 1300 isotope of more than 70 chemical elements
- ms stable isotopes
- Sometimes only a few ions/s!

View of experimental area

Post-acceleration: REX + HIE-ISOLDE

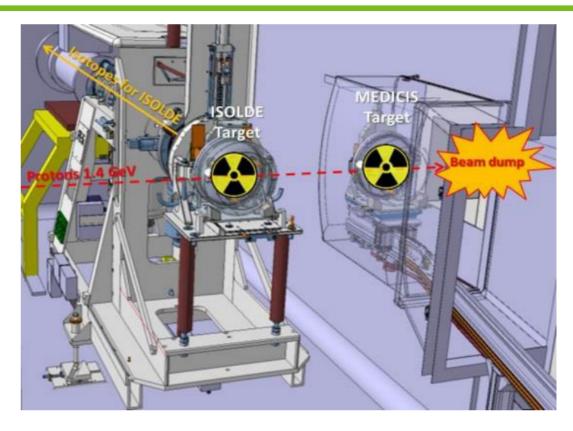
More info: Y Kadi et al, J. Phys. G: Nucl. Part. Phys. 44 084003 (2017)

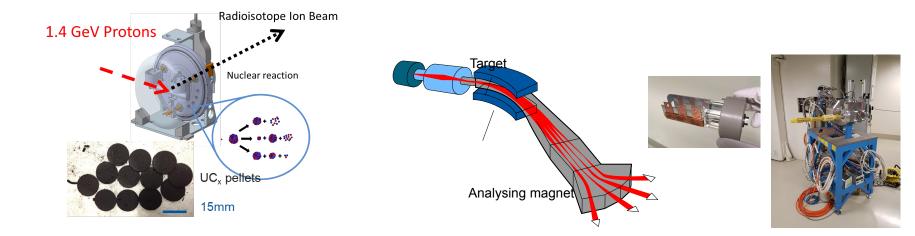
Post-acceleration: REX + HIE-ISOLDE


2018: All 4 cryomodules installed

lsotope	E _{max} MeV/ A	Rates [pps]		
²⁸ Mg	9.5	3.5E6		
²⁰⁶ Hg	7.4	2E6		
¹⁰⁶ Sn	7.9	6E5		
¹³² Sn	7.7	3E6		

17233


The ISOLDE facility - summary


4. The MEDICIS facility

- MEDical Isotopes Collected from ISolde
- Production of non-conventional radioisotope for medical research
 - 80 90% of the proton beam goes through the ISOLDE target unaffected
 - Use these (free!) protons to create more radioisotopes
- Benefit from 50 years of ISOLDE experience

MEDICIS process

Questions?

