

(Nuclear) Physics at ISOLDE-CERN (2/2)

Stephan Malbrunot-Ettenauer CERN, TRIUMF, and University of Toronto

on behalf of the ISOLDE-CERN group http://isolde.web.cern.ch

The ISOLDE facility - recap

What factors determine ion beam intensity in your set-up?

ISOLDE

- 1.4 GeV protons
- 2 uA maximal proton intensity
- Isol facility

Homework

Number of extracted ions (yield) is governed by:

 $r = \Phi \cdot \sigma \cdot N \cdot \varepsilon_{\mathsf{target}} \cdot \varepsilon_{\mathsf{source}} \cdot \varepsilon_{\mathsf{sep}} \cdot \varepsilon_{\mathsf{transp}} \cdot \varepsilon_{\mathsf{det}}.$

primary particle flux x reaction cross section x number of target particles x efficiencies

ISOLDE

- Energy loss of protons in thick target (σ(E))
- Secondary reactions in target
- Selectivity <> loss in yield
- Effusion/Diffusion out of target
- Release from target <> half-life
- How much time do we spend on optimizing (gain in intensity <> available beam time)

Lecture 2: Nuclear Physics and Applications at ISOLDE

CERN Courier January/February 201

1. Medical Applications

MEDICIS @ CERN

- MEDical Isotopes Collected from ISolde
- Production of non-conventional radioisotope for medical research
 - 80 90% of the proton beam goes through the ISOLDE target unaffected
 - Use these (free!) protons to create more radioisotopes
- Benefit from 50 years of ISOLDE experience

MEDICIS process

Tb as innovative medical isotopes

S. Malbrunot: UC Berkeley 2020

2. Nuclear physics

nuclear shell structure

emergence of new ones

of Nuclei

explain this shell evolution from first principles

particle - nuclear - atomic

nuclear theory: the big challenges

'ingredients' well understood, **BUT**

neither a few nor a many body problem

nucleons composites of quarks: force between nucleons?

nuclear forces

modern nuclear forces

- bridge QCD to nuclear forces
- coupling constants fixed to (small) set of exp. data
- employ renormalisation methods
- 'one' nuclear potential used over whole nuclear chat
- potential employed in different few and many body methods

reach of ab-initio methods

requires experimental benchmark for nuclear theory

Examples for signatures of Shell Closures

Fig. 3. Beta decay energies in the neighborhood of N=50.

Charge radii

16

Experiments to probe nuclear structure

Low energy experiments
High energy experiments

masses

ISOLTRAP MR-ToF mass spectrometer

Multi-reflection Time-of-Flight (MR-ToF)

- Fold 1000s m of flightpath in device of ~1m
- Limitation
 < 1 pps
 - 10 ms half-life
- Resolving power
 0 10⁵ in ~20 ms

ISOLTRAP mass spectrometer

- Ca-isotopes
 - Z = 20 closed shell: benchmark for nuclear models
 - New magic numbers at N = 32 and N = 34?

 $S_{2n}(Z,N) = E(Z,N-2) - E(Z,N)$

laser spectroscopy of radionuclides

Collinear Laser Spectroscopy (CLS)

CLS and nuclear charge radii

CLS of exotic Ni isotopes

3. Radionuclides & Fundamental Symmetries of Nature

where is all the antimatter?

Sakharov, 1967

ingredient to resolve universe's matter-antimatter asymmetry:

Permanent electric dipole moment

• local separation of the electric charge along a particle's spin axis

• implies time-reversal (T) violation \Rightarrow violation of CP symmetry (assuming CPT)

matter-antimatter asymmetry in the universe

pear-shaped nuclei & 'nuclear EDM'

Schiff moment

Miniball: Coulomb excitation

- Coulomb excitation
 - Inelastic scattering of nuclei with electromagnetic force only
 - Nuclei never collide
- Observables
 - Gamma-decay energies
 - Probability to excite to final state

Miniball: Coulomb excitation

Joonas.konki@cern.ch

Detect scattered beam particle velocity and direction \rightarrow Doppler correction Counts / 2.0 keV ₃₀ 74Zn 4.0 MeV/A (~ 5 hours) 2.8 MeV/A (~ 16 hours) \rightarrow HIE-ISOLDE advantage 15 10 700 750 800 850 950 1000 Energy gamma [ke\

- Miniball set-up
 - Si detectors for particle identification
 - $\circ~$ Ge detectors for efficient $\gamma\text{-ray}$ detection
 - Compact and high-solid angle coverage
 - Segmented: position sensitive

Coulomb excitation

- Information
 - Level scheme
 - Nuclear shape of excited states

Observation of vibrating pear-shapes in radon nuclei P.A. Butler *et al.*, Nature Comm. 10 (2019) 2473

4. Research with radioactive isotopes

Crystal lattice

Emission channeling

- Information on:
 - Probe atom lattice site location as function of implantation/annealing temperature
 - Diffusion of probe atom
 - Annealing of implantation defects

Materials research with RIBs

- Use radioactive ion as **probe** to characterise different materials
 - Solid state physics
 - Biophysics
- Advantages from radionuclides
 - Wide variety of isotopes with different half-lives and decay properties
 - High detection efficiency for radiation
 - Low quantities need to be implanted (no interference with host)

Beta-NMR at ISOLDE

- Metal ions in living organisms (Na, Mg, Cu, Zn ...)
 - Right concentration crucial for correct functioning of cells
 - Very important but not very abundant
 - Difficult to study with techniques on stable isotopes (e.g. NMR)

beta-NMR

- Asymmetry in beta decay in space (due to parity non-conservation by weak interaction)
- Up to 10¹⁰ more sensitive than conventional NMR
- Structure and dynamic of the interaction of metal ions with biomolecules

Summary

- ISOLDE is the world's first ISOL-type facility and is still a reference for radioactive ion beam production over 50 years later
- The upgrade of HIE-ISOLDE provides high-energy beams of up to 10 MeV/u
- ISOLDE is host to a dozen permanent experiments (and many travelling setups) studying:
 - Nuclear physics
 - Nuclear astrophysics
 - Solid state physics
 - Bio-physics
 - Fundamental physics
- The new facility MEDICIS produces radioactive isotopes dedicated to medical applications

Questions?

