The Standard Model

of particle physics

CERN summer student lectures 2022
Lecture $1 / 5$

Christophe Grojean
DESY (Hamburg)
Humboldt University (Berlin)
(christophe.grojean@desy.de) $0^{00^{0}}$

Citius, Altius, Fortius

Often, the athletes, as the physicists, push the frontiers/break the records. How high can a human jump with a pole?
Physics (energy conservation) tells us that longer poles don't help!

$$
\begin{array}{r}
\text { footspeed: 44. } \\
\Delta h=\frac{v^{2}}{2 g} \quad \text { (Usain Bolt, Berlin, August } 2009, \\
\Delta h=7.62 \mathrm{~m}
\end{array}
$$

Over the years, we have learnt a few other conservation laws that tell us what an athlete/a particle can do or cannot do.

- Remarkable breakthrough in the understanding of Nature: \qquad forces among particles are associated to symmetries
- conservation of $\mathrm{E} \rightarrow$ invariance by (time)-translation
- electro-magnetic forces \rightarrow (local) invariance by phase rotation of particle wavefunctions

> The Standard Model of Particle Physics Lorentz symmetry + internal SU(3)xSU(2)xU(I) symmetry

Outline

- Monday

- Lagrangians
o Lorentz symmetry - scalars, fermions, gauge bosons
o Dimensional analysis: cross-sections and life-time.
- Tuesday
- Gauge interactions
- Electromagnetism: U(1)
o Nuclear decay, Fermi theory and weak interactions: SU(2)
o Strong interactions: SU(3)

- Wednesday

- Chirality of weak interactions
- Pion decay

Thursday

- Spontaneous symmetry breaking and Higgs mechanism
- Quark and lepton masses
- Neutrino masses

\square Friday

- Running couplings
- Asymptotic freedom of QCD
- Anomalies cancelation

Intro: SM= S(R+Q)M

The fundamental constituents of matter obey the laws of Quantum Mechanics and Special Relativity They are described in the framework of Quantum Field Theory (QFT)

QFT offers a way

1) To organise our knowledge
2) To parametrise our ignorance

Describe collider data

"Before breaking the rules, you first need to master them"
Goals of the lectures

1. Explain QFT to describe the SM particles and their interactions
2. Explain how to compute cross-section and decay rate
3. Introduce the principles to build a model of Nature
4. Unveil clues where the SM might fail

Lagrangians

The Newton law of classical mechanics

$$
\vec{F}=m \vec{a} \quad \text { or } \quad V^{\prime}(x)=-m \ddot{x}
$$

can be obtained by requiring the least action principle

$$
\begin{gathered}
\delta S=0 \\
\text { where }
\end{gathered}
$$

the action: $S=\int_{t_{1}}^{t_{2}} d t \mathcal{L}(x, \dot{x}) \quad$ with the (classical) Lagrangian: $\quad \mathcal{L}(x, \dot{x})=\frac{1}{2} m \dot{x}^{2}-V(x)$
(Hamiltonian/energy: $\quad \mathcal{H}=\dot{x} \frac{\delta \mathcal{L}}{\delta \dot{x}}-\mathcal{L}=\frac{1}{2} m \dot{x}^{2}+V(x)$)

Euler-Lagrange equations

$$
\delta S=\int_{t_{1}}^{t_{2}} d t\left(\frac{\delta \mathcal{L}}{\delta x}-\frac{d}{d t} \frac{\delta \mathcal{L}}{\delta \dot{x}}\right) \delta x+\text { boundary terms }=0 \quad \square \frac{\delta \mathcal{L}}{\delta x}=\frac{d}{d t} \frac{\delta \mathcal{L}}{\delta \dot{x}}
$$

For the classical Lagrangian: $-V^{\prime}(x)=m \ddot{x}$

Questions we will address in the lectures

What is the Lagrangian that describes the dynamics of the SM particles? What are the rules to construct such a Lagrangian?

Lorentz Transformations

Lorentz transformations

$$
\left(\begin{array}{c}
c t \\
x \\
y \\
z
\end{array}\right) \rightarrow\left(\begin{array}{c}
c t^{\prime}=\gamma_{0}\left(c t-\beta_{0} x\right) \\
x^{\prime}=\gamma_{0}\left(-\beta_{0} c t+x\right) \\
y^{\prime}=y \\
z^{\prime}=z
\end{array}\right) \quad \text { with } \begin{gathered}
\beta_{0}=\frac{v_{0}}{c} \\
\\
\gamma_{0}=\frac{1}{\sqrt{1-\beta_{0}^{2}}}
\end{gathered}
$$

in particular

The speed can
be arbitrarily large
in particular

$$
v^{\prime}=\frac{v-v_{0}}{1-v \cdot v_{0} / c^{2}}
$$

The speed of light is the same for all observers:

$$
\text { if } v=c \text { than } v^{\prime}=c \text { too }
$$

Equations of Motion of Elementary Particles

Schrödinger Equation (1926): $\quad\left(i \hbar \frac{\partial}{\partial t}+\frac{\hbar^{2}}{2 m} \Delta-V\right) \Phi=0$

$$
E=\frac{p^{2}}{2 m}+V \quad \begin{gathered}
\text { classical } \leftrightarrow \text { quantum } \\
\text { correspondance }
\end{gathered} \quad E \rightarrow i \hbar \frac{\partial}{\partial t} \text { \& } p \rightarrow i \hbar \frac{\partial}{\partial x}
$$

Klein-Gordon Equation (1927): $\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\Delta+\frac{m^{2} c^{2}}{\hbar^{2}}\right) \Phi=0$

Dirac Equation (1928):

$$
E=\left\{\begin{array}{ll}
+\sqrt{p^{2} c^{2}+m^{2} c^{4}} & \text { matter } \\
-\sqrt{p^{2} c^{2}+m^{2} c^{4}} & \text { antimatter }
\end{array} \begin{array}{c}
E=\vec{\alpha} \vec{p} c+\beta m c^{2} \\
\gamma^{0}=\beta, \gamma^{i}=\beta \alpha^{i},\left\{\gamma^{\mu}, \gamma\right.
\end{array} ~ p o s i t r o n\left(\mathbf{e}^{+}\right) \text {discovered by C. Anderson in } 1932\right.
$$

Scalar Lagrangian

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-V(\phi)
$$

ϕ (real) scalar field
describes a spin-0 particle when quantised

- Equation of motion:

$$
0=\delta \mathcal{L}=\left(-\partial_{\mu} \partial^{\mu} \phi-\frac{\partial V}{\partial \phi}\right) \delta \phi \quad \text { up to boundary terms (that should vanish at infinity) }
$$

Klein-Gordon equation

$$
\square \phi=-V^{\prime}(\phi)
$$

- Lorentz invariant Lagrangian:

$$
\begin{aligned}
& x^{\mu} \rightarrow x^{\prime \mu}=\Lambda^{\mu}{ }_{\nu} x^{\nu} \\
& \phi(x) \rightarrow \phi^{\prime}\left(x^{\prime}\right)=\phi(x)
\end{aligned}
$$

with

$$
\Lambda^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}
\gamma & -\gamma \beta & & \\
-\gamma \beta & \gamma & & \\
& & 1 & \\
& & & 1
\end{array}\right)
$$

Then $\quad \partial_{\mu} \phi=\Lambda^{\nu}{ }_{\mu} \partial_{\nu}^{\prime} \phi^{\prime}$
And $\quad \partial_{\mu} \phi \partial^{\mu} \phi=\frac{\eta^{\mu \nu} \Lambda^{\mu^{\prime}}{ }_{\mu} \Lambda^{\nu^{\prime}}{ }_{\nu}}{\varrho} \partial_{\mu^{\prime}}^{\prime} \phi^{\prime} \partial_{\nu^{\prime}}^{\prime} \phi^{\prime}=\eta^{\mu^{\prime} \nu^{\prime}} \partial_{\mu^{\prime}}^{\prime} \phi^{\prime} \partial_{\nu^{\prime}}^{\prime} \phi^{\prime}$
$\eta^{\mu^{\prime} \nu^{\prime}}$ for a Lorentz transformation

Fermion Lagrangian

ψ 4-component Dirac spinor describes a spin-1/2 particle when quantised

- Equation of motion:

$$
0=\delta \mathcal{L}=\psi^{\dagger} \gamma^{0}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \delta \psi \quad \text { Dirac equation } \quad\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0
$$

- Lorentz invariance: (see technical slides at the end of the lecture)

$$
\begin{gathered}
x^{\mu} \rightarrow x^{\prime \mu}=\left(\delta_{\nu}^{\mu}+\omega_{\nu}^{\mu}\right) x^{\nu} \quad \text { with } \quad \omega_{\mu \nu}+\omega_{\nu \mu}=0 \\
\psi(x) \rightarrow \psi^{\prime}\left(x^{\prime}\right)=\left(1_{4}+\frac{1}{8} \omega_{\mu \nu}\left[\gamma^{\mu}, \gamma^{\nu}\right]\right) \psi(x)
\end{gathered}
$$

- Dirac algebra:

For this equation to be consistent with Einstein equation ($m^{2}=E^{2}-p^{2}$) or Klein-Gordon eq., the γ^{μ} matrices have to obey the Clifford algebra

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu}
$$

- Dirac matrices: One particular realisation of the Dirac algebra (not unique)

Natural \& Planck Units

- $\left[G_{N}\right]=$ mass $^{-1} L^{3} T^{-2}$
- $[\hbar]=$ mass $L^{2} \mathrm{~T}^{-1}$
- [c]=L T-1
- Planck mass: $M_{\mathrm{Pl}}=\sqrt{\frac{\hbar c}{G_{\mathrm{N}}}} \sim 10^{19} \mathrm{GeV} / \mathrm{c}^{2} \sim 2 \times 10^{-5} \mathrm{~g}$
- Planck length: $l_{\mathrm{Pl}}=\sqrt{\frac{\hbar G_{\mathrm{N}}}{c^{3}}} \sim 10^{-33} \mathrm{~cm}$
- Planck time: $\tau_{\mathrm{Pl}}=\sqrt{\frac{\hbar G_{\mathrm{N}}}{c^{5}}} \sim 10^{-44} \mathrm{~s}$

In High Energy Physics, it is a current practise to use a system of units for which $\mathrm{h}=1$ and $\mathrm{c}=1$

$$
\text { Mass } \sim \text { distance }-1 \sim \text { time }^{-1}
$$

Unit conversion: SI ↔HEP

- The string theorists will remember:

\mathbf{E}	\mathbf{T}	\mathbf{L}
1 eV	$10^{-16} \mathrm{~s}$	$10^{-7} \mathrm{~m}$
$10^{-16} \mathrm{eV}$	1 s	$10^{9} \mathrm{~m}$
$10^{-7} \mathrm{eV}$	$10^{-9} \mathrm{~s}$	1 m

$M_{\mathrm{Pl}} \sim 10^{19} \mathrm{GeV} \quad \leftrightarrow \quad \tau_{\mathrm{Pl}} \sim 10^{-44} \mathrm{~s} \quad \leftrightarrow \quad l_{\mathrm{Pl}} \sim 10^{-33} \mathrm{~cm}$

- The nuclear physicists will remember:

\[

\]

- The others will remember: average mosquito $\mathrm{m} \sim 10^{-3 \mathrm{~g}}=100 \mathrm{M}_{\mathrm{P} \mid}$
Compton wavelength $0.01 \mathrm{~L}_{\mathrm{P} \mid}=10^{-35} \mathrm{~cm}$, Schwarzschild radius $100 \mathrm{~L}_{\mathrm{P} \mid}=10^{-3} 1 \mathrm{~cm}$ (much smaller than its physical size, so a mosquito is not a Black Hole)

Dimensional Analysis

$$
\begin{gathered}
{[S]_{m}=0} \\
\left.S=\int d^{4} x \mathcal{L}\right]_{m}=4
\end{gathered}
$$

Scalar field

$$
\mathcal{L}=\partial_{\mu} \phi \partial^{\mu} \phi+\ldots
$$

Spin-1/2 field

$$
[\phi]_{m}=1
$$

$$
\mathcal{L}=\psi^{\dagger} \gamma^{0} \gamma^{\mu} \partial_{\mu} \psi
$$

$$
\Rightarrow \quad[\psi]_{m}=3 / 2
$$

Spin-1 field $\quad \mathcal{L}=F_{\mu \nu} F^{\mu \nu}+\ldots$ with $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+\ldots \quad\left[A_{\mu}\right]_{m}=1$

$$
\begin{gathered}
\text { Particle lifetime of a (decaying) particle: }[\tau]_{m}=-1 \quad \text { Width: } \quad[\Gamma=1 / \tau]_{m}=1 \\
\text { Cross-section ("area" of the target): } \quad[\sigma]_{m}=-2
\end{gathered}
$$

Lifetime "Computations"

muon and neutron are unstable particles

$$
\begin{aligned}
\mu & \rightarrow e \nu_{\mu} \bar{\nu}_{e} \\
n & \rightarrow p e \bar{\nu}_{e}
\end{aligned}
$$

We'll see that the interactions responsible for the decay of muon and neutron are of the form

$1=\hbar c \sim 200 \mathrm{MeV} \cdot \mathrm{fm}$		
\boldsymbol{E}		
\mathbf{T}		
eV		

For the muon, the relevant mass scale is the muon mass $\mathrm{m}_{\mu}=105 \mathrm{MeV}$:

$$
\Gamma_{\mu}=\frac{G_{F}^{2} m_{\mu}^{5}}{192 \pi^{3}} \sim 10^{-19} \mathrm{GeV} \quad \text { i.e. } \quad \tau_{\mu} \sim 10^{-6} \mathrm{~S}
$$

For the neutron, the relevant mass scale is $\left(m_{n}-m_{p}\right) \approx 1.29 \mathrm{MeV}$:

$$
\Gamma_{n}=\mathcal{O}(1) \frac{G_{F}^{2} \Delta m^{5}}{\pi^{3}} \sim 10^{-28} \mathrm{GeV} \text { i.e. } \tau_{\mathrm{n}} \sim 10^{3} \mathrm{~s}
$$

Higgs production "Computation"

At the LHC, the dominant Higgs production mode is gluon fusion
strong coupling constant $g_{s} \sim \dot{1}$

dimensional analysis allows us to compute the Higgs production cross-section

$$
\sigma=\frac{1}{8 \pi} \frac{1}{16 \pi^{2}} g_{s}^{4} \frac{m_{t}^{2}}{v^{2}} \frac{1}{m_{t}^{2}}
$$

i.e. $\quad \sigma \sim 10^{-25}$
flux
 dimensionally $[\sigma]_{\mathrm{m}}=-2$

$\mathrm{m}^{2}=10 \mathrm{pb}$

$$
1 \text { barn }=10^{-28} \mathrm{~m}^{2}
$$

$$
1 \mathrm{pb}=10^{-12} \text { barn }
$$

One could think that all the quarks should give a similar contribution to the Higgs production since m_{t} factors cancel.
But it can be shown that this cancelation holds only for quarks heavier than the Higgs (value of Higgs production xs excludes a heavy fourth generation of quarks).
LHC collides protons which contain gluons. How many gluons are inside the quarks depends on the energy of the protons. The production cross-section depends on the energy of the collider (40 pb at 14 TeV , at 100 TeV)

How many Higgs bosons produced at LHC?

$$
\begin{array}{r}
\sigma \times \int d t L=10 \mathrm{pb} \times 100 \mathrm{fb}^{-1} \sim 10^{6} \\
(\mathrm{~L}=\text { luminosity= nbr of collisions })
\end{array}
$$

Higgs Lifetime "Computation"

Using similar dimensional analysis arguments, compute the Higgs boson lifetime (or its inverse aka as the Higgs decay width)

- Hints -

Higgs couplings proportional are proportional to the mass of the particles it couples to. It will therefore decay predominantly decay into the heaviest particle that is lighter than $\mathrm{m}_{\mathrm{H}} / 2$

Weak Interactions and Higgs Physics

The decays of the neutrons and muons are controlled by the value of the Fermi constant

$$
\mathrm{G}_{\mathrm{F}}=\text { Fermi constant: } G_{F} \sim \frac{10^{-5}}{m_{\text {proton }}} \sim 10^{-5} \mathrm{GeV}^{-2}
$$

Higgs physics is controlled by the value of the Vacuum Expectation Value

$$
v=246 \mathrm{GeV}
$$

We can notice that

This relation is the consequence of the description of the weak interactions in terms of a local internal symmetry and its spontaneous breaking in the vacuum.

That's what we'll figure out in the next lectures.

Technical Details for Advanced Students

Time-ordering \neq Causality

$$
\left(\begin{array}{c}
c t \\
x \\
y \\
z
\end{array}\right) \rightarrow\left(\begin{array}{c}
c t^{\prime}=\gamma_{0}\left(c t-\beta_{0} x\right) \\
x^{\prime}=\gamma_{0}\left(-\beta_{0} c t+x\right) \\
y^{\prime}=y \\
z^{\prime}=z
\end{array}\right)
$$

"time dilation + space contraction"
consider two events E_{1} and E_{2} characterised by their space-time coordinates E_{2}

$$
\begin{array}{lc}
t_{2}>0 & c t_{2}^{\prime}=\gamma\left(c t_{2}-\beta x_{2}\right) \\
x_{2}>0 & x_{2}^{\prime}=\gamma\left(-\beta c t_{2}+x_{2}\right)
\end{array}
$$

t'2 can be positive or negative causality \neq time ordering

Proper space-time distance Δ is independent of the observer:

$$
\Delta^{\prime 2}=\left(c t_{2}^{\prime}\right)^{2}-\left(x_{2}^{\prime}\right)^{2}=\left(c t_{2}\right)^{2}-x_{2}^{2}=\Delta^{2}
$$

Only events inside the past/future light cones are causally connected
The light cones are invariant under Lorentz transformations

Compton vs Schwarzschild Scales

Compton radius: for an object of mass m, one can define a
length scale that will measure its quantum size

$$
R_{\text {Compton }}=\frac{\hbar}{m c}
$$

Schwarzschild radius: for an object of mass m, one can define a length scale that will measure its gravitational strength

$$
R_{\mathrm{Sch}}=\frac{G_{\mathrm{N}} m}{c^{2}}=\frac{m}{M_{\mathrm{Pl}}} l_{\mathrm{Pl}}
$$

$$
R_{\text {Compton }}<R_{\mathrm{Sch}} \quad \text { iff } \quad M_{\mathrm{Pl}}<m
$$

- elementary particles -

— macroscopic objects -

BIRCK - O PS

Neutron stars: $m \sim 10^{30} \mathrm{~kg}, \mathrm{R} \sim 10^{4} \mathrm{~m}$ (density of human population concentrated in a sugar cube): $\mathrm{Rsch} \sim 10^{3} \mathrm{~m}$: B / H

Stellar BHs: m~1031 kg, R~104m: Rsch~104m: BH

Supermassive BHs: $\mathrm{m} \sim 10^{37} \mathrm{~kg}, \mathrm{R} \sim 10^{10} \mathrm{~m}: \mathrm{Rsch} \sim 10^{10} \mathrm{~m}: B H$

> Event Horizon Telescope
> Sagittarius A^{*} $m=4.3 \times 10^{6} \mathrm{M}$ sun
> $R=23.5 \times 10^{6} \mathrm{~km}$

LHC Black Holes: $\mathrm{m} \sim 1 \mathrm{TeV}, \mathrm{R} \sim 10^{-19} \mathrm{~m}$: Rcompton $\sim 10^{-19} \mathrm{~m}$, $\mathrm{Rsch}_{\text {sch }} \sim 10^{-51} \mathrm{~m}$ (ordinary gravity) but
$R_{s c h} \sim 10^{-19} \mathrm{~m}$ if M_{P} is lowered to 1 TeV as in models with large extra dimensions

Einstein Algebra

$$
x^{\mu}=(c t, x, y, z) \quad \mu=0,1,2,3
$$

Lorentz-invariant

 distance$$
\Delta^{2}=c^{2} t^{2}-x^{2}-y^{2}-z^{2}=\eta_{\mu \nu} x^{\mu} x^{\nu} \quad \text { with } \quad \eta_{\mu \nu}=\left(\begin{array}{cccc}
1 & & & \\
& -1 & & \\
& & -1 & \\
& & & -1
\end{array}\right)
$$

Minkowski metric
Useful notations: $\quad x_{\mu}=\eta_{\mu \nu} x^{\nu}=(c t,-x,-y,-z) \quad$ such that $\quad \Delta^{2}=x_{\mu} x^{\mu}$

$$
\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}
$$

Lorentz transformations

$$
\begin{aligned}
& x^{\mu} \rightarrow x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu} \text { with } \eta_{\mu \nu} \Lambda_{\mu^{\prime}}^{\mu} \Lambda_{\nu^{\prime}}^{\nu}=\eta_{\mu^{\prime} \nu^{\prime}} \quad \text { For example: } \quad \Lambda_{\nu}^{\mu}=\left(\begin{array}{ccc}
\gamma & -\gamma \beta & \\
-\gamma \beta & \gamma & \\
& & 1 \\
& & 1
\end{array}\right) \\
& \left(\begin{array}{cccc}
\gamma & -\gamma \beta & & \\
-\gamma \beta & \gamma & & \\
& & & \\
& & & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & & & \\
& -1 & & \\
& & -1 & \\
& & & -1
\end{array}\right)\left(\begin{array}{cccc}
\gamma & -\gamma \beta & & \\
-\gamma \beta & \gamma & & \\
& & & 1
\end{array}\right) \underset{\text { since }}{ }=\left(\begin{array}{llll}
1 & & & \\
& -1 & & \\
& & -1 & \\
& & & -1
\end{array}\right) \quad \begin{array}{c}
\text { Minkowski metric is invariant } \\
\text { under Lorentz transformations }
\end{array} \\
& \gamma^{2}\left(1-\beta^{2}\right)=1
\end{aligned}
$$

Lorentz Transformations

Covariant form of a Lorentz transformation: $\quad x^{\mu}=\Lambda^{\mu}{ }_{\nu} x^{\nu}$

The invariance of the line element: $\Delta^{2}=\eta_{\mu \nu} x^{\mu} x^{\nu} \rightarrow \Delta^{\prime 2}=\eta_{\mu \nu} x^{\prime \mu} x^{\prime \nu}$ imposes the following condition

$$
\eta_{\mu \nu} \Lambda^{\mu}{ }_{\rho} \Lambda^{\nu}{ }_{\sigma}=\eta_{\rho \sigma}
$$

We always raise and lower the space time indices with the metric:

$$
\Lambda_{\mu \nu}=\eta_{\mu \rho} \Lambda^{\rho}{ }_{\nu} \quad \Lambda_{\mu}{ }^{\nu}=\eta_{\mu \rho} \eta^{\nu \sigma} \Lambda^{\rho}{ }_{\sigma} \quad \Lambda^{\mu \nu}=\eta^{\nu \sigma} \Lambda^{\mu}{ }_{\sigma}
$$

Transformation inverse:

$$
x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu}
$$

$$
x^{\mu}=\Lambda_{\nu}{ }^{\mu} x^{\prime \nu}
$$

Transformation of the space-time derivatives:

$$
\partial_{\mu}=\frac{\partial x^{\prime \nu}}{\partial x^{\mu}} \frac{\partial}{\partial x^{\prime \nu}}=\Lambda^{\nu}{ }_{\mu} \partial_{\nu}^{\prime}
$$

$$
\partial_{\mu}^{\prime}=\frac{\partial x^{\nu}}{\partial x^{\prime \mu}} \frac{\partial}{\partial x^{\nu}}=\Lambda_{\mu}^{\nu} \partial_{\nu}
$$

Small Lorentz transformations: $\quad \Lambda^{\mu}{ }_{\nu}=\delta_{\nu}^{\mu}+\omega^{\mu}{ }_{\nu}$

$$
\eta_{\mu \nu} \Lambda^{\mu}{ }_{\rho} \Lambda^{\nu}{ }_{\sigma}=\eta_{\rho \sigma} \quad \Leftrightarrow \quad \omega_{\mu \nu}=\omega_{\nu \mu}
$$

Spinor Transformation

Transformation law: $\quad \psi(x) \rightarrow \psi^{\prime}\left(x^{\prime}\right)=S(\Lambda) \psi(x)$

We want the Dirac equation to take the same form in the two systems of coordinates x and x

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0 \quad\left(i \gamma^{\mu} \partial_{\mu}^{\prime}-m\right) \psi^{\prime}=0
$$

This implies the condition: $\quad S \gamma^{\mu} \Lambda^{\nu}{ }_{\mu} S^{-1}=\gamma^{\nu}$
We consider small Lorentz transformations: $\quad \Lambda_{\mu}{ }^{\nu}=\delta_{\nu}^{\mu}+\omega^{\mu}{ }_{\nu}$

$$
S=1-\frac{i}{4} \sigma^{\mu \nu} \omega_{\mu \nu}
$$

The covariance of the Dirac equation then implies that the matrices $\sigma_{\mu \nu}$ have to satisfy the relation

$$
\left[\gamma^{\nu}, \sigma^{\rho \sigma}\right]=2 i\left(\eta^{\nu \rho} \gamma^{\sigma}-\eta^{\nu \sigma} \gamma^{\rho}\right)
$$

It is easy to check that the following matrices fit the bill: $\sigma^{\rho \sigma}=\frac{i}{2}\left[\gamma^{\rho}, \gamma^{\sigma}\right]$

$$
\begin{aligned}
& x^{\mu} \rightarrow x^{\prime \mu}=\left(\delta^{\mu}{ }_{\nu}+\omega^{\mu}{ }_{\nu}\right) x^{\nu} \quad \text { with } \quad \omega_{\mu \nu}+\omega_{\nu \mu}=0 \\
& \psi(x) \rightarrow \psi^{\prime}\left(x^{\prime}\right)=\left(1_{4}+\frac{1}{8} \omega_{\mu \nu}\left[\gamma^{\mu}, \gamma^{\nu}\right]\right) \psi(x)
\end{aligned}
$$

Lorentz-invariant Lagrangian

$$
\begin{gathered}
\mathcal{L}=\psi^{\dagger} M\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi \text { is Lorentz-invariant iff } \gamma^{0}\left[\gamma^{\nu}, \gamma^{\mu}\right] \gamma^{0} M+M\left[\gamma^{\mu}, \gamma^{\nu}\right]=0 \\
M=\gamma^{0} \text { is a solution and it defines the Dirac Lagrangian. } \bar{\psi} \equiv \psi^{\dagger} \gamma^{0}
\end{gathered}
$$

Symmetries and invariants

SU(N)
the transformations among the components of a complex N -vector that leaves its norm invariant

$$
|\phi|^{2}=\phi_{1}^{*} \phi_{1}+\ldots \phi_{N}^{*} \phi_{N} \rightarrow\left|\phi^{\prime}\right|^{2}=|\phi|^{2}
$$

SU(N,M)

the transformations among the components of a complex ($\mathrm{N}+\mathrm{M}$)-vector that leaves its (N, M) norm invariant

$$
|\phi|^{2}=\phi_{1}^{*} \phi_{1}+\ldots \phi_{N}^{*} \phi_{N}+\phi_{N+1}^{*} \phi_{N+1}-\ldots-\phi_{N+M}^{*} \phi_{N+M} \rightarrow\left|\phi^{\prime}\right|^{2}=|\phi|^{2}
$$

SO(N)

the transformations among the components of a real N -vector that leaves its norm invariant

$$
|\phi|^{2}=\phi_{1}^{2}+\ldots \phi_{N}^{2} \rightarrow\left|\phi^{\prime}\right|^{2}=|\phi|^{2}
$$

SO(N,M)

the transformations among the components of a real $(N+M)$-vector that leaves its (N, M) norm invariant

$$
|\phi|^{2}=\phi_{1}^{2}+\ldots \phi_{N}^{2}+\phi_{N+1}^{2}-\ldots-\phi_{N+M}^{2} \rightarrow\left|\phi^{\prime}\right|^{2}=|\phi|^{2}
$$

The Lorentz group is thus $\operatorname{SO}(1,3)$

Lorentz transformation

SO $(1,3)$

The elements of $\mathbf{S O}(1,3)$ satisfy $U^{t} \eta U=\eta$ where $=\operatorname{diag}(1,-1,-, 1,-1)$
The infinitesimal transformations are $U=e^{\theta^{a} T^{a}} \approx 1+\theta^{a} T^{a}+\ldots$
The generators satisfy the constraints: $T^{a t} \eta+\eta T^{a}=0$

$$
\begin{aligned}
& \text { One particular generator is } T=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \text { We obtain } e^{\theta T}=\left(\begin{array}{cccc}
\cosh \theta & \sinh \theta & 0 & 0 \\
\sinh \theta & \cosh \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

We indeed recover the usual Lorentz transformation with the identification

$$
\begin{gathered}
\gamma=\cosh \theta \quad \text { and } \quad \beta \gamma=\sinh \theta \\
\gamma=\frac{1}{\sqrt{1-\beta^{2}}} \Leftrightarrow \quad \cosh ^{2} \theta-\sinh ^{2} \theta=1
\end{gathered}
$$

