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Citius, Altius, Fortius
Often, the athletes, as the physicists, push the frontiers/break the records.  

How high can a human jump with a pole?  
Physics (energy conservation) tells us that longer poles don’t help!

�h = 7.62m

�h =
v2

2g

footspeed:  44.72km/h  
(Usain Bolt, Berlin,  August 2009, between 60m and 80m) 

The Standard Model of Particle Physics
Lorentz symmetry + internal SU(3)xSU(2)xU(1) symmetry

Over the years, we have learnt a few other conservation laws  
that tell us what an athlete/a particle can do or cannot do. 

— Remarkable breakthrough in the understanding of Nature: — 
forces among particles are associated to symmetries 

conservation of E → invariance by (time)-translation 
electro-magnetic forces → (local) invariance by phase rotation of particle wavefunctions

•  

•  
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Outline
 Monday 

Lagrangians 
Lorentz symmetry - scalars, fermions, gauge bosons 

Dimensional analysis: cross-sections and life-time. 

 Tuesday  
Gauge interactions 
Electromagnetism: U(1) 
Nuclear decay, Fermi theory and weak interactions: SU(2) 
Strong interactions: SU(3) 

 Wednesday 
Chirality of weak interactions 
Pion decay 

Thursday 
Spontaneous symmetry breaking and Higgs mechanism 
Quark and lepton masses 
Neutrino masses 

Friday 
Running couplings 
Asymptotic freedom of QCD 
Anomalies cancelation 
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The fundamental constituents of matter obey the laws of Quantum Mechanics and Special Relativity 
They are described in the framework of Quantum Field Theory (QFT)

QFT offers a way 
1) To organise our knowledge 

2) To parametrise our ignorance

Describe collider data Play a crucial role in the 
evolution of the Universe

Likely to fail to describe  
gravity @ quantum level

1. Explain QFT to describe the SM particles and their interactions 

2. Explain how to compute cross-section and decay rate 

3. Introduce the principles to build a model of Nature 

4. Unveil clues where the SM might fail

Goals of the lectures

"Before breaking the rules, you first need to master them”

Intro: SM= S(R+Q)M
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Lagrangians
The Newton law of classical mechanics 

or~F = m~a V 0(x) = �mẍ

What is the Lagrangian that describes the dynamics of the SM particles? 

What are the rules to construct such a Lagrangian?

Questions we will address in the lectures

For the classical Lagrangian: �V 0(x) = mẍ

Euler-Lagrange 
equations

�S =

Z t2

t1

dt

✓
�L
�x

� d

dt

�L
�ẋ

◆
�x+ boundary terms = 0

�L
�x

=
d

dt

�L
�ẋ

�S = 0
where

S =

Z t2

t1

dtL(x, ẋ) L(x, ẋ) = 1

2
mẋ2 � V (x)the action: with the (classical) Lagrangian:

Hamiltonian/energy: H = ẋ
�L

�ẋ
� L =

1

2
mẋ2 + V (x)( )

can be obtained by requiring the least action principle 
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Lorentz Transformations
Consider two observers  

in relative motion with a constant speed v0 along the x-axis 

they use their own systems of coordinates (t,x,y,z) and (t’,x’,y’,z’)

y’

z’

x’

O’
O

y

z

x  Galilean transformations 
0

BB@

t
x
y
z

1

CCA !

0

BB@

t0 = t
x0 = ��0ct+ x

y0 = y
z0 = z

1

CCA �0 =
v0
c

with

in particular

v0 = v � v0

The speed can  

be arbitrarily large

Lorentz transformations

0

BB@

ct
x
y
z

1

CCA !

0

BB@

ct0 = �0 (ct� �0x)
x0 = �0 (��0ct+ x)

y0 = y
z0 = z

1

CCA

�0 =
v0
c

with
�0 =

1p
1� �2

0

in particular

The speed of light is  

the same for all observers: 

if v=c than v’=c too

v0 =
v � v0

1� v · v0/c2

v0
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Equations of Motion of Elementary Particles

Schrödinger Equation (1926):

E =
p2

2m
+ V E � i� �

�t
p � i� �

�x

�
i� �

�t
+

�2
2m

�� V

⇥
⇥ = 0

classical ↔ quantum 
correspondance &

Klein-Gordon Equation (1927):

E2

c2
= p2 +m2c2

�
1

c2
�2

�t2
��+

m2c2

�2

⇥
⇥ = 0

 positron (e+) discovered by C. Anderson in 1932 

Dirac Equation (1928):

matter

antimatter
E =

�
⇤

⇥
+
⌅

p2c2 +m2c4

�
⌅

p2c2 +m2c4

�
i�µ⇥µ � mc

�

⇥
� =0

E = ⌥�⌥p c+ ⇥mc2

⇤0 = ⇥, ⇤i = ⇥�i, {⇤µ, ⇤⇥} = 2⌅µ⇥

M
or

e 
on
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http://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
http://en.wikipedia.org/wiki/Klein%E2%80%93Gordon_equation
http://en.wikipedia.org/wiki/Dirac_equation
http://en.wikipedia.org/wiki/Positron
http://en.wikipedia.org/wiki/Carl_D._Anderson
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Scalar Lagrangian

• Equation of motion:

L =
1

2
@µ�@

µ�� V (�)

up to boundary terms (that should vanish at infinity) 

Klein-Gordon equation

• Lorentz invariant Lagrangian:
xµ ! x0µ = ⇤µ

⌫x
⌫

�(x) ! �0(x0) = �(x)

⇤µ
⌫ =

0

BB@

� ���
��� �

1
1

1

CCAwith

Then @µ� = ⇤⌫
µ @

0
⌫�

0

@µ�@
µ� = ⌘µ⌫⇤µ0

µ ⇤
⌫0

⌫ @
0
µ0�0@0

⌫0�0 = ⌘µ
0⌫0

@0
µ0�0@0

⌫0�0And

0 = �L =

✓
�@µ@

µ�� @V

@�

◆
��

⇤� = �V 0(�)

 (real) scalar field 
describes a spin-0 particle 

when quantised

�

⌘µ
0⌫0

for a Lorentz transformation
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Fermion Lagrangian
 4-component Dirac spinor 

describes a spin-1/2 particle 
when quantised

 

• Equation of motion:

L =  †�0 (i�µ@µ �m) 

0 = �L =  †�0 (i�µ@µ �m) � Dirac equation (i�µ@µ �m) = 0

 are four 4x4 matrices�µ (µ = 0, 1, 2, 3)

• Lorentz invariance: (see technical slides at the end of the lecture)

 (x) !  0(x0) =

✓
14 +

1

8
!µ⌫ [�

µ, �⌫ ]

◆
 (x)

xµ ! x0µ = (�µ⌫ + !µ
⌫)x

⌫ with !µ⌫ + !⌫µ = 0

• Dirac algebra:

{�µ, �⌫} = 2⌘µ⌫
For this equation to be consistent with Einstein equation (m2=E2-p2) or

Klein-Gordon eq., the !μ matrices have to obey the Clifford algebra

• Dirac matrices: One particular realisation of the Dirac algebra (not unique)

�0 =

0

BB@

1
1

�1
�1

1

CCA , �1 =

0

BB@

1
1

�1
�1

1

CCA , �2 =

0

BB@

�i
i

i
�i

1

CCA , �3 =

0

BB@

1
�1

�1
1

1

CCA
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Natural & Planck Units
• [GN]=mass-1 L3 T-2 

• [h]=mass L2 T-1 

• [c]=L T-1

• Planck mass:  

• Planck length: 

• Planck time:

lPl =

r
~GN

c3
⇠ 10�33 cm

⌧Pl =

r
~GN

c5
⇠ 10�44 s

Unit conversion: SI ↔ HEP

• The string theorists will remember: 

MPl ⇠ 1019 GeV $ ⌧Pl ⇠ 10�44 s $ lPl ⇠ 10�33 cm

• The nuclear physicists will remember: 
~c ⇠ 200MeV · fm

108 eV $ 10�15 m $ 10�24 s

• The others will remember: 
average mosquito m~10-3g=100MPl 

Compton wavelength 0.01LPl=10-35cm, Schwarzschild radius 100LPl=10-31cm 
(much smaller than its physical size, so a mosquito is not a Black Hole)

E T L

1eV 10-16s 10-7m

10-16eV 1s 109m

10-7eV 10-9s 1m

In High Energy Physics, it is a current practise to use a system of units for which h=1 and c=1

Mass ~ distance-1 ~ time-1

MPl =

r
~c
GN

⇠ 1019 GeV/c2 ⇠ 2⇥ 10�5 g
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Dimensional Analysis
[S]m = 0

S =

Z
d4xL

[L]m = 4

L = @µ�@
µ�+ . . . [�]m = 1Scalar field

L =  †�0�µ@µ [ ]m = 3/2Spin-1/2 field

L = Fµ⌫F
µ⌫ + . . . with Fµ⌫ = @µA⌫ � @⌫Aµ + . . . [Aµ]m = 1Spin-1 field

Particle lifetime of a (decaying) particle: [⌧ ]m = �1 [� = 1/⌧ ]m = 1Width:

Cross-section (“area” of the target): [�]m = �2



CG SSLP2022 12

Lifetime “Computations”

We’ll see that the interactions responsible for the decay of muon and neutron are of the form 

L = GF  
4

[mass]4
[mass]�2 [mass]3/2⇥4

� / G2
Fm

5

[mass]

GF = Fermi constant: GF ⇠ 10�5

mproton
⇠ 10�5 GeV�2

muon and neutron are unstable particles

µ ! e⌫µ⌫̄e

n ! p e ⌫̄e

For the muon, the relevant mass scale is the muon mass mμ=105MeV:

�µ =
G2

Fm
5
µ

192⇡3
⇠ 10�19 GeV i.e. ⌧µ ⇠ 10�6 s

For the neutron, the relevant mass scale is (mn-mp)≈1.29MeV:

�n = O(1)
G2

F�m5

⇡3
⇠ 10�28 GeV i.e. ⌧n ⇠ 103 s

E T L

1eV 10-16s 10-7m

1 = ~c ⇠ 200MeV · fm
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Higgs production “Computation”
At the LHC, the dominant Higgs production mode is gluon fusion

11. Status of Higgs boson physics 183

the Higgs self-coupling would become non-perturbative at some scale
Λ that could be well below the Planck scale. Specifically, from the
measured values of the Higgs, top, W and Z masses and of the strong
gauge coupling, all within their experimental uncertainties, it follows
that the Higgs quartic coupling remains perturbative all the way up to
MP lanck [5, 6, 27], like the SM gauge and Yukawa couplings, thereby
rendering the SM a consistent, calculable theory.

However, for the value of Higgs mass experimentally measured, the
EW vacuum of the Higgs potential is most likely metastable. Indeed,
the high energy evolution of λ shows that it becomes negative at
energies Λ = O(1010 − 1012)GeV, with a broader range if the top
quark mass exceeds its current measured value by 3σ. When this
occurs, the SM Higgs potential develops an instability and the long
term existence of the EW vacuum is challenged. This behavior may
call for new physics at an intermediate scale before the instability
develops, i.e., below MP lanck or, otherwise, the electroweak vacuum
remains metastable [28]. Reference [29] studied how new physics at
MP lanck could influence the stability of the EW vacuum and possibly
modify this conclusion. The consequences of the instability of the EW
vacuum on high-scale inflation have been discussed in Refs. [30].

Within the SM framework, the relevant question is the lifetime of
the EW metastable vacuum that is determined by the rate of quantum
tunneling from this vacuum into the true vacuum of the theory (for
the most recent computation of the EW vacuum lifetime within the
SM, see Refs. [31]). The running of the Higgs self coupling slows
down at high energies with a cancellation of its β-function at energies
just one to two orders of magnitude below the Planck scale [32, 33].
This slow evolution of the quartic coupling is responsible for saving
the EW vacuum from premature collapse, allowing it to survive
much longer times than those from astrophysical considerations. It
might help the Higgs boson to play the role of an inflaton [34] (see,
however, Ref. [35] and references therein for potential issues with this
Higgs-as-an-inflaton idea).

II.4. Higgs production and decay mechanisms

Reviews of the SM Higgs boson’s properties and phenomenology,
with an emphasis on the impact of loop corrections to the Higgs boson
decay rates and cross sections, can be found in Refs. [36–43]. The
state-of-the-art of the theoretical calculations in the main different
production channels is summarized in Table 11.1.

Table 11.1: State-of-the-art of the theoretical calculations in the main different Higgs
production channels in the SM, and main MC tools used in the simulations

ggF VBF VH tt̄H

Fixed order: Fixed order: Fixed order: Fixed order:

NNLO QCD + NLO EW NNLO QCD NLO QCD+EW NLO QCD

(HIGLU, iHixs, FeHiPro, HNNLO) (VBF@NNLO) (V2HV and HAWK) (Powheg)

Resummed: Fixed order: Fixed order: (MG5 aMC@NLO)

NNLO + NNLL QCD NLO QCD + NLO EW NNLO QCD

(HRes) (HAWK) (VH@NNLO)

Higgs pT :

NNLO+NNLL

(HqT, HRes)

Jet Veto:

N3LO+NNLL

The cross sections for the production of a SM Higgs boson as a
function of

√
s, the center of mass energy, for pp collisions, including

bands indicating the theoretical uncertainties, are summarized
in Fig. 11.2(left) [44]. A detailed discussion, including uncertainties
in the theoretical calculations due to missing higher-order effects and
experimental uncertainties on the determination of SM parameters
involved in the calculations can be found in Refs. [40–43]. These
references also contain state-of-the-art discussions on the impact of
PDF uncertainties, QCD scale uncertainties and uncertainties due to
different procedures for including higher-order corrections matched to
parton shower simulations as well as uncertainties due to hadronization
and parton-shower events.

II.4.1. Production mechanisms at hadron colliders

The main production mechanisms at the Tevatron collider and the
LHC are gluon fusion, weak-boson fusion, associated production with
a gauge boson and associated production with a pair of tt quarks.
Figure 11.1 depicts representative diagrams for these dominant Higgs
production processes.

Figure 11.1: Main Leading Order Feynman diagrams con-
tributing to the Higgs production in (a) gluon fusion, (b)
Vector-boson fusion, (c) Higgs-strahlung (or associated produc-
tion with a gauge boson), (d) associated production with a pair
of top (or bottom) quarks, (e-f) production in association with a
single top quark. with top quarks.

Table 11.2, from Refs. [40–43], summarizes the Higgs boson
production cross sections and relative uncertainties for a Higgs mass of
125GeV, for

√
s = 7, 8, 13 and 14TeV. The Higgs boson production

cross sections in pp̄ collisions at
√

s = 1.96TeV for the Tevatron are
obtained from Ref. [45].

(i) Gluon fusion production mechanism

At high-energy hadron colliders, the Higgs boson production
mechanism with the largest cross section is the gluon-fusion process,
gg → H + X , mediated by the exchange of a virtual, heavy top
quark [46]. Contributions from lighter quarks propagating in the loop
are suppressed proportional to m2

q . QCD radiative corrections to the
gluon-fusion process are very important and have been studied in
detail. Including the full dependence on the (top, bottom, charm)
quark and Higgs boson masses, the cross section has been calculated
at the next-to-leading order (NLO) in αs [47, 48]. To a very good
approximation, the leading top-quark contribution can be evaluated

mt

v

gs

gs

One could think that all the quarks should give a similar contribution to the Higgs production since mt factors cancel. 
But it can be shown that this cancelation holds only for quarks heavier than the Higgs 

(value of Higgs production xs excludes a heavy fourth generation of quarks). 
LHC collides protons which contain gluons. How many gluons are inside the quarks depends on the energy of the 

protons. The production cross-section depends on the energy of the collider (40 pb at 14TeV, at 100TeV)

g

g

gluon

gluon

Higgs boson

[mass]0 [mass]1 [mass]3/2x2

)

strong coupling constant gs ⇠ 1

L = gs g
a
µ t̄�

µT at

gttH t̄tH

[mass]0 [mass]3/2x2 [mass]1

)
Higgs coupling

v=246 GeVgttH =
mt

v

� ⇠ 10�25 eV�2 ⇠ 10�39 m2 = 10pbi.e.
1 barn = 10�28 m2

E L
1eV 10-7m

1 pb = 10�12 barn

H

� =
1

8⇡

1

16⇡2
g4s

m2
t

v2
1

m2
t

flux loop couplings
dimensionally 

[σ]m=-2

)

dimensional analysis allows us to compute the Higgs production cross-section

How many Higgs bosons produced at LHC? � ⇥
Z

dtL = 10pb⇥ 100 fb�1 ⇠ 106

(L = luminosity= nbr of collisions)
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Higgs Lifetime “Computation”

— Hints — 

Higgs couplings proportional are proportional to the mass of the particles it couples to. 
It will therefore decay predominantly decay into the heaviest particle that is lighter than mH/2 

exercice: 

Using similar dimensional analysis arguments, 
compute the Higgs boson lifetime (or its inverse aka as the Higgs decay width)
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Weak Interactions and Higgs Physics
The decays of the neutrons and muons are controlled by the value of the Fermi constant

GF = Fermi constant: GF ⇠ 10�5

mproton
⇠ 10�5 GeV�2

Higgs physics is controlled by the value of the Vacuum Expectation Value

v = 246 GeV

We can notice that 

This relation is the consequence of the description of the weak interactions in terms of  
a local internal symmetry and its spontaneous breaking in the vacuum. 

That’s what we’ll figure out in the next lectures.

. GF =
1p
2v2
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Technical Details  
for Advanced Students



CG SSLP2022 17

Time-ordering ≠ Causality

O

y

z

x

y’

z’

x’

O’

0

BB@

ct
x
y
z

1

CCA !

0

BB@

ct0 = �0 (ct� �0x)
x0 = �0 (��0ct+ x)

y0 = y
z0 = z

1

CCA

consider two events E1 and E2 characterised by their space-time coordinates

t1 = 0
x1 = 0

t01 = 0
x0
1 = 0

t2 > 0
x2 > 0

ct02 = � (ct2 � �x2)
x0
2 = � (��ct2 + x2)

E1 E2

t’2 can be positive or negative 
causality ≠ time ordering

�02 = (ct02)
2 � (x0

2)
2
= (ct2)

2 � x2
2 = �2

Proper space-time distance Δ is independent of the observer: 

“time dilation + space contraction”

t

xOnly events inside the past/future light cones are causally connected
The light cones are invariant under Lorentz transformations
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Compton vs Schwarzschild Scales

Schwarzschild radius: for an object of mass m, one can define 

a length scale that will measure its gravitational strength
RSch =

GNm

c2
=

m

MPl
lPl

RCompton < RSch i↵ MPl < m

LRSch RCompton

quantum BH quantum object classical object

m < MPl

LRCompton

quantum BH classical BH classical object

RSch

MPl < m

Compton radius: for an object of mass m, one can define a 

length scale that will measure its quantum size
RCompton =

~
mc

— elementary particles — — macroscopic objects —
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Black Holes

Neutron stars: m~1030kg, R~104m (density of human population concentrated in a sugar cube): RSch~103m: BH

LHC Black Holes: m~1TeV, R~10-19m: RCompton~10-19m, RSch~10-51m (ordinary gravity) but 

RSch~10-19m if MPl is lowered to 1TeV as in models with large extra dimensions

Stellar BHs: m~1031kg, R~104m: RSch~104m: BH

Supermassive BHs: m~1037kg, R~1010m: RSch~1010m: BH

Event Horizon Telescope  
Sagittarius A* 

m = 4.3x106 Msun 
R =23.5x106 km  
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Einstein Algebra
xµ = (ct, x, y, z) µ = 0, 1, 2, 3

�2 = c2t2 � x2 � y2 � z2 = ⌘µ⌫x
µx⌫Lorentz-invariant 

distance ⌘µ⌫ =

0

BB@

1
�1

�1
�1

1

CCAwith

xµ = ⌘µ⌫x
⌫ = (ct,�x,�y,�z)Useful notations: such that �2 = xµx

µ

@µ =
@

@xµ

Lorentz transformations

xµ ! x0µ = ⇤µ
⌫ x

⌫ with ⌘µ⌫⇤
µ
µ0⇤⌫

⌫0 = ⌘µ0⌫0 For example:

Minkowski metric

⇤µ
⌫ =

0

BB@

� ���
��� �

1
1

1

CCA

0

BB@

� ���
��� �

1
1

1

CCA

0

BB@

1
�1

�1
�1

1

CCA

0

BB@

� ���
��� �

1
1

1

CCA =

0

BB@

1
�1

�1
�1

1

CCA

since

�2(1� �2) = 1

Minkowski metric is invariant 
under Lorentz transformations
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Lorentz Transformations
Covariant form of a Lorentz transformation: x0µ = ⇤µ

⌫ x
⌫

The invariance of the line element: �2 = ⌘µ⌫x
µx⌫ ! �02 = ⌘µ⌫x

0µx0⌫ imposes the following condition

⌘µ⌫⇤
µ
⇢⇤

⌫
� = ⌘⇢�

We always raise and lower the space time indices with the metric:

⇤µ⌫ = ⌘µ⇢⇤
⇢
⌫ ⇤µ

⌫ = ⌘µ⇢⌘
⌫�⇤⇢

� ⇤µ⌫ = ⌘⌫�⇤µ
�

Transformation inverse: x0µ = ⇤µ
⌫ x

⌫ xµ = ⇤⌫
µ x0⌫

Transformation of the space-time derivatives: 
@µ =

@x0⌫

@xµ

@

@x0⌫ = ⇤⌫
µ@

0
⌫

@0
µ =

@x⌫

@x0µ
@

@x⌫
= ⇤µ

⌫@⌫

Small Lorentz transformations: ⇤µ
⌫ = �µ⌫ + !µ

⌫

⌘µ⌫⇤
µ
⇢⇤

⌫
� = ⌘⇢� , !µ⌫ = !⌫µ



CG SSLP2022 22

Spinor Transformation
 Transformation law:  (x) !  0(x0) = S(⇤) (x)

We want the Dirac equation to take the same form in the two systems of coordinates x and x’

(i�µ@µ �m) = 0 (i�µ@0µ �m) 0 = 0

This implies the condition: S�µ⇤⌫
µS

�1 = �⌫

We consider small Lorentz transformations: ⇤µ
⌫ = �µ⌫ + !µ

⌫ S = 1� i

4
�µ⌫!µ⌫

The covariance of the Dirac equation then implies that the matrices "#$ have to satisfy the relation
[�⌫ ,�⇢�] = 2i(⌘⌫⇢�� � ⌘⌫��⇢)

It is easy to check that the following matrices fit the bill: �⇢� =
i

2
[�⇢, ��]

 (x) !  0(x0) =

✓
14 +

1

8
!µ⌫ [�

µ, �⌫ ]

◆
 (x)

xµ ! x0µ = (�µ⌫ + !µ
⌫)x

⌫ with !µ⌫ + !⌫µ = 0

Lorentz-invariant Lagrangian

L =  †M (i�µ@µ �m) is Lorentz-invariant iff �0[�⌫ , �µ]�0M +M [�µ, �⌫ ] = 0

M = �0 is a solution and it defines the Dirac Lagrangian.  ̄ ⌘  †�0
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Symmetries and invariants
SU(N) 

the transformations among the components of a complex N-vector that leaves its norm invariant   

|�|2 = �⇤
1�1 + . . .�⇤

N�N ! |�0|2 = |�|2

SO(N) 
the transformations among the components of a real N-vector that leaves its norm invariant   

|�|2 = �2
1 + . . .�2

N ! |�0|2 = |�|2

SU(N,M) 
the transformations among the components of a complex (N+M)-vector that leaves its (N,M) norm invariant   

|�|2 = �⇤
1�1 + . . .�⇤

N�N + �⇤
N+1�N+1 � . . .� �⇤

N+M�N+M ! |�0|2 = |�|2

SO(N,M) 
the transformations among the components of a real (N+M)-vector that leaves its (N,M) norm invariant   

|�|2 = �2
1 + . . .�2

N + �2
N+1 � . . .� �2

N+M ! |�0|2 = |�|2

The Lorentz group is thus SO(1,3)
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Lorentz transformation
SO(1,3) 

The elements of SO(1,3) satisfy                      where  =diag(1,-1,-,1,-1)  U t ⌘U = ⌘

The infinitesimal transformations are U = e✓
aTa

⇡ 1 + ✓aT a + . . .

The generators satisfy the constraints: T at⌘ + ⌘T a = 0

One particular generator is T =

0

BB@

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

1

CCA

e✓T =

0

BB@

cosh ✓ sinh ✓ 0 0
sinh ✓ cosh ✓ 0 0
0 0 1 0
0 0 0 1

1

CCAWe obtain

We indeed recover the usual Lorentz transformation with the identification

� = cosh ✓ and �� = sinh ✓

� =
1p

1� �2
, cosh2 ✓ � sinh2 ✓ = 1


