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Outline
 Monday 

Lagrangians 
Lorentz symmetry - scalars, fermions, gauge bosons 

Dimensional analysis: basics. 

 Tuesday  
Dimensional analysis: cross-sections and life-time. 
Gauge interactions 
Electromagnetism: U(1) 
Nuclear decay, Fermi theory and weak interactions: SU(2) 

Wednesday 
Strong interactions: SU(3) 
Chirality of weak interactions 
Pion decay 

Thursday 
Spontaneous symmetry breaking and Higgs mechanism 
Quark and lepton masses 
Neutrino masses 

Friday 
Running couplings 
Asymptotic freedom of QCD 
Anomalies cancelation 

26
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Dimensional Analysis
[S]m = 0

S =

Z
d4xL

[L]m = 4

L = @µ�@
µ�+ . . . [�]m = 1Scalar field

L =  †�0�µ@µ [ ]m = 3/2Spin-1/2 field

L = Fµ⌫F
µ⌫ + . . . with Fµ⌫ = @µA⌫ � @⌫Aµ + . . . [Aµ]m = 1Spin-1 field

Particle lifetime of a (decaying) particle: [⌧ ]m = �1 [� = 1/⌧ ]m = 1Width:

Cross-section (“area” of the target): [�]m = �2
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Lifetime “Computations”

We’ll see that the interactions responsible for the decay of muon and neutron are of the form 

L = GF  
4

[mass]4
[mass]�2 [mass]3/2⇥4

� / G2
Fm

5

[mass]

GF = Fermi constant: GF ⇠ 10�5

mproton
⇠ 10�5 GeV�2

muon and neutron are unstable particles

µ ! e⌫µ⌫̄e

n ! p e ⌫̄e

For the muon, the relevant mass scale is the muon mass mμ=105MeV:

�µ =
G2

Fm
5
µ

192⇡3
⇠ 10�19 GeV i.e. ⌧µ ⇠ 10�6 s

For the neutron, the relevant mass scale is (mn-mp)≈1.29MeV:

�n = O(1)
G2

F�m5

⇡3
⇠ 10�28 GeV i.e. ⌧n ⇠ 103 s

E T L

1eV 10-16s 10-7m

1 = ~c ⇠ 200MeV · fm
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Higgs production “Computation”
At the LHC, the dominant Higgs production mode is gluon fusion

11. Status of Higgs boson physics 183

the Higgs self-coupling would become non-perturbative at some scale
Λ that could be well below the Planck scale. Specifically, from the
measured values of the Higgs, top, W and Z masses and of the strong
gauge coupling, all within their experimental uncertainties, it follows
that the Higgs quartic coupling remains perturbative all the way up to
MP lanck [5, 6, 27], like the SM gauge and Yukawa couplings, thereby
rendering the SM a consistent, calculable theory.

However, for the value of Higgs mass experimentally measured, the
EW vacuum of the Higgs potential is most likely metastable. Indeed,
the high energy evolution of λ shows that it becomes negative at
energies Λ = O(1010 − 1012)GeV, with a broader range if the top
quark mass exceeds its current measured value by 3σ. When this
occurs, the SM Higgs potential develops an instability and the long
term existence of the EW vacuum is challenged. This behavior may
call for new physics at an intermediate scale before the instability
develops, i.e., below MP lanck or, otherwise, the electroweak vacuum
remains metastable [28]. Reference [29] studied how new physics at
MP lanck could influence the stability of the EW vacuum and possibly
modify this conclusion. The consequences of the instability of the EW
vacuum on high-scale inflation have been discussed in Refs. [30].

Within the SM framework, the relevant question is the lifetime of
the EW metastable vacuum that is determined by the rate of quantum
tunneling from this vacuum into the true vacuum of the theory (for
the most recent computation of the EW vacuum lifetime within the
SM, see Refs. [31]). The running of the Higgs self coupling slows
down at high energies with a cancellation of its β-function at energies
just one to two orders of magnitude below the Planck scale [32, 33].
This slow evolution of the quartic coupling is responsible for saving
the EW vacuum from premature collapse, allowing it to survive
much longer times than those from astrophysical considerations. It
might help the Higgs boson to play the role of an inflaton [34] (see,
however, Ref. [35] and references therein for potential issues with this
Higgs-as-an-inflaton idea).

II.4. Higgs production and decay mechanisms

Reviews of the SM Higgs boson’s properties and phenomenology,
with an emphasis on the impact of loop corrections to the Higgs boson
decay rates and cross sections, can be found in Refs. [36–43]. The
state-of-the-art of the theoretical calculations in the main different
production channels is summarized in Table 11.1.

Table 11.1: State-of-the-art of the theoretical calculations in the main different Higgs
production channels in the SM, and main MC tools used in the simulations

ggF VBF VH tt̄H

Fixed order: Fixed order: Fixed order: Fixed order:

NNLO QCD + NLO EW NNLO QCD NLO QCD+EW NLO QCD

(HIGLU, iHixs, FeHiPro, HNNLO) (VBF@NNLO) (V2HV and HAWK) (Powheg)

Resummed: Fixed order: Fixed order: (MG5 aMC@NLO)

NNLO + NNLL QCD NLO QCD + NLO EW NNLO QCD

(HRes) (HAWK) (VH@NNLO)

Higgs pT :

NNLO+NNLL

(HqT, HRes)

Jet Veto:

N3LO+NNLL

The cross sections for the production of a SM Higgs boson as a
function of

√
s, the center of mass energy, for pp collisions, including

bands indicating the theoretical uncertainties, are summarized
in Fig. 11.2(left) [44]. A detailed discussion, including uncertainties
in the theoretical calculations due to missing higher-order effects and
experimental uncertainties on the determination of SM parameters
involved in the calculations can be found in Refs. [40–43]. These
references also contain state-of-the-art discussions on the impact of
PDF uncertainties, QCD scale uncertainties and uncertainties due to
different procedures for including higher-order corrections matched to
parton shower simulations as well as uncertainties due to hadronization
and parton-shower events.

II.4.1. Production mechanisms at hadron colliders

The main production mechanisms at the Tevatron collider and the
LHC are gluon fusion, weak-boson fusion, associated production with
a gauge boson and associated production with a pair of tt quarks.
Figure 11.1 depicts representative diagrams for these dominant Higgs
production processes.

Figure 11.1: Main Leading Order Feynman diagrams con-
tributing to the Higgs production in (a) gluon fusion, (b)
Vector-boson fusion, (c) Higgs-strahlung (or associated produc-
tion with a gauge boson), (d) associated production with a pair
of top (or bottom) quarks, (e-f) production in association with a
single top quark. with top quarks.

Table 11.2, from Refs. [40–43], summarizes the Higgs boson
production cross sections and relative uncertainties for a Higgs mass of
125GeV, for

√
s = 7, 8, 13 and 14TeV. The Higgs boson production

cross sections in pp̄ collisions at
√

s = 1.96TeV for the Tevatron are
obtained from Ref. [45].

(i) Gluon fusion production mechanism

At high-energy hadron colliders, the Higgs boson production
mechanism with the largest cross section is the gluon-fusion process,
gg → H + X , mediated by the exchange of a virtual, heavy top
quark [46]. Contributions from lighter quarks propagating in the loop
are suppressed proportional to m2

q . QCD radiative corrections to the
gluon-fusion process are very important and have been studied in
detail. Including the full dependence on the (top, bottom, charm)
quark and Higgs boson masses, the cross section has been calculated
at the next-to-leading order (NLO) in αs [47, 48]. To a very good
approximation, the leading top-quark contribution can be evaluated

mt

v

gs

gs

One could think that all the quarks should give a similar contribution to the Higgs production since mt factors cancel. 
But it can be shown that this cancelation holds only for quarks heavier than the Higgs 

(value of Higgs production xs excludes a heavy fourth generation of quarks). 
LHC collides protons which contain gluons. How many gluons are inside the quarks depends on the energy of the 

protons. The production cross-section depends on the energy of the collider (40 pb at 14TeV, at 100TeV)

g

g

gluon

gluon

Higgs boson

[mass]0 [mass]1 [mass]3/2x2

)

strong coupling constant gs ⇠ 1

L = gs g
a
µ t̄�

µT at

gttH t̄tH

[mass]0 [mass]3/2x2 [mass]1

)
Higgs coupling

v=246 GeVgttH =
mt

v

� ⇠ 10�25 eV�2 ⇠ 10�39 m2 = 10pbi.e.
1 barn = 10�28 m2

E L
1eV 10-7m

1 pb = 10�12 barn

H

� =
1

8⇡

1

16⇡2
g4s

m2
t

v2
1

m2
t

flux loop couplings
dimensionally 

[σ]m=-2

)

dimensional analysis allows us to compute the Higgs production cross-section

How many Higgs bosons produced at LHC? � ⇥
Z

dtL = 10pb⇥ 100 fb�1 ⇠ 106

(L = luminosity= nbr of collisions)
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Higgs Lifetime “Computation”

— Hints — 

Higgs couplings proportional are proportional to the mass of the particles it couples to. 
It will therefore decay predominantly decay into the heaviest particle that is lighter than mH/2 

exercice: 

Using similar dimensional analysis arguments, 
compute the Higgs boson lifetime (or its inverse aka as the Higgs decay width)



CG SSLP2022 31

Weak Interactions and Higgs Physics
The decays of the neutrons and muons are controlled by the value of the Fermi constant

GF = Fermi constant: GF ⇠ 10�5

mproton
⇠ 10�5 GeV�2

Higgs physics is controlled by the value of the Vacuum Expectation Value

v = 246 GeV

We can notice that 

This relation is the consequence of the description of the weak interactions in terms of  
a local internal symmetry and its spontaneous breaking in the vacuum. 

That’s what we’ll figure out in the next lectures.

. GF =
1p
2v2
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Beta decay

d�

dE

Ee(MeV)

• N-body decays: A➙B1+B2+...+BN Emin
B1

= mB1c
2 Emax

B1
=

m2
A +m2

B1
� (mB2 + . . .+mBN )2

2mA
c2

40
19K ! 40

20Ca
+ + e� 64

29Cu ! 64
30Zn

+ + e� 3
1H ! 3

2He
+
+ e�

— How are neutrinos produced? —

(more about pion decay later later) µ ! e⌫̄e⌫µ Xµ ! e�need 2 neutrino flavours

and flavour conservation since

Lederman, Schwartz, Steinberger ’62: p ⌫̄µ ! nµ+ p ⌫̄µ ! n e+but X

⇡ ! µ⌫̄

• Two body decays: A➙B+C EB =
m2

A +m2
B �m2

C

2mA
c2 p =

�
�(mA,mB ,mC)

2mA
c

�(mA,mB ,mC) = (mA +mB +mC)(mA +mB �mC)(mA �mB +mC)(mA �mB �mC)

fixed energy of daughter particles 
(pure SR kinematics, independent of the dynamics) 

➾ non-conservation of energy?
Pauli ’30: ∃ neutrino, very light since end-point of spectrum is close to 2-body decay limit

ν first observed in ’53 by Cowan and Reines

Fermi theory ’33
L = GF (n̄p)(�̄ee)

exp: GF=1.166x10-5 GeV-2

(paper rejected by Nature: declared too speculative !)
We’ll see later that the structure 

is a bit more complicated
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Universality of Weak Interactions
How can we be sure that muon and neutron decays proceed via the same interactions?

τμ ≈ 10-6s    vs.   τneutron ≈ 900s 

By analogy with electromagnetism, one can see the Fermi force as a current-current interaction

Jµ = (n̄�µp) + (ē�µ⌫e) + (µ̄�µ⌫µ) + . . .L = GF J⇤
µJ

µ
with

The cross-terms generate both neutron decay and muon decay.
The life-times of the neutron and muon tell us that the relative factor between the electron and the 

muon is the current is of order one, i.e., the weak force has the same strength for electron and muon.

What about π± decay τπ ≈10-8s? 

Why                                    ?   And not                                                          ?�(⇡� ! e�⌫̄e)

�(⇡� ! µ�⌫̄µ)
⇠ 10�4

�(⇡� ! e�⌫̄e)

�(⇡� ! µ�⌫̄µ)
⇠ (m⇡ �me)5

(m⇡ �mµ)5
⇠ 500

Exp Th

Does it mean that our way to compute decay rate is wrong?
Is pion decay mediated by another interaction?

Is the weak interaction non universal, i.e. is the value of GF processus dependent?
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Pathology at High Energy
What about weak scattering process, e.g .                    ?e⌫e ! e⌫e

[mass]�2
[mass]�2⇥2 [mass]2

� / G2
FE

2 non conservation of probability 
(non-unitary theory)

inconsistent at high energy

Jµ = (n̄�µp) + (ē�µ⌫e) + (µ̄�µ⌫µ) + . . .L = GF J⇤
µJ

µ
with

The same Fermi Lagrangian will thus also contain a term 

that will generate e-!e scattering whose cross-section can be guessed by dimensional arguments
GF (ē�µ⌫e)(⌫̄e�

µe)

It means that at high-energy the quantum corrections to the classical contribution can be sizeable:

� / G2
FE

2 +
1

16⇡2
G4

FE
6 + . . .GF GF GF

⌫e

e e

⌫e ⌫e⌫e
⌫e

e
e

e

unless new degrees of freedom appear before to change the behaviour of the scattering 

The theory becomes non-perturbative at an energy Emax =
2
p
⇡p

GF
⇠ 100GeV–1TeV



CG SSLP2022 35

U(1) Gauge Symmetry
QED: the phase of an electron is not physical and can be rotated away 

Gauge invariance is a dynamical principle: it predicts some interactions among particles 

It also explains why the QED interactions are universal (an electron interacts with a photon in 
the same way on Earth, on the Moon and at the outskirts of the Universe)

� ! ei✓�

The phrase transformation is local, i.e., depends on space-time coordinate, then

and the kinetic term is no-longer invariant due to the presence of the non-homogenous piece 

@µ� ! ei✓ (@µ�+ i(@µ✓)�)

Note that and the full Lagrangian is invariant under local transformation Fµ⌫ = @µA⌫ � @⌫Aµ ! Fµ⌫

To make the theory invariant under local transformation, one needs to introduce a gauge field 
that keeps track/memory of how the phase of the electron changes from one point to another. 

For that, we build a covariant derivative that has nice homogeneous transformations

iffDµ� = @µ�+ ieAµ� ! ei✓Dµ� Aµ ! Aµ � 1

e
@µ✓
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SU(N) non-Abelian Gauge Symmetry
We generalise the QED construction by considering general transformation of a N-vector 

� ! U�

For the field strength to transform homogeneously, one needs to add a non-Abelian piece 

Fµ⌫ = @µA⌫ � @⌫Aµ + ig[Aµ, A⌫ ] ! UFµ⌫U
�1

Contrary to the Abelian case, the gauge fields are now charged and interact with themselves

D.3. THE FEYNMAN RULES FOR QCD 379

D.3 The Feynman Rules for QCD

We give separately the Feynman Rules for QCD and the electroweak part of the Standard
Model.

D.3.1 Propagators

−iδab

[
gµν

k2 + iε
− (1− ξ)

kµkν
(k2)2

]
(D.39)µ, a ν, b

g

δab
i

k2 + iε
(D.40)

ω
a b

D.3.2 Triple Gauge Interactions

gfabc[ gµν(p1 − p2)ρ + gνρ(p2 − p3)µ

+gρµ(p3 − p1)ν ]

p1 + p2 + p3 = 0
(D.41)

µ, a ν, b

ρ, c

p1

p2

p3

D.3.3 Quartic Gauge Interactions

ii) Vértice quártico dos bosões de gauge

−ig2
[

feabfecd(gµρgνσ − gµσgνρ)

+feacfedb(gµσgρν − gµνgρσ)

+feadfebc(gµνgρσ − gµρgνσ)
]

p1 + p2 + p3 + p4 = 0

(D.42)
µ, a ν, b

ρ, cσ, d

p1 p2

p3p4

D.3.4 Fermion Gauge Interactions

ig(γµ)βαT
a
ij (D.43)

µ, a

α, jβ, i
p1

p2

p3
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We give separately the Feynman Rules for QCD and the electroweak part of the Standard
Model.

D.3.1 Propagators

−iδab

[
gµν

k2 + iε
− (1− ξ)

kµkν
(k2)2

]
(D.39)µ, a ν, b

g

δab
i

k2 + iε
(D.40)

ω
a b

D.3.2 Triple Gauge Interactions

gfabc[ gµν(p1 − p2)ρ + gνρ(p2 − p3)µ

+gρµ(p3 − p1)ν ]

p1 + p2 + p3 = 0
(D.41)

µ, a ν, b

ρ, c

p1

p2

p3

D.3.3 Quartic Gauge Interactions

ii) Vértice quártico dos bosões de gauge

−ig2
[

feabfecd(gµρgνσ − gµσgνρ)

+feacfedb(gµσgρν − gµνgρσ)

+feadfebc(gµνgρσ − gµρgνσ)
]

p1 + p2 + p3 + p4 = 0

(D.42)
µ, a ν, b

ρ, cσ, d

p1 p2

p3p4

D.3.4 Fermion Gauge Interactions

ig(γµ)βαT
a
ij (D.43)

µ, a

α, jβ, i
p1

p2

p3

L / Fµ⌫F
µ⌫ � g@AAA+ g2AAAA

g g2

We build a covariant derivative that again has nice homogeneous transformations

Dµ� = @µ�+ igAµ� ! UDµ� Aµ ! UAµU
�1 +

i

g
(@µU)U�1iff

g is the gauge coupling and defines the strength of the interactions
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Electroweak Interactions
charged W ➾ must couple to photon:

➾ non-abelian gauge symmetry [Q,T±]=±T±

1. No additional “force” (Georgi, Glashow ’72) ➾ extra matter

SU(2)

[T a, T b] = i✏abcT c

[T+, T�] = Q [Q,T±] = +± T±

T± =
1p
2
(T 1 ± iT 2)

TrirrepT
3 = 0

0

@
XL

⌫L
eL

1

A

0

@
XR

⌫R
eR

1

A➾ extra matter

SU(1, 1)

[T+, T�] = �Q

[Q,T±] = +± T±

non-compact

unitary rep. has dim ∞

[Q,T±] = +± T±

only one unitary rep.

of finite dim. = trivial rep.

E2

[T+, T�] = 0

2D Euclidean group

� / G2
FE

2 � / g4
E2

m2
W (E2 +m2

W )

GF / g2

m2
W

2. No additional “matter” (Glashow ’61, Weinberg ’67, Salam ’68): SU(2)xU(1)      
➾ extra force

Q = T 3? Q = Y ? Q = T 3 + Y !

as Georgi-Glashow

➾ extra matter
Q(eL) = Q(⌫L) Gell-Mann ’56, Nishijima-Nakano ’53
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Electroweak Interactions
Gargamelle experiment ’73 first established the SU(2)xU(1) structure

νµ e- → νµ e-

Xe-

νµ

W - e-

νµ

e- e-

νµ νµ

!X
e- e-

νµ νµ

Z

Idea: 
rely on a particle that doesn’t interact with photon to prove the existence a new neutral current process!

loop-suppressed contribution from W:

e-

νµ

W -

e-

νµ

W -

μ

νe

http://cerncourier.com/cws/article/cern/29168
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From Gauge Theory to Fermi Theory
We can derive the Fermi current-current contact interactions by “integrating out” the gauge bosons, 
i.e., by replacing in the Lagrangian the W’s by their equation of motion. Here is a simple derivation: 

(a better one should take taking into account the gauge kinetic term and the proper form of the fermionic current that we’ll figure out 
tomorrow,  for the moment, take it as a heuristic derivation)

@L
@W+

µ
= 0 ) W�

µ =
g

m2
W

J�
µThe equation of motion for the gauge fields:

L = �m2
WW+

µ W�
⌫ ⌘µ⌫ + gW+

µ J�
⌫ ⌘µ⌫ + gW�

⌫ J+
⌫ ⌘µ⌫

J+µ = n̄�µp+ ē�µ⌫e + µ̄�µ⌫µ + . . . and J�µ =
�
J+µ

�⇤

Plugging back in the original Lagrangian, we obtain an effective Lagrangian (valid below the mass of the gauge 

bosons):

L =
g2

m2
W

J+
µ J�

⌫ ⌘µ⌫

which is the Fermi current-current interaction. The Fermi constant is given by
(the correct expression involves a different normalisation factor) 

GF =
g2

m2
W

The next step is to relate mW to v… that’s the Higgs mechanism . GF =
1p
2v2


