Summer Student Lecture Program 2022

Electronics, Trigger and Data Acquisition. 3/3

E. Meschi – CERN EP Dept. – CMS Experiment

Credits:

SSLP ETD lecture series by R.Ferrari (2019) EM: lectures on DAQ/Trigger at U.Padua 2018-2020 ISOTDAQ: International School of Trigger and DAQ https://indico.cern.ch/event/928767/

Material from various papers and books (bibliography at the end)

- Trigger and DAQ system concepts
- From signal to physics through examples
- Timing
- Data transport, links, buses
- Queues and Event building
- On-line data processing

- We have our ADC/TDC counts, but how do we correlate them with energy/position ?
- Need a calibration procedure

Calibration

- The experiments we discussed provide <u>relative measurements</u>. The values obtained via our system are in some (known) relation with the interesting quantity
 - Scintillator

$$Q \propto N_{\gamma} \propto E$$

- XDWC

$$y = \alpha \cdot \Delta t + \beta = \alpha \cdot (t_{top} - t_{bottom}) + \beta$$

- Our instruments need to be in order to give us the answer we are looking for
 - We have to determine the **calibrated**parameters that transform the raw data into a physics quantity
 - The parameters normally depend on the experimental setup (e.g. cable length, delay settings, HV settings, ...)
- In the <u>design of our detector and DAQ</u> we have to foresee calibration mechanisms/procedures

Ge crystal for isotope identification

EM - SSLP2022 - EDT3/3

Crystal calibration

CERN

Isotope identification

Calibrated crystal setup can be used to identify isotopes generated in irradiated samples

13/07/2022

XDWC Calibration

- XDWC chamber have 3 calibration inputs that allow for independent calibrations of X and Y axis with only 3 different sets of data
- The calibration input simulate signals from particles respectively hitting
 - Right-top corner (X=Y=30mm)
 - Center (X=Y=0mm)
 - Left-bottom corner (X=Y=-30mm)
- The calibration data sets are collected with <u>final</u> <u>setup and TDC</u>
- Interpolating the three points in the *t-x* space, the parameters of the calibration equation can be measured

Calibrated XDWC

7

Calibration: summary

- Our DAQ chain provides us with numbers (raw data) but ... what do they really mean ?
- Likely related with physics quantities but with relations (transfer functions) affected by several uncertainties:
- due to physical detection mechanisms
- due to signal processing
- Transfer functions usually parameterised, sometimes based on (look-up) numeric tables
- All system elements need to be calibrated to keep optimal knowledge of all parameters:
 - calibration procedures
 - calibration constants
- Calibration constants change with ageing (mainly due to radiation), beam conditions (electronics may have baseline drifting with pile-up), time ... HV, LV, ...
- <u>The design of our detector and DAQ</u> has to foresee calibration mechanisms/procedures
- injection of known signals
- dedicated calibration *triggers* and data streams

Atlas tile calorimeter calibration system

CERN

Time

Time

Clock distribution

- Let's assume that your clock is received from an external source in "perfect" shape
 - For example the accelerator RF system
 - Or a time base for absolute time
- In order to have synchronized clocks in the detector, the signal has to be copied many times and distributed over thousands of connections
 - It is affected by
 - Length and quality of the transmission line
 - Environmental factors (temperature, humidity...)
 - It traverses a lot of intermediate electronics
 - In an environment full of noise sources
 - · EM fields
 - Other electronics
 - Power supplies
 - ...
- Distributing an accurate clock is far from trivial

Consequences of jitter

- The time references may be accurate in absolute terms but may have phase differences at different places in the detector
- The time reference may not be stable and exhibit slow or fast phase variation
- The jitter may affect your digitized data in different ways
 - **Distortion** of the digitized pulse
 - Errors in time measurement of a TDC
- On a trigger system the effect can be dramatic:
 - A trigger signal is **issued for the wrong time bucket** (corresponding to bunch-crossing or a specific instant in time)
 - As a result, the wrong information is stored (you take the picture too early, or too late)
- Mismeasurement due to jitter can also have serious effects
 - For example you can mis-measure a time of flight and take some wrong conclusion

Example: Augier

On each detector, a 3-level trigger operates at a wide range of 7 primary energies, for both vertical and very inclined showers L1: (local) decides the pixel status (on/off) 11 ADC counts > threshold 1 MHz/pixel ADC digitizes any 100 ns (time resolution) ADC values stored for 100 us in **buffers** • **Synchronized** with a signal from a GPS clock L2: (local) identifies track segments L2 200 Hz/station Geometrical criteria with recognition algorithms on programmable patterns L3: (central) makes spatial and temporal L3 0.2 Hz correlation between L2 triggers

Detect air showers generated by cosmic rays above 10¹⁷ eV

Expected rate < 1/km²/century. Two large area detectors

Surface D. array of ~1600 water Cherenkov stations over 3000 km² on ground, to identify secondary particles Florescent D.: 4 UV telescopes measure the shower Energy longitudinally

One event ~ 1MB \rightarrow 0.2 MB/s bandwidth needed for the DAQ system

EM - SSLP2022 - EDT3/3

Where it's important?

CERN

22

Aperture synthesis

EM - SSLP2022 - EDT3/3

SKA time distribution

13/07/2022

Time at colliders

Timestamping

13/07/2022

EM - SSLP2022 - EDT3/3

26

Syntonization

• Distribute frequency

- Average clock edges
- Added single shot channel jitter

- Distributing frequency = Syntonization:
 - "The adjustment of two electronic circuits or devices in terms of frequency"

A timing system should distribute

- clock
 - with appropriate phase relative to some reference (e.g. the LHC bunch structure)

- L1-trigger (can be complex information)
- Bunch Counter (increment on LHC clock)
- Event Counter (increment on L1A)

25 ns

- Additional synchronization commands for the front-end
- Must be radiation and field tolerant (for colliders)

One system

- Ideally, you want to distribute the clock AND the remaining information with a single system
- The clock could be embedded in a high-speed serial stream: can it be recovered with sufficient stability ?

13/07/2022

• What is "sufficient" ?

Phase-locked loop

recover a noisy signal (jitter cleaning) generate a stable frequency at multiples of an input frequency (clock synthesis) distribute precisely timed clock pulses (clock distribution)

Problem: limited range of frequency If input drifts -> unlock

Delay-lock loop: VCO replaced by programmable delay line

Measuring phase noise

More complex tools

Retimer output: Data is recovered and retransmitted

https://pcisig.com/pci-express®-retimers-vs-redrivers-eye-popping-difference

What are the applications that demand most phase stability ?

What is pileup

13/07/2022

EM - SSLP2022 - EDT3/3

Identifying vertex by time of flight

- With two time and position measurements eg. from two photons and with the constraint from the beam axis x and y location, the vertex x and t can be calculated.
- Equivalent to GPS with two sattelites.

Pileup mitigation with timing detector

- High pile-up has major impact on JetMET reconstruction.
- At low p_T (40 GeV) PU energy in the jet cone exceeds the jet energy by a factor 2 or more.
- Each PU event adds 3 GeV in quadrature to the MET resolution, resulting in about 40 GeV for 200 GeV.

 $t = t_0$ $t = t_0 + \Delta t$ $t = t_0 - \Delta t$

11111

Correct vertex identification

- Synergies between Calorimetric and MIP timing : Increased efficiency for time vertexing.
- $H \rightarrow \gamma \gamma$ use case : Vertex ID efficiency 80% in Run I, 40% expected in HL-LHC, 55% with photon-only time vertex, 75% with photon+track time vertex.
- Results corresponds to a 10% and 30% increase in equivalent luminosity.
- Results to be presented at the **ECFA workshop** in Aix les Bains.

Requirements

The reference clock must have phase accuracy better than the target resolution

Design of the CMS Mip Timing Detector (MTD)

Target time resolution of 30 ps achieved

- Noise jitter term <25 ps for gain>15 0
 - ~N/(dV/dt) .
- Intrinsic limit from Landau fluctuations: 0
 - Spatially non-uniform energy deposits along the . track cause event-by-event pulse distortions
 - Constant: ~25 ps .

Wrap-up Visionary part

DAQ: nice and easy

VFE does the analog part, ADC, low-level calibration, zero suppression, lossless compression, *optical links*

low-power, rad-hard (*rad-tolerant*) QFE does medium scale aggregation, local reconstruction, "lossy" compression, transition to standard protocol on optical links

 $asynchronous-precision\ clock\ -\ timestamping$

COTS switched networks provide further aggregation, up to and including event building

COTS servers with co-processors do the final selection

One-size-fits-all type of problem

Some real-life problems

Beyond HL-LHC

LD	Col Col	3 double lar 3 double do 25µm×25 pixel 50µm ser 0.6-0.7% per double	yers + pixel and µ-strips disks 7µm×90µm (5µm×5µm 1 st layer point resolution nsor 3 layers + 7 disks inner tracker 5 X ₀ 3 layers + 4 disks layer outer tracker	ECAL 20cm 5m×5m Si-W 1.9mm W 40 layers 22X ₀ , 1λ HCAL 117cm 30mm×30mm Sci-steel 19mm steel 44 layers 5.5λ	90 mm Al coil 2T field 1.5m steel yoke 6 layers RPC 30mm×30mm granularity
		verte detect	x tracker	calorimeter —	magnet and muon detector
DEA	Yoke / muon detectors	3 double la 20µm×20 double µ-s 50µm×10 4 forward 0	ayers 112 layers Dµm 1.4 cm square cells strips 100µm×750µm mm point resolution disks	fully projective towers $\Delta \vartheta = 1.125^{\circ}$ $\Delta \phi = 10.0^{\circ}$	30cm total envelope 2T field cold mass + cryostat 0.28 + 0.46 X ₀ 0.6m steel voke
		50µm×50	Dµm Si wrapper 50μm×1mm Χ _α	2880 in barrel 2×1260 end-cap	3 layers µ-RWELL 1.5mm×500mm
	DCH	per double	layer $1.5\% X_0$ radially $5\% X_0$ forward	2m Cu 8.2λ	granularity
05/2020		F. Granca	Ignolo - IDEA and CLD at FCC-ee		11

3.7 ns interbunch at Z pole Rates are high but events small **Tracker** with many channels but occupancy low (~kB??) Trigger not challenging, but precision measurements benefit from multiple strategies **Trigger-less** data rates similar to HL-LHC Stepping stone for the hh detectors

Beyond HL-LHC

- Higher energy
 - larger B field, solenoid bore radius -> tracker
- 400 m² silicon, 10¹⁰ channels
- Higher to extreme fluences, less accessibility
- Luminosity: always as high as possible
 - Shorter interbunch to reduce PU?

https://indico.cern.ch/event/727555/cohtributions/3461232/attachments/1869213/3075 082/fcc_hh_detector_brussels_june_2019_riegler.pdf

31 GHz of pp collisionsPile-up 10004 THz of tracks

Un-triggered readout at 40MHz **1000** - **1500TByte/s** over optical links to the underground service cavern and/or HLT

Not Just Colliders

- Neutrino@accelerator (DuNE...)
- Dark matter at BD or LL
- Next-generation specialized experiments and FT
- Neutrino (IceCube-2..)
- Astroparticle (CTA...)
- Radioastronomy (SKA...)
- GW (ET, CE...)

Multi-messenger astronomy: network all the above in real time Data reduction Synchronization Data rates "Image" processing AI applications (CNN, GN, AE?) **Reliability**

Precision clock distribution Synchronization High-bandwidth longdistance links Reliability

Common needs for reliable systems

EM - SSLP2022 - EDT3/3

13/07/2022

Optimistic outlook / lessons learned

- Move "as early as possible" to COTS networking
 - Requires buffer at sender (PC memory or something else)
 - Bare Ethernet not lossless unless sufficient buffer at switch (must keep usage below ~50%) - residual losses as deadtime (accounting) – need reliable delivery
- Could move "EVB" functionality to BE
 - Reliable protocol using HBM for congestion, aggregation
 - Integrated in back-end
 - Complete fw implementation of e.g. TCP
 - Delegate final EVB to HLT nodes (mild timestamping)
- Economic and sociological reasons (may) make this hard

More stuff (it time allows)

First stop: Readout at FE

- Optical Data Transmission technology is key
 - High Bandwidth low mass, low power
 - Immune to **electromagnetic interference** (+ isolation between power and readout)
 - Sufficiently radiation tolerant

- Optical layer is only part of the story
 - Acquisition, aggregation, and serialisation before transmission over the link
- ASICs need to be specified and designed to meet system requirements
 - Increasingly complex over generations
 - Common developments are key
 - Reuse (of design, concept)

synchronous or asynchronous

- Using COTS at FE == profit of high bandwidth "for free"
 - Fixed speed and narrow locking range
- Asynchronous readout (with time stamping...)
 - less complex back-end electronics
 - In principle can use "standard" protocol (e.g. Ethernet) and connect "quasi-FE" to "commercial" equipment
 - Challenging clock distribution, disciplined clock, phase stability at FE
 - Additional bandwidth
- Synchronous
 - RF stability (ramps) and distribution vs. locking range
 - COTS not compatible with specific RF frequencies
 - need deterministic behavior (and if not, can losses be afforded/quantified)
 - Deterministic protocols hard
 - Reliable protocols require lots of buffer at the sender (and are not deterministic by construction)

"trigger-less" is good ?

Trigger :== read out everything (or "just without" L1 trigger) ?

- + Reduce relevance of custom processors and special data paths
- More high speed links at or near the front end (with the usual problems...)
 - material budget (for power, cooling, fibres)
 - rad hardness (of optical transmitters, fibres)
 - Will get worse at "future" colliders
 - Optical on FE needs a lot of technology for which we are the only customers
- Do aggregation and optical links as close as possible to FE
 - "Lossy" data reduction, it looks a bit like trigger ? but, at FE, level of aggregation is limited by
 - geometrical distribution of sources
 - space available
 - Environment to place connectivity / intelligence (the usual...rad,temp,field...)
- Transition to COTS
 - Link speeds are constrained by COTS standards
 - Speaks in favor of abandoning synchronous readout

Caveat

- Turns out that "doing everything in software" is not so easy even with a HW L1 trigger
 - size of the switched network, amount of buffer to allow for "non-deterministic" behaviour of software algorithms
- · amount of computing needed vs. CPU evolution
 - · With asynchronous time-stamped data, just assembling the right pieces would not be a trivial task
 - Lots of low-hanging fruit ends up being a bit too high
 - GPUs...help but transition is slow (but at least it is happening)

- ...people end-up proposing FPGA custom co-processors...
- ...or pre-processors (anyone ?) [while there is general consensus now that ASICs are hard a lot of people still think that custom boards with FPGAs are easy]...beats the purpose ?
 - Paying for CPU is not popular...people will want to develop their own boards
 - That's how projects get funded at institutions: not to develop software, or even firmware (see later in "sociology")

A look at the hardware triggers

Some draconian "lossy compression" here

- Get rid of entire detectors, make "trigger cells", "trigger primitives"
- Final outcome is...well, one bit

Some "trigger-less" readout

- Trigger inputs ARE read out at BX rate (in some cases "primitives" are made at back-end, from streaming data)
- Trigger processors do aggregation
 - In some cases information from multiple sub-detectors are combined

There is a lot of information in the intermediate layers of the hw trigger...perhaps something to be learned there

Yet one wants to do fancy things

Several aspects to point out here:

- Enough information to "do the job"
- Aggregate it in the correct dimension
- Do all this within a short time
- Modular systems with custom interconnects
- Lots of complex algorithms to code in firmware

Some intelligence in the detector...

 If one wants to do more Interconnects are needed

Inefficient at low Pt, large impact parameter, large η

Lossy compression requires sparsity in some space VFE connectivity insufficient (or in the wrong dimension)

- Zero-th order problem: how to use complex, highly granular detectors in the trigger
- First order problem: how to make high-rate read-out possible (with or without trigger)
 - You can't get rid of complex front-end (and back-end) if you can't get rid of a hardware trigger
- Second order problem: build a tracker that spits out tracks, a calorimeter that spits out clusters ?

Some cursory conclusion

Hardware L1 is now a system of (generic) processors doing "local" event building, and processing events in parallel – L1 and HLT are approaching

- As an aside, this can and must be exploited to reduce the computation needs of the HLT
 - L1 objects much more useful
- Can capture L1 data for use in "physics at BX rate" (L1 "scouting")

Both L1 and HLT only require "trivial" parallelism: work on one BX (event) at a time.

- Driven by the almost-synchronous nature of the task could be challenged by asynchronous readout and/or multi-bx phenomena (VLL)
- Information only flows in one direction sub-optimal use of bi-directional links (but easy traffic) [on-demand event building...]

Some cursory conclusion

A hardware trigger can live with (very) lossy compression because it just needs enough information to classify events and be **"mostly correct"** – that L1 is only mostly correct is **an accepted fact of life** (see below)

Whatever readout scheme one chooses **needs to be "almost always correct"** – at the lowest level possible (i.e. not miss a track or know exactly what you missed):

- Ability to extract all relevant information from front-end electronics
 - Readout scheme
 - Lossy compression and traffic equalization (ML techniques...CNN, AE (?), compressive sensing (?))
- Ability to aggregate and process data at sufficient scale "on-detector"
 - Interconnect at "quasi" front-end
 - Powerful FPGA-based processors that can work in QFE environment
 - Still a lot of downstream connectivity, if possible on COTS
- Accept a redefinition of what "raw-data" means (notice that such a redefinition is mostly NOT yet accepted at the next level, i.e. HLT)

Future DAQ/trigger system will need "holistic" system engineering at detector design level that takes into account readout

(and trigger if necessary)

Thank you