C. Grojean
 DESY and Humboldt University

Standard Model
Homework 3
Date: 13.07.2022

Exercice 1: Two-body decays

Using energy and momentum conservation, show that in a 2-body decay, $A \rightarrow B+C$, the energy and momentum of the daughter particles in the rest frame of the mother particle are given by

$$
\begin{gathered}
E_{B}=\frac{m_{A}^{2}+m_{B}^{2}-m_{C}^{2}}{2 m_{A}} c^{2}, \quad E_{C}=\frac{m_{A}^{2}+m_{C}^{2}-m_{B}^{2}}{2 m_{A}} c^{2} \\
p=\frac{\sqrt{\lambda\left(m_{A}, m_{B}, m_{C}\right)}}{2 m_{A}} c
\end{gathered}
$$

with

$$
\lambda\left(m_{A}, m_{B}, m_{C}\right)=\left(m_{A}+m_{B}+m_{C}\right)\left(m_{A}+m_{B}-m_{C}\right)\left(m_{A}-m_{B}+m_{C}\right)\left(m_{A}-m_{B}-m_{C}\right) .
$$

Exercice 2: Colliders vs fixed-target experiments

Consider collisions between two particles A and B.
a) Calculate the center-of-mass energy in the rest frame of the B particle. What is the beam energy of the particles A needed to reach an energy of 2 TeV in the center-of-mass (we will assume that A and B are protons). This is a fixed-target experiment. For instance, CERN is thinking of building an experiment called SHiP that will use the SPS 400 GeV proton beam sent to a fixed target. What is the center-of-mass energy available?
b) CERN is also considering a Future Circular Collider with a 100 km tunnel accelerating protons at an energy of 50 TeV that would collide electrons accelerated to 60 GeV in a different tunnel. Compute the center-of-mass energy avaialble?
c) Calculate the center-of-mass energy in the frame where the two beams are colliding head-on like at the LHC.

Exercice 3: EM action for photons

The photon field strength is defined to be

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu},
$$

where the 4 -vector A^{μ} is defined from the scalar and vector potential (ϕ, \vec{A}).
a) From the classical EM definition of the electric and magnetic fields from the scalar and vector potential

$$
\vec{E}=-\vec{\nabla} \phi-\frac{1}{c} \frac{\partial \vec{A}}{\partial t}, \quad \vec{B}=\vec{\nabla} \wedge \vec{A}
$$

show that

$$
\vec{E}_{i}=-F_{i 0} \quad \vec{B}_{i}=-\frac{1}{2} \epsilon_{i j k} F_{j k}
$$

b) Derive the expression of the gauge field Lagrangian density, $-\frac{1}{4 \pi} F_{\mu \nu} F^{\mu \nu}$, in terms of the electric and magnetic fields and recognise the usual expression of the energy density stored in the electromagnetic fields.
c) There is another Lorentz-invariant Lagrangian density that one can construct from the electromagnetic field:

$$
\epsilon_{\mu \nu \rho \sigma} F^{\mu \nu} F^{\rho \sigma}
$$

Compute this Lagrangian density in terms of \vec{E} and \vec{B}.

