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Outline
 Monday 

Lagrangians 
Lorentz symmetry - scalars, fermions, gauge bosons 

Dimensional analysis: cross-sections and life-time. 

 Tuesday  
Dimensional analysis: cross-sections and life-time 
Nuclear decay, Fermi theory 

 Wednesday 
Gauge interactions: U(1) electromagnetism, SU(2) weak interactions, SU(3) QCD  
Chirality of weak interactions 
Pion decay 

Thursday 
Spontaneous symmetry breaking and Higgs mechanism 
Quark and lepton masses 
Neutrino masses 

Friday 
Running couplings 
Asymptotic freedom of QCD 
Anomalies cancelation 
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Higgs Lifetime “Computation”

— Hints — 

Higgs couplings proportional are proportional to the mass of the particles it couples to. 
It will therefore decay predominantly decay into the heaviest particle that is lighter than mH/2 

exercice: 

Using similar dimensional analysis arguments, 
compute the Higgs boson lifetime (or its inverse aka as the Higgs decay width)

� ⇠ 1

8⇡

⇣mb

v

⌘2
mh ⇠ 1

10

✓
4GeV

246GeV

◆2

125GeV ⇠ 1MeV

phase 
space dimensionally 

[Γ]m=1

)

couplings 
to b-quark

Putting all factors and considering the other decay modes, Higgs width = 4MeV in the SM

�Z =
7

48⇡
g2mZ ⇠ 2GeV ⌧Z ⇠ 10�25 si.e.(for Z gauge boson: )

E T L
1eV 10-16s 10-7m

⌧ ⇠ 10�22 s



CG SSLP2022 43

Fermi Theory

By analogy with electromagnetism, one can see the Fermi force as a current-current interaction

Jµ = (n̄�µp) + (ē�µ⌫e) + (µ̄�µ⌫µ) + . . .L = GF J⇤
µJ

µ
with

The cross-terms generate both neutron decay and muon decay.
The life-times of the neutron and muon tell us that the relative factor between the electron and the 

muon is the current is of order one, i.e., the weak force has the same strength for electron and muon.

Recap 

from yesterday 
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Pathology at High Energy
What about weak scattering process, e.g .                    ?e⌫e ! e⌫e

[mass]�2
[mass]�2⇥2 [mass]2

� / G2
FE

2 non conservation of probability 
(non-unitary theory)

inconsistent at high energy

Jµ = (n̄�µp) + (ē�µ⌫e) + (µ̄�µ⌫µ) + . . .L = GF J⇤
µJ

µ
with

The same Fermi Lagrangian will thus also contain a term 

that will generate e-!e scattering whose cross-section can be guessed by dimensional arguments
GF (ē�µ⌫e)(⌫̄e�

µe)

It means that at high-energy the quantum corrections to the classical contribution can be sizeable:

� / G2
FE

2 +
1

16⇡2
G4

FE
6 + . . .GF GF GF

⌫e

e e

⌫e ⌫e⌫e
⌫e

e
e

e

unless new degrees of freedom appear before to change the behaviour of the scattering 

The theory becomes non-perturbative at an energy Emax =
2
p
⇡p

GF
⇠ 100GeV–1TeV
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U(1) Gauge Symmetry
QED: the phase of an electron is not physical and can be rotated away 

Gauge invariance is a dynamical principle: it predicts some interactions among particles 

It also explains why the QED interactions are universal (an electron interacts with a photon in 
the same way on Earth, on the Moon and at the outskirts of the Universe)

� ! ei✓�

The phrase transformation is local, i.e., depends on space-time coordinate, then

and the kinetic term is no-longer invariant due to the presence of the non-homogenous piece 

@µ� ! ei✓ (@µ�+ i(@µ✓)�)

Note that and the full Lagrangian is invariant under local transformation Fµ⌫ = @µA⌫ � @⌫Aµ ! Fµ⌫

To make the theory invariant under local transformation, one needs to introduce a gauge field 
that keeps track/memory of how the phase of the electron changes from one point to another. 

For that, we build a covariant derivative that has nice homogeneous transformations

iffDµ� = @µ�+ ieAµ� ! ei✓Dµ� Aµ ! Aµ � 1

e
@µ✓
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SU(N) non-Abelian Gauge Symmetry
We generalise the QED construction by considering general transformation of a N-vector 

� ! U�

For the field strength to transform homogeneously, one needs to add a non-Abelian piece 

Fµ⌫ = @µA⌫ � @⌫Aµ + ig[Aµ, A⌫ ] ! UFµ⌫U
�1

Contrary to the Abelian case, the gauge fields are now charged and interact with themselves

D.3. THE FEYNMAN RULES FOR QCD 379

D.3 The Feynman Rules for QCD

We give separately the Feynman Rules for QCD and the electroweak part of the Standard
Model.

D.3.1 Propagators

−iδab

[
gµν

k2 + iε
− (1− ξ)

kµkν
(k2)2

]
(D.39)µ, a ν, b

g

δab
i

k2 + iε
(D.40)

ω
a b

D.3.2 Triple Gauge Interactions

gfabc[ gµν(p1 − p2)ρ + gνρ(p2 − p3)µ

+gρµ(p3 − p1)ν ]

p1 + p2 + p3 = 0
(D.41)

µ, a ν, b

ρ, c

p1

p2

p3

D.3.3 Quartic Gauge Interactions

ii) Vértice quártico dos bosões de gauge

−ig2
[

feabfecd(gµρgνσ − gµσgνρ)

+feacfedb(gµσgρν − gµνgρσ)

+feadfebc(gµνgρσ − gµρgνσ)
]

p1 + p2 + p3 + p4 = 0

(D.42)
µ, a ν, b

ρ, cσ, d

p1 p2

p3p4

D.3.4 Fermion Gauge Interactions

ig(γµ)βαT
a
ij (D.43)

µ, a

α, jβ, i
p1

p2

p3

D.3. THE FEYNMAN RULES FOR QCD 379

D.3 The Feynman Rules for QCD

We give separately the Feynman Rules for QCD and the electroweak part of the Standard
Model.

D.3.1 Propagators

−iδab

[
gµν

k2 + iε
− (1− ξ)

kµkν
(k2)2

]
(D.39)µ, a ν, b

g

δab
i

k2 + iε
(D.40)

ω
a b

D.3.2 Triple Gauge Interactions

gfabc[ gµν(p1 − p2)ρ + gνρ(p2 − p3)µ

+gρµ(p3 − p1)ν ]

p1 + p2 + p3 = 0
(D.41)

µ, a ν, b

ρ, c

p1

p2

p3

D.3.3 Quartic Gauge Interactions
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ρ, cσ, d
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p3p4

D.3.4 Fermion Gauge Interactions

ig(γµ)βαT
a
ij (D.43)

µ, a

α, jβ, i
p1

p2

p3

L / Fµ⌫F
µ⌫ � g@AAA+ g2AAAA

g g2

We build a covariant derivative that again has nice homogeneous transformations

Dµ� = @µ�+ igAµ� ! UDµ� Aµ ! UAµU
�1 +

i

g
(@µU)U�1iff

g is the gauge coupling and defines the strength of the interactions
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Electroweak Interactions
charged W ➾ must couple to photon:

➾ non-abelian gauge symmetry [Q,T±]=±T±

1. No additional “force” (Georgi, Glashow ’72) ➾ extra matter

SU(2)

[T a, T b] = i✏abcT c

[T+, T�] = Q [Q,T±] = +± T±

T± =
1p
2
(T 1 ± iT 2)

TrirrepT
3 = 0

0

@
XL

⌫L
eL

1

A

0

@
XR

⌫R
eR

1

A➾ extra matter

SU(1, 1)

[T+, T�] = �Q

[Q,T±] = +± T±

non-compact

unitary rep. has dim ∞

[Q,T±] = +± T±

only one unitary rep.

of finite dim. = trivial rep.

E2

[T+, T�] = 0

2D Euclidean group

� / G2
FE

2 � / g4
E2

m2
W (E2 +m2

W )

GF / g2

m2
W

2. No additional “matter” (Glashow ’61, Weinberg ’67, Salam ’68): SU(2)xU(1)      
➾ extra force

Q = T 3? Q = Y ? Q = T 3 + Y !

as Georgi-Glashow

➾ extra matter
Q(eL) = Q(⌫L) Gell-Mann ’56, Nishijima-Nakano ’53
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Electroweak Interactions
Gargamelle experiment ’73 first established the SU(2)xU(1) structure

νµ e- → νµ e-

Xe-

νµ

W - e-

νµ

e- e-

νµ νµ

!X
e- e-

νµ νµ

Z

Idea: 
rely on a particle that doesn’t interact with photon to prove the existence a new neutral current process!

loop-suppressed contribution from W:

e-

νµ

W -

e-

νµ

W -

μ

νe

http://cerncourier.com/cws/article/cern/29168
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From Gauge Theory to Fermi Theory
We can derive the Fermi current-current contact interactions by “integrating out” the gauge bosons, 
i.e., by replacing in the Lagrangian the W’s by their equation of motion. Here is a simple derivation: 

(a better one should take taking into account the gauge kinetic term and the proper form of the fermionic current that we’ll figure out 
tomorrow,  for the moment, take it as a heuristic derivation)

@L
@W+

µ
= 0 ) W�

µ =
g

m2
W

J�
µThe equation of motion for the gauge fields:

L = �m2
WW+

µ W�
⌫ ⌘µ⌫ + gW+

µ J�
⌫ ⌘µ⌫ + gW�

⌫ J+
⌫ ⌘µ⌫

J+µ = n̄�µp+ ē�µ⌫e + µ̄�µ⌫µ + . . . and J�µ =
�
J+µ

�⇤

Plugging back in the original Lagrangian, we obtain an effective Lagrangian (valid below the mass of the gauge 

bosons):

L =
g2

m2
W

J+
µ J�

⌫ ⌘µ⌫

which is the Fermi current-current interaction. The Fermi constant is given by
(the correct expression involves a different normalisation factor) 

GF =
g2

m2
W

The next step is to relate mW to v… that’s the Higgs mechanism . GF =
1p
2v2
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SU(3) QCD

But quarks carry yet another quantum number: “colour” 
There 3 possible colours and Nature is colour-blind, i.e, Lagrangian should remain the same when the 

colours of the quarks are changed, i.e., when we perform a rotation in the colour-space of quarks

There are other (heavier) quarks and hence other baryons and mesons

All the interactions of the SM preserve baryon and lepton numbers

µ ! e⌫µ⌫̄e n ! p e ⌫̄e ⇡� ! µ�⌫̄µ ⇡0 ! �� p ! ⇡0ēX

Deep inelastic experiments in the 60’s revealed the internal structure of the neutrons and protons 
Gell-Mann and others proposed that they are made of “quarks” 

Up quark: spin-1/2, Q=2/3 
Down quark: spin-1/2, Q=-1/3

SU(2) weak symmetry that changes neutrino into electron also changes up-quark into down-quark 

Qa ! Ua
bQ

b U: 3x3 matrix satisfying  U†U = 13
such that the quark kinetic term is invariant

SU(3)

p = uud n = uddhadrons (spin-1/2, #hadronic=1):

⇡0 =
uū+ dd̄p

2
⇡+ = ud̄ ⇡� = dūmesons (spin-0, #hadronic=0):

(Each  quark carries a baryon number =1/3)
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electromagnetic interactions

weak interactions

strong interactions

strength

Photon

bosons

gluons

light

atoms

molecules

β decay

α decay

{

{
{

atomic nuclei

10-5

10-2
n

W±
�⇥ p+ e� + �̄e

e+ + e�
Z0

�⇥ D+
(cs̄) +D�

(c̄s)

238
92U �⇥ 234

90Th + 4
2He

U(1)Y

SU(2)L

SU(3)c

γ

W±, Z0

ga

51

The Standard Model: Interactions

1
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electron
has 2 polarisation

52

Chirality & Masslessness

Particle spinning 
clockwise wrt its 

direction of motion  

Particle spinning 
anticlockwise wrt its 
direction of motion  

Weak interactions distinguish between 

Particle spinning 
clockwise wrt its 

direction of motion  

Particle spinning 
anticlockwise wrt its 
direction of motion  

Weak interactions distinguish between 

Pi
ct

ur
e 

co
ur

te
sy

 to
 G

. G
iu

di
ce

If your theory sees a difference between eL and eR, 
either your theory is wrong or me=0Theorem

Quantum Mechanics 1.0.1
Particle of spin s has 2s+1 polarisation states

Relativistic invariance: 
There must be no distinction between massive 
particles spinning clockwise or anti-clockwise   

[chirality operator doesn’t commute with the Hamiltonian]

Relativistic invariance 1.0.1:
there must be no distinction for massive particles between 

particles spinning clockwise or anti-clockwise  
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Chirality of SM & Mass problem
Wu ‘56

need a new 
phenomena to 
generate mass:

Higgs mechanism

Weak interaction 
(force responsible for 

neutron decay)
is chiral!

[eL and eR are fundamentally 
two different particles

Only an accident of the history of 
physics that they are both called 

electron]

me=0

but since we know it is not true, we

Dextrorotation and Levorotation are essential for life to develop. 
To the best of our knowledge, 

in molecular biology, chirality seems an emergent property.
At least, there is no clear evidence that it follows from chirality of the weak interactions.

Are the chiral nature of the weak interactions emergent too?
Some models of grand unification predict it. But we still don’t know for sure.
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Weak interactions maximally violates P

TH: Yang&Lee ’56. EXP: Wu ‘57

�(⇡� ! e�⌫̄e)

�(⇡� ! µ�⌫̄µ)
/ m2

e

m2
µ

⇠ 2⇥ 10�5 ⇠ 10�4
obs

Extra phase-space factor

SM is a Chiral Theory

~B

60
27Co 60

28Ni ⌫̄e

e�

Jz=5 Jz=4 Jz=1

60
27Co 60

28Ni

⌫̄e

e�

Jz=5 Jz=4 Jz=1

X
P

60
27Co ! 60

28Ni + e� + ⌫̄e only LH e- produced 

"-

e-#e

⇒⇒
Conservation of momentum and spin

imposes to have a RH e-

Weak decays proceed only w/ LH e-

So the amplitude is prop. to me

LDirac =  ̄L�
µ@µ L +  ̄R�

µ@µ R +m
�
 ̄L R +  ̄R L

�



CG SSLP2022 55

Technical Details  
for Advanced Students
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Chirality
 Chirality matrix

�5 = i�0�1�2�3

�
�5

�2
= 14

A few remarkable properties

�5† = �5 = ��0�5�0

{�5, �µ} = 0

 Chiral/Weyl spinor

A chiral/Weyl spinor is an eigenvector of the chirality matrix  L,R = ±�5 L,R

A Dirac spinor can also be written as a sum of two chiral spinors

 =
1

2

�
14 + �5

�
 +

1

2

�
14 � �5

�
 ⌘  L +  R

From the Lorentz-transformation law of a spinor, it is obvious that the chirality condition is frame-independent
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Charge conjugation
In general, $ and $* do not transform in the same way under Lorentz transformations

But it is possible to find a matrix C, called charge conjugation matrix, such that  

 and  C = C  ⇤

transform in the same way under Lorentz transformations

The matrix C needs to satisfy C�⇤ = ��µC

In the Dirac and Weyl representations, C = i�2

In the Majorana representation, C = 14

Basic properties of the charge conjugation matrix: C2 = 14, C† = C, C⇤ = C

and the naive reality condition $ = $* is frame dependent

A Majorana spinor satisfies the (Lorentz invariant!) condition $ = $C 

Note that in 4D, a spinor cannot be simultaneously chiral and Majorana

The charge conjugated spinor,      , satisfies the same Dirac equation as   , with the same mass but 
opposite electric charge (when the spinor is minimally coupled to a U(1) gauge field)

$$C



CG SSLP2022 58

Dirac and Majorana Masses
By construction, the following two mass terms in the Lagrangian are Lorentz-invariant

Dirac mass: 

Majorana mass: 

LDirac = m ̄ 

LMajorana = m ̄C  

(conserves fermion number)

(changes fermion number by 2)

These two mass terms have different a chirality structure

LMajorana = m
�
 ̄LC L +  ̄RC R

�
LDirac = m

�
 ̄L R +  ̄R L

�

A chiral fermion can have a Majorana mass
A Dirac mass requires spinors of opposite chirality

Whether or not a Dirac or a Majorana mass can be included in the Lagrangian depends on 
transformation laws of the spinors under the gauge transformations

Within the SM (with the Higgs field), a Dirac mass can written for the charged leptons and the quarks 
while a Majorana mass can be written for the neutrinos.


