The Standard Model

of particle physics

CERN summer student lectures 2022
Lecture $5 / 5$

Christophe Grojean
DESY (Hamburg)
Humboldt University (Berlin)
(christophe.grojean@desy.de) $0^{00^{0}}$

Outline

- Monday

- Lagrangians
o Lorentz symmetry - scalars, fermions, gauge bosons
o Dimensional analysis: cross-sections and life-time.
o Dimensional analysis: cross-sections and life-time
o Nuclear decay, Fermi theory

- Wednesday

- Breakdown of the Fermi theory
o Gauge interactions: U(1) electromagnetism, SU(2) weak interactions

- Thursday

o From SU(2) to the Fermi theory, SU(3) QCD

- Chirality of weak interactions, Pion decay
- Spontaneous symmetry breaking and Higgs mechanism
- Quark and lepton masses, Neutrino masses

-Friday

- Higgs mechanism and masses
- Running couplings: asymptotic freedom of QCD, Unification
o Hierarchy problem and how to solve it (maybe)

Spontaneous Symmetry

Symmetry of the Lagrangian

 $S U(2)_{L} \times U(1)_{Y}$Higgs Doublet

$$
H_{1 / 2}=\binom{h^{+}}{h^{0}}
$$

$\operatorname{Re}(\phi)$

Symmetry of the Vacuum
$U(1)_{e . m}$.
Vacuum Expectation Value
$\langle H\rangle=\binom{0}{\frac{v}{\sqrt{2}}}$ with $v \approx 246 \mathrm{GeV}$

Most general Higgs (renormalisable) potential

$$
V(H)=\lambda\left(|H|^{2}-v^{2} / 2\right)^{2}
$$

$\mathrm{v}^{2}>0 \mathrm{EW}$ symmetry breaking, $\mathrm{v}^{2}<0$ no breaking Why Nature has decided that $\mathrm{v}^{2}>0$? No dynamics explains it

$$
\begin{gathered}
\delta_{S U(2)}\langle H\rangle=\frac{i}{2}\left(\theta^{1}\left(\begin{array}{ll}
& 1 \\
1 &
\end{array}\right)+\theta^{2}\left(\begin{array}{cc}
& -I \\
I &
\end{array}\right)+\theta^{3}\left(\begin{array}{cc}
1 & \\
& -1
\end{array}\right)\right)\langle H\rangle \neq 0 \\
\delta_{Y}\langle H\rangle=i \theta_{Y}\left(\begin{array}{cc}
1 / 2 & \\
& 1 / 2
\end{array}\right)\langle H\rangle \neq 0 \\
\delta_{Q}\langle H\rangle=i \theta_{Q E D}\left(\begin{array}{cc}
1 & \\
& 0
\end{array}\right)\langle H\rangle=0 \quad \theta_{Q E D}=\theta_{Y}=\theta_{3} \quad Q=Y+T_{3 L}
\end{gathered}
$$

Higgs Boson

Before EW symmetry breaking

- 4 massless gauge bosons for $\operatorname{SU}(2) \times(1): 4 \times 2=8$ dofs
- Complex scalar doublet: 4 dofs

After EW symmetry breaking

- I massless gauge boson, photon: 2 dofs
- 3 massive gauge bosons, $\mathrm{W}^{ \pm}$and $\mathrm{Z}: 3 \times 3=9$ dofs
- I real scalar: I dof

$$
H=\binom{0}{\frac{v+h(x)}{\sqrt{2}}}
$$

$\mathrm{h}(\mathrm{x})$ describes the Higgs boson (the fluctuation above the VEV).
The other components of the Higgs doublet H become the longitudinal polarisations of the $W^{ \pm}$and Z

Fermion Masses

SM is a chiral theory (\neq QED that is vector-like)

The SM Lagrangian cannot contain fermion mass term. Fermion masses are emergent quantities that originate from interactions with Higgs VEV

$$
\begin{array}{r}
H=\binom{0}{\frac{v+h}{\sqrt{2}}} \\
\mathcal{L}=y_{e}\binom{\bar{\nu}_{L}}{\bar{e}_{L}} \cdot\binom{H^{+}}{H^{0}} e_{R} \stackrel{\downarrow}{=} \frac{y_{e} v}{\sqrt{2}}\left(\bar{e}_{L} e_{R}+\frac{1}{v} \bar{e}_{L} e_{R}(h)\right. \\
\uparrow \uparrow \uparrow
\end{array}
$$

Higgs couplings proportional to the mass of particles

The Higgs PR plot

Higgs couplings are proportional to the masses of the particles

$$
\lambda_{\psi} \propto \frac{m_{\psi}}{v}, \quad \lambda_{V}^{2} \equiv \frac{g_{V V h}}{2 v} \propto \frac{m_{V}^{2}}{v^{2}}
$$

Fermion Masses

In SM, the Yukawa interactions are the only source of the fermion masses

$$
y_{i j} \bar{f}_{L_{i}} H f_{R_{j}}=\frac{y_{i j} v}{\sqrt{2}} \bar{f}_{L_{i}} f_{R_{j}}+\frac{y_{i j}}{\sqrt{2}} h \bar{f}_{L_{i}} f_{R_{j}}
$$

Higgs-fermion interactions
both matrices are simultaneously diagonalisable

no tree-level Flavor Changing Current induced by the Higgs
Once the mass terms are diagonal, the Higgs interactions are diagonal too
Not true anymore if the SM fermions mix with vector-like partners or for non-SM Yukawa

$$
y_{i j}\left(1+c_{i j} \frac{|H|^{2}}{f^{2}}\right) \bar{f}_{L_{i}} H f_{R_{j}}=\frac{y_{i j} v}{\sqrt{2}}\left(1+c_{i j} \frac{v^{2}}{2 f^{2}}\right) \bar{f}_{L_{i}} f_{R_{j}}+\left(1+3 c_{i j} \frac{v^{2}}{2 f^{2}}\right) \frac{y_{i j}}{\sqrt{2}} h \bar{L}_{L_{i}} f_{R_{j}}
$$

Look for SM forbidden FlavourViolating decays $h \rightarrow \mu \tau$ and $h \rightarrow e \tau$ (look also at $\mathrm{t} \rightarrow \mathrm{hc}$)

- weak indirect constrained by flavour data ($\mu \rightarrow \mathrm{e} \gamma$): $\mathrm{BR}<10 \%$
- ATLAS and CMS have the sensitivity to set bounds O(I\%)
- ILC/CLIC/FCC-ee can certainly do much better

Fermion Masses: Quark Mixings

In SM, the Yukawa interactions are the only source of the fermion masses

$$
\begin{gathered}
\mathcal{L}_{\text {Yuk }}=y_{i j}^{U} \bar{Q}_{L}^{i} H^{\star} u_{R}^{i}+y_{i j}^{D} \bar{Q}_{L}^{i} H d_{R}^{i} \\
\mathcal{U}_{L}^{\dagger}\left(\frac{v}{\sqrt{2}} y_{i j}^{U}\right) \mathcal{U}_{R}=\left(\begin{array}{ccc}
m_{u} & & \\
& m_{c} & \\
& & m_{t}
\end{array}\right) \quad \mathcal{D}_{L}^{\dagger}\left(\frac{v}{\sqrt{2}} y_{i j}^{D}\right) \mathcal{D}_{R}=\left(\begin{array}{lll}
m_{d} & & \\
& m_{s} & \\
& & m_{b}
\end{array}\right) \\
\mathcal{L}_{\text {Yuk }}=\left(\bar{u}_{L} \bar{c}_{L} \bar{t}_{L}\right)\left(\begin{array}{ccc}
m_{u} & & \\
& m_{c} & \\
& & m_{t}
\end{array}\right)\left(\begin{array}{c}
u_{R} \\
c_{R} \\
t_{R}
\end{array}\right)+\left(\bar{d}_{L} \bar{s}_{L} \bar{b}_{L}\right)\left(\begin{array}{ccc}
m_{d} & & \\
& m_{s} & \\
& & m_{b}
\end{array}\right)\left(\begin{array}{c}
d_{R} \\
s_{R} \\
b_{R}
\end{array}\right) \\
\mathcal{L}_{\text {gauge }}=\frac{e}{\sqrt{2} \sin \theta_{w}}\left[W_{\mu}^{+} \bar{u} V \gamma^{\mu}\left(\frac{1-\gamma_{5}}{2}\right) d+W_{\mu}^{-} \bar{d} V^{\dagger} \gamma^{\mu}\left(\frac{1-\gamma_{5}}{2}\right) u\right] \\
V_{\text {CKM }}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

Note: one complex phase \rightarrow CP violation

Neutrino Masses

The same construction doesn't work for neutrinos since in the SM there are only Left Handed neutrinos

For an uncharged particle, it is possible to write a Majorana mass another Lorentz-invariant quadratic term in the Lagrangian
(it involves the charge-conjugate spinor, see lecture \#3-technical slides)

$$
\mathcal{L}_{\text {Majorana }}=m \bar{\psi}_{C} \psi=m\left(\bar{\psi}_{L_{C}} \psi_{L}+\bar{\psi}_{R_{C}} \psi_{R}\right)
$$

can build such a term with LH field only!
In SM, such neutrino Majorana mass can be obtained from dim-5 operator:

$$
\begin{aligned}
& \mathcal{L}=\frac{y_{\nu}}{\Lambda}\binom{\nu_{L}}{e_{L}}_{C} \cdot\binom{H^{+}}{H^{0}}\binom{\nu_{L}}{e_{L}} \cdot\binom{H^{+}}{H^{0}}=\frac{y_{\nu} v^{2}}{\Lambda} \nu_{L C} \nu_{L} \\
& \prod_{\text {mass } 3 / 2} \uparrow_{\text {mass }} \uparrow_{\text {mass } 3 / 2} \uparrow_{\text {mass }} \\
& \text { Seesaw: } \quad m_{\nu}=\frac{y_{\nu} v^{2}}{\Lambda} \quad \text { for } \mathrm{y}_{\mathrm{v}} \sim 1 \text { arder } \mathrm{eV} \wedge \sim 10^{14} \mathrm{GeV}
\end{aligned}
$$

Note that such an operator breaks Lepton Number by 2 units

SM Summary

Evolution of coupling constants

the forces depend on distances
Quantum physics: virtual particles screen
QED the electric charge: $\alpha \searrow$ when $\mathrm{d} \boldsymbol{\lambda}$
QCD virtual particles (quarks and *gluons*) screen the strong charge: $\alpha_{\mathrm{s}} \not \nearrow$ when $\mathrm{d} \nexists$

'asymptotic freedom

$$
\frac{\partial \alpha_{s}}{\partial \log E}=\beta\left(\alpha_{s}\right)=\frac{\alpha_{s}^{2}}{\pi}\left(-\frac{11 N_{c}}{6}+\frac{N_{f}}{3}\right)
$$

α_{s} becomes infinite at long distance: the quarks cannot escape \rightarrow "confinement"

Grand Unified Theories

A single form of matter
 A single fundamental interaction

Proton Decay

Babu et al '13

SM \& Gravity

It is actually possible to couple the SM to gravity and to quantise the graviton. The issue is that gravity is not renormalisable and to get ride of infinities in loop computation, one needs to add more and more counter-terms that are not present originally in the classical GR Lagrangian. At most gravity can be treated as an effective field theory and there are arguments that show that its UV completion is unlikely to be a quantum field theory but rather a theory of more complicated objects like matrices or strings. There is an important difference between gauge (spin-1) interactions and gravity: the gauge couplings of the former exhibit a logarithmic evolution with the energy of the process, while the strength of gravity grows like E^{2}. An important question is to figure out the scale of quantum gravity: is it $M_{\text {planck }} \sim 10^{19} \mathrm{GeV}$? it could be lower down to few TeVs if there are (large or highly curved) extra dimensions. In that case, totally new phenomena could be observed at colliders... see the BSM lectures

Quantum Instability of the Higgs Mass

The running of gauge couplings and of the Higgs quartic coupling is logarithmic:

$$
\alpha_{i}^{-1}(\mu)=\alpha_{i}^{-1}\left(\mu_{0}\right)-\frac{b_{i}}{4 \pi} \ln \mu^{2} / \mu_{0}^{2}
$$

The Higgs mass has a totally different behaviour: it is highly dependent on the UV physics, which leads to the so called hierarchy problem.

Weisskopf '39
't hooft'ry

$$
\begin{aligned}
& \delta m_{H}^{2}=\left(2 m_{W}^{2}+m_{Z}^{2}+m_{H}^{2}-4 m_{t}^{2}\right) \frac{3 G_{F} \Lambda^{2}}{8 \sqrt{2} \pi^{2}} \\
& \vdots m_{H}^{2} \sim m_{0}^{2}-(115 \mathrm{GeV})^{2}\left(\frac{\Lambda}{700 \mathrm{GeV}}\right)^{2} \stackrel{\ddots}{\vdots}
\end{aligned}
$$

The hierarchy problem made easy

 only a few electrons are enough to lift your hair ($\sim 10^{25}$ mass of e-) the electric force between $2 \mathrm{e}^{-}$is 10^{43} times larger than their gravitational interaction
we don't know why gravity is so weak? we don't know why the masses of particles are so small?

Several theoretical hypothesis
new dynamics? new symmetries? new space-time structure? modification of special relativity? of quantum mechanics?

How to Stabilise the Higgs Scale

The spin trick

a particle of spin s:

$2 s+1$ polarisation states

...with the only exception of a particle moving at the speed of light
... fewer polarisation states

Spin 1 Gauge invariance \longrightarrow no longitudinal polarisation

Spin 1/2 Chiral symmetry $\longrightarrow \quad$ only one helicity

If the symmetries are broken, the radiative mass will be set by the scale of symmetry breaking, not the UV/Planck scale
... but the Higgs is a spin 0 particle

Symmetries to Stabilise a Scalar Potential

Supersymmetry

fermion ~ boson

Higher Dimensional Lorentz invariance

gauge-Higgs
unification models

$$
A_{\mu} \sim A_{5}
$$

These symmetries cannot be exact symmetry of the Nature.
They have to be broken. We want to look for a soft breaking in order to preserve the stabilisation of the weak scale.

Conclusions

Hopefully you now understand all what is written on the CERN T-shirt

and you can safely go to the beach with it without fearing any question

One day, one of you might take his job...

B. Clinton, Davos 2011
https://www.youtube.com/watch? $\mathrm{v=p2dT7xVS6}$-s (around 54'20")

Hopefully, that day you'll remember what you have learnt during your stay at CERN

Thank you for your attention. Good luck for your studies!

if you have question/want to know more
do not hesitate to send me an email
christophe.grojean@desy.de

Technical Details for Advanced Students

Dimensionality of m

In HEP natural units, we set $c=\hbar=1$, such that [length] $=[$ time $]=[\text { mass }]^{-1}=[\text { energy }]^{-1}$
But these fundamental constants are dimensionful. And it might be useful to keep track of the $\bar{\hbar}$-dimensions in addition to the mass dimension of any physical quantity

		M^{n}	\hbar^{n}
scalar field	ϕ	1	$1 / 2$
fermion field	ψ	$3 / 2$	$1 / 2$
vector field	A_{μ}	1	$1 / 2$
mass	m	1	0
gauge coupling	g	0	$-1 / 2$
quartic coupling	λ	0	-1
Yukawa coupling	y_{f}	0	$-1 / 2$

$$
\begin{aligned}
& \mathcal{S}=\int d^{4} x\left(\mathcal{L}_{0}+\underset{\sim}{\hbar} \mathcal{L}_{1}+\hbar^{2} \mathcal{L}_{2}+\ldots\right) \\
& \text { example: } \\
& \text { tree-level generated operator } \\
& \begin{array}{cc}
{[\cdot]_{\hbar}=-1} & {[\cdot]_{\hbar}=2} \\
\downarrow & \downarrow \\
\frac{1}{M^{2}} g_{*}^{2}\left(\partial^{\mu}|H|^{2}\right)^{2}
\end{array} \\
& \text { example: } \\
& \text { one-loop generated operator } \\
& \frac{1}{M^{2}} \frac{g^{2}}{16 \pi^{2}} g^{2}|H|^{2} B_{\mu \nu} B^{\mu \nu}
\end{aligned}
$$

The factors of π are very often associated to loop factors which are counting the \mathbb{k}-dimension Remember the normalisation of the states in QFT: $\quad d^{4} k /(2 \pi)^{4}$

SU(5) GUT: Gauge Group Structure

SU(3)cxSU(2) $\mathrm{xU}(1) \mathrm{y}$: SM Matter Content

$$
Q_{L}=\binom{u_{L}}{d_{L}}=(3,2)_{1 / 6}, \quad u_{R}^{c}=(\overline{3}, 1)_{-2 / 3}, \quad d_{R}^{c}=(\overline{3}, 1)_{1 / 3}, \quad L=\binom{\nu_{L}}{e_{L}}=(1,2)_{-1 / 2}, \quad e_{R}^{c}=(1,1)_{1}
$$

How can you ever remember all these numbers?

$S U(3) \mathrm{c} x \mathrm{SU}(2) \mathrm{xU}(1) \mathrm{y} \subset \mathrm{SU}(5)$

SU(5)
Adjoint rep.
$\operatorname{Tr}\left(T^{a} T^{b}\right)=\frac{1}{2} \delta^{a b}$
$\left(\begin{array}{l|l}S U(2) & \\ \hline & S U(3)\end{array}\right)$

$$
\begin{gathered}
\overline{5}=(1,2)_{-\frac{1}{2} \sqrt{\frac{3}{5}}}+(\overline{3}, 1)_{\frac{1}{3} \sqrt{\frac{3}{5}}} \\
\overline{5}=L+d_{R}^{c}
\end{gathered}
$$

$T^{12}=\sqrt{\frac{3}{5}} Y$
$g_{5} \sqrt{\frac{3}{5}}=g^{\prime} \quad g_{5}=g=g_{s}$

$$
\begin{gathered}
10=(5 \times 5)_{A}=(\overline{3}, 1)_{-\frac{2}{3} \sqrt{\frac{3}{5}}}+(3,2)_{\frac{1}{6} \sqrt{\frac{3}{5}}}+(1,1)_{\sqrt{\frac{3}{5}}} \\
10=u_{R}^{c}+Q_{L}+e_{R}^{c}
\end{gathered}
$$

$$
T^{12}=\sqrt{\frac{3}{5}}\left(\begin{array}{cc|ccc}
1 / 2 & & & & \\
& 1 / 2 & & & \\
& & -1 / 3 & & \\
& & & -1 / 3 & \\
& & & -1 / 3
\end{array}\right)
$$

SU(5) GUT: low energy consistency condition

$$
\begin{gathered}
\frac{1}{\alpha_{i}\left(M_{Z}\right)}=\frac{1}{\alpha_{G U T}}-\frac{b_{i}}{4 \pi} \ln \frac{M_{G U T}^{2}}{M_{Z}^{2}} \quad i=S U(3), S U(2), U(1) \\
\alpha_{3}\left(M_{Z}\right), \alpha_{2}\left(M_{Z}\right), \alpha_{1}\left(M_{Z}\right) \longleftarrow \text { experimental inputs } \\
b_{3}, b_{2}, b_{1} \longleftarrow \text { predicted by the matter content }
\end{gathered}
$$

3 equations $\& 2$ unknowns $\left(\alpha_{G U T}, M_{G U T}\right)$
one consistency relation on low energy parameters

$$
\epsilon_{i j k} \frac{b_{j}-b_{k}}{\alpha_{i}\left(M_{Z}\right)}=0
$$

$$
\sin ^{2} \theta_{W}=\frac{3\left(b_{3}-b_{2}\right)}{8 b_{3}-3 b_{2}-5 b_{1}}+\frac{5\left(b_{2}-b_{1}\right)}{8 b_{3}-3 b_{2}-5 b_{1}} \frac{\alpha_{e m}\left(M_{Z}\right)}{\alpha_{s}\left(M_{Z}\right)}
$$

$$
\alpha_{e m}\left(M_{Z}\right) \approx \frac{1}{128} \quad \alpha_{s}\left(M_{Z}\right) \approx 0.1184 \pm 0.0007
$$

$$
\sin ^{2} \theta_{W} \approx 0.207 \quad \begin{gathered}
\text { not bad... (observed value: } 0.23 \text {) } \\
\text { Even better in MSSM }
\end{gathered}
$$

SU(5) GUT: low energy consistency condition

$$
\begin{gathered}
\frac{1}{\alpha_{i}\left(M_{Z}\right)}=\frac{1}{\alpha_{G U T}}-\frac{b_{i}}{4 \pi} \ln \frac{M_{G U T}^{2}}{M_{Z}^{2}} \quad i=S U(3), S U(2), U(1) \\
\alpha_{3}\left(M_{Z}\right), \alpha_{2}\left(M_{Z}\right), \alpha_{1}\left(M_{Z}\right) \longleftarrow \text { experimental inputs } \\
b_{3}, b_{2}, b_{1} \longleftarrow \text { predicted by the matter content }
\end{gathered}
$$

3 equations \& 2 unknowns $\left(\alpha_{G U T}, M_{G U T}\right)$
one consistency relation on low energy parameters

$$
\begin{aligned}
M_{G U T}= & M_{Z} \exp \left(2 \pi \frac{3 \alpha_{s}\left(M_{Z}\right)-8 \alpha_{e m}\left(M_{Z}\right)}{\left(8 b_{3}-3 b_{2}-5 b_{1}\right) \alpha_{s}\left(M_{Z}\right) \alpha_{e m}\left(M_{Z}\right)}\right) \approx 7 \times 10^{14} \mathrm{GeV} \\
& \alpha_{G U T}^{-1}=\frac{3 b_{3} \alpha_{s}\left(M_{Z}\right)-\left(5 b_{1}+3 b_{2}\right) \alpha_{e m}\left(M_{Z}\right)}{\left(8 b_{3}-3 b_{2}-5 b_{1}\right) \alpha_{s}\left(M_{Z}\right) \alpha_{e m}\left(M_{Z}\right)} \approx 41.5
\end{aligned}
$$

self-consistent computation:

- Mgut $\ll M_{\text {PI }}$ safe to neglect quantum gravity effects
- $\alpha_{G U T} \ll 1$ perturbative computation valid

SU(5) GUT: SM β fcts

g, g ' and g_{s} are different but this is a low energy artefact!

$$
\beta=\frac{d g}{d \log \mu}=-\frac{1}{16 \pi^{2}} b g^{3}+.
$$

$$
\frac{1}{g^{2}(Q)}=\frac{1}{g^{2}\left(Q_{0}\right)}+\frac{b}{16 \pi^{2}} \ln \frac{Q^{2}}{Q_{0}^{2}}
$$

$$
\vdots \quad b=\frac{11}{3} T_{2}(\text { spin }-1)-\frac{2}{3} T_{2}\left(\text { chiral spin-1/2) }-\frac{1}{3} T_{2}(\text { complex spin-0 })\right.
$$

$$
\operatorname{Tr}\left(T^{a}(R) T^{b}(R)\right)=T_{2}(R) \delta^{a b} \quad T_{2}(\text { fund })=\frac{1}{2} \quad T_{2}(\mathrm{adj})=N
$$

$$
\begin{gathered}
g \\
b_{S U(3)}=\frac{11}{3} \times 3-\frac{2}{3}\left(\frac{1}{2} \times 2 \times 3+\frac{1}{2} \times 1 \times 3+\frac{1}{2} \times 1 \times 3\right)=? \\
Q^{ \pm}, Z
\end{gathered}\left(\begin{array}{cc}
u_{R}^{c} & d_{R}^{c} \\
&
\end{array}\right.
$$

$$
b_{S U(2)}=\frac{11}{3} \times 2-\frac{2}{3}\left(\frac{1}{2} \times 3 \times 3+\frac{Q_{L}}{2} \times{ }^{2} \times 1 \times 3\right)-\frac{1}{3} \times \frac{1}{2}=\frac{19}{6}
$$

$$
b_{Y}=-\frac{2}{3}\left(\left(\frac{1}{6}\right)^{2} 3 \times 2 \times 3+\left(-\frac{2}{3}\right)^{Q_{L}} 3 \times 3+\left(\frac{1}{3}\right)^{2} 3 \times 3+\left(-\frac{1}{2}\right)^{2}{ }^{2} 2 \times 3+(1)^{2} \times 3\right)-\frac{1}{3}\left(\frac{1}{2}\right)^{2} \times 2=-\frac{41}{6} \quad \square\left(b_{T}^{c}=-\frac{41}{10}\right)
$$

SU(5) GUT: SM vs MSSM β fcts

chiral superfield

 complex spin-0 Weyl spin-1/2in same representation of gauge group

vector superfield

Weyl spin-1/2
real spin-1
in same representation of gauge group

$$
b=\frac{11}{3} T_{2}(\text { vector })-\frac{2}{3} T_{2}(\text { vector })-\frac{2}{3} T_{2}(\text { chiral })-\frac{1}{3} T_{2}(\text { chiral })=3 T_{2}(\text { vector })-T_{2}(\text { chiral })
$$

MSSM Chiral Content

$$
\begin{gathered}
Q_{L}=\binom{u_{L}}{d_{L}}=(3,2)_{1 / 6}, \quad U=(\overline{3}, 1)_{-2 / 3}, \quad D=(\overline{3}, 1)_{1 / 3}, \quad L=\binom{\nu_{L}}{e_{L}}=(1,2)_{-1 / 2}, \quad E=(1,1)_{1}, H_{u}=(1,2)_{1 / 2}, \quad H_{d}=(1,2)_{-1 / 2} \\
\left.g \quad Q_{L} \quad \begin{array}{c}
\text { (}
\end{array}\right] \\
b_{S U(3)}=3 \times 3-\left(\frac{1}{2} \times 2 \times 3+\frac{1}{2} \times 1 \times 3+\frac{1}{2} \times 1 \times 3\right)=3 \\
W^{ \pm}, Z \quad\left(\frac{1}{2} \times 3 \times 3+\frac{1}{2} \times 1 \times 3\right)-\frac{1}{2}-\frac{1}{2}=-1
\end{gathered}
$$

SU(5) GUT: MSSM GUT

$$
b_{3}=3, \quad b_{2}=-1, \quad b_{1}=-33 / 5
$$

low-energy consistency relation for unification

$$
\sin ^{2} \theta_{W}=\frac{3\left(b_{3}-b_{2}\right)}{8 b_{3}-3 b_{2}-5 b_{1}}+\frac{5\left(b_{2}-b_{1}\right)}{8 b_{3}-3 b_{2}-5 b_{1}} \frac{\alpha_{e m}\left(M_{Z}\right)}{\alpha_{s}\left(M_{Z}\right)} \approx 0.23
$$

squarks and sleptons form complete $\operatorname{SU}(5)$ reps \rightarrow they don't improve unification! gauginos and higgsinos are improving the unification of gauge couplings

GUT scale predictions

$$
\begin{gathered}
M_{G U T}=M_{Z} \exp \left(2 \pi \frac{3 \alpha_{s}\left(M_{Z}\right)-8 \alpha_{e m}\left(M_{Z}\right)}{\left(8 b_{3}-3 b_{2}-5 b_{1}\right) \alpha_{s}\left(M_{Z}\right) \alpha_{e m}\left(M_{Z}\right)}\right) \approx 2 \times 10^{16} \mathrm{GeV} \\
\alpha_{G U T}^{-1}=\frac{3 b_{3} \alpha_{s}\left(M_{Z}\right)-\left(5 b_{1}+3 b_{2}\right) \alpha_{e m}\left(M_{Z}\right)}{\left(8 b_{3}-3 b_{2}-5 b_{1}\right) \alpha_{s}\left(M_{Z}\right) \alpha_{e m}\left(M_{Z}\right)} \approx 24.3
\end{gathered}
$$

Proton Decay

	Mode	Partial mean life (10^{30} years)	Confidence level
Antilepton + meson			
τ_{1}	$N \rightarrow e^{+} \pi$	> $2000(n),>8200(p)$) 90\%
τ_{2}	$N \rightarrow \mu^{+} \pi$	$>1000(n),>6600(p)$) 90\%
τ_{3}	$N \rightarrow \nu \pi$	$>1100(n),>390(p)$) 90\%
τ_{4}	$p \rightarrow e^{+} \eta$	>4200	90\%
τ_{5}	$p \rightarrow \mu^{+} \eta$	> 1300	90\%
τ_{6}	$n \rightarrow \nu \eta$	>158	90\%
τ_{7}	$N \rightarrow e^{+} \rho$	$>217(n),>710(p)$	90\%
τ_{8}	$N \rightarrow \mu^{+} \rho$	$>228(n),>160(p)$	90\%
τ_{9}	$N \rightarrow \nu \rho$	$>19(n),>162(p)$	90\%
τ_{10}	$p \rightarrow e^{+} \omega$	>320	90\%
τ_{11}	$p \rightarrow \mu^{+} \omega$	>780	90\%
τ_{12}	$n \rightarrow \nu \omega$	>108	90\%
τ_{13}	$N \rightarrow e^{+} K$	$>17(n),>1000(p)$	90\%
τ_{14} τ_{15}	$\begin{aligned} & p \rightarrow e^{+} K_{S}^{0} \\ & p \rightarrow e^{+} K_{L}^{0} \end{aligned}$		
τ_{16}	$N \rightarrow \mu^{+} K$	$>26(n),>1600(p)$	90\%
τ_{17} τ_{18}	$\begin{aligned} & p \rightarrow \mu^{+} K_{S}^{0} \\ & p \rightarrow \mu^{+} K_{L}^{0} \end{aligned}$		
τ_{19}	$N \rightarrow \nu K$	$>86(n),>5900(p)$	90\%
τ_{20}	$n \rightarrow \nu K_{S}^{0}$	>260	90\%
τ_{21}	$p \rightarrow e^{+} K^{*}(892)^{0}$	>84	90\%
τ_{22}	$N \rightarrow \nu K^{*}(892)$	$>78(n),>51(p)$	90\%
Antilepton + mesons			
τ_{23}	$p \rightarrow e^{+} \pi^{+} \pi^{-}$	>82	90\%
τ_{24}	$p \rightarrow e^{+} \pi^{0} \pi^{0}$	>147	90\%
τ_{25}	$n \rightarrow e^{+} \pi^{-} \pi^{0}$	>52	90\%
	$p \rightarrow \mu^{+} \pi^{+} \pi^{-}$	> 133	90\%
	$p \rightarrow \mu^{+} \pi^{0} \pi^{0}$	>101	90\%
	$n \rightarrow \mu^{+} \pi^{-} \pi^{0}$	>74	90\%
	$n \rightarrow e^{+} K^{0} \pi^{-}$	>18	90\%

Mode	Partial mean life (10^{30} years)	Confidence level
Lepton + meson		
$\tau_{30} \quad n \rightarrow e^{-} \pi^{+}$	>65	90\%
$\tau_{31} \quad n \rightarrow \mu^{-} \pi^{+}$	>49	90\%
$\tau_{32} \quad n \rightarrow e^{-} \rho^{+}$	>62	90\%
$\tau_{33} \quad n \rightarrow \mu^{-} \rho^{+}$	>7	90\%
$\tau_{34} \quad n \rightarrow e^{-} K^{+}$	>32	90\%
$\tau_{35} \quad n \rightarrow \mu^{-} K^{+}$	>57	90\%
Lepton + mesons		
$\tau_{36} \quad p \rightarrow e^{-} \pi^{+} \pi^{+}$	>30	90\%
$\tau_{37} \quad n \rightarrow e^{-} \pi^{+} \pi^{0}$	>29	90\%
$\tau_{38} \quad p \rightarrow \mu^{-} \pi^{+} \pi^{+}$	>17	90\%
$\tau_{39} \quad n \rightarrow \mu^{-} \pi^{+} \pi^{0}$	>34	90\%
$\tau_{40} \quad \mathrm{p} \rightarrow \mathrm{e}^{-} \pi^{+} K^{+}$	>75	90\%
$\tau_{41} \quad p \rightarrow \mu^{-} \pi^{+} K^{+}$	>245	90\%

$\Delta B=-\Delta L=1$ decay bounds
$\Delta B=\Delta L=1$ decay bounds

Naturalness principle @ work

Following the arguments of Wilson, 't Hooft (and others):
only small numbers associated to the breaking of a symmetry survive quantum corrections
Introduce new degrees of freedom to regulate the high-energy behavior
Beautiful examples of naturalness to understand the need of "new" physics
see for instance Giudice '13 (and refs. therein) for an account

- the need of the positron to screen the electron self-energy: $\quad \Lambda<m_{e} / \alpha_{\mathrm{em}}$
- the rho meson to cutoff the EM contribution to the charged pion mass: $\Lambda<\delta m_{\pi}^{2} / \alpha_{\mathrm{em}}$
- the kaon mass difference regulated by the charm quark: $\Lambda^{2}<\frac{\delta m_{K}}{m_{K}} \frac{6 \pi^{2}}{G_{F}^{2} f_{K}^{2} \sin ^{2} \theta_{C}}$
- the light Higgs boson to screen the EW corrections to gauge bosons self-energies
- ...
- new physics at the weak scale to cancel the UV sensitivity of the Higgs mass?

