The Standard Model of particle physics

CERN summer student lectures 2022

Lecture 5/5

Christophe Grojean

DESY (Hamburg) Humboldt University (Berlin)

(christophe.grojean@desy.de) v

Outline

Monday

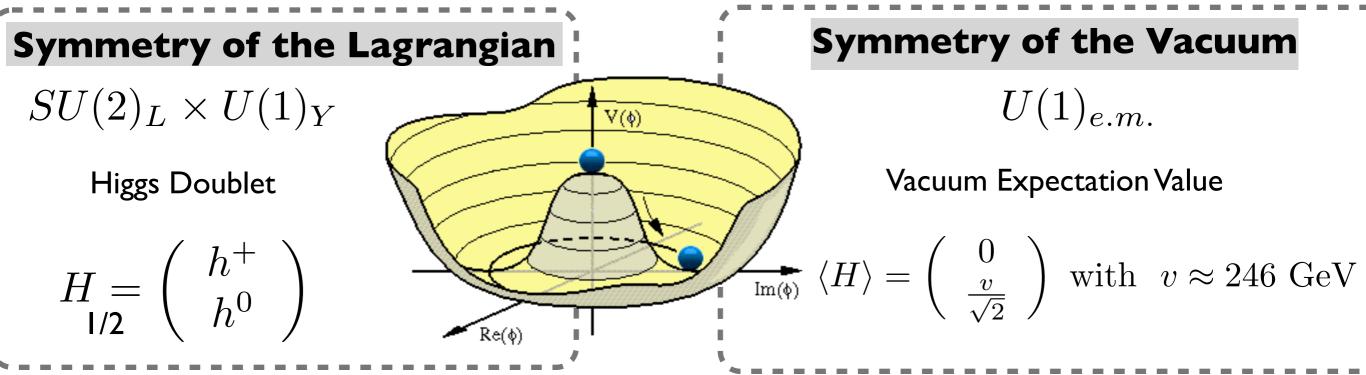
- Lagrangians
- Lorentz symmetry scalars, fermions, gauge bosons
- Dimensional analysis: cross-sections and life-time.

Tuesday

- Dimensional analysis: cross-sections and life-time
- Nuclear decay, Fermi theory

Wednesday

- Breakdown of the Fermi theory
- Gauge interactions: U(1) electromagnetism, SU(2) weak interactions


Thursday

- From SU(2) to the Fermi theory, SU(3) QCD
- Chirality of weak interactions, Pion decay
- Spontaneous symmetry breaking and Higgs mechanism
- Quark and lepton masses, Neutrino masses

Friday

- Higgs mechanism and masses
- Running couplings: asymptotic freedom of QCD, Unification
- Hierarchy problem and how to solve it (maybe)

Spontaneous Symmetry

Most general Higgs (renormalisable) potential $V(H) = \lambda \left(|H|^2 - v^2/2 \right)^2$

 $v^2>0$ EW symmetry breaking, $v^2<0$ no breaking Why Nature has decided that $v^2>0$? No dynamics explains it

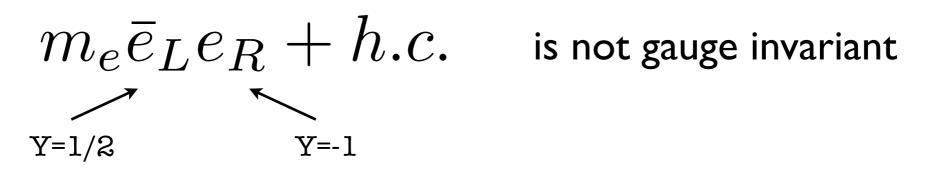
$$\begin{split} \delta_{SU(2)} \langle H \rangle &= \frac{i}{2} \left(\theta^1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \theta^2 \begin{pmatrix} -I \\ I \end{pmatrix} + \theta^3 \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right) \right) \langle H \rangle \neq 0 \\ \delta_Y \langle H \rangle &= i \theta_Y \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix} \langle H \rangle \neq 0 \\ \delta_Q \langle H \rangle &= i \theta_{QED} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \langle H \rangle = 0 \qquad \theta_{QED} = \theta_Y = \theta_3 \qquad Q = Y + T_{3L} \end{split}$$

Higgs Boson

Before EW symmetry breaking

- 4 massless gauge bosons for $SU(2)x(1): 4 \times 2 = 8$ dofs
- Complex scalar doublet: 4 dofs

After EW symmetry breaking


- I massless gauge boson, photon: 2 dofs
- 3 massive gauge bosons, W^{\pm} and Z: 3 x 3 = 9 dofs
- I real scalar: I dof

$$H = \left(\begin{array}{c} 0\\ \frac{v+h(x)}{\sqrt{2}} \end{array}\right)$$

h(x) describes the Higgs boson (the fluctuation above the VEV). The other components of the Higgs doublet H become the longitudinal polarisations of the W[±] and Z

Fermion Masses

SM is a **chiral** theory (≠ QED that is vector-like)

The SM Lagrangian cannot contain fermion mass term. Fermion masses are **emergent** quantities that originate from **interactions with Higgs VEV**

Higgs couplings proportional to the mass of particles

"It has to do will the "It looks like a do

Already first data gave evidence of:

$$\lambda_{\psi} \propto \frac{m_{\psi}}{v}, \qquad \lambda_{V}^{2} \equiv \frac{g_{VVh}}{2v} \propto \frac{m_{V}^{2}}{v^{2}}$$

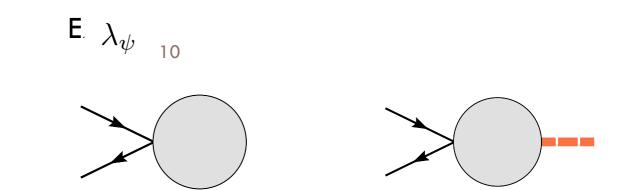
True in the SM:

$$\lambda_{\psi} = \frac{m_{\psi}}{v}, \qquad \lambda_{V} = \frac{m_{V}}{v}$$

Scaling coupling \propto mass follows naturally if the new boson is part of the sector that breaks the EW symmetry

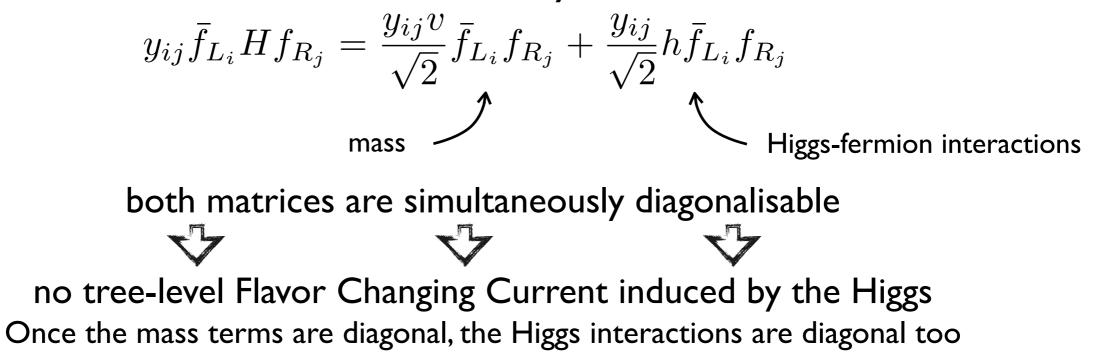
It does not necessarily imply that the new boson is part of an $SU(2)_{L}$ doublet

For a non-doublet one naively expects:


CC

 $\frac{\lambda - \lambda^{SM}}{\lambda^{SM}} = O(1)$

ciouapoli(ngg/2v)^{1/2} 1


> **44** 10⁻²

10

Fermion Masses

In SM, the Yukawa interactions are the only source of the fermion masses

Not true anymore if the SM fermions mix with vector-like partners or for non-SM Yukawa

$$y_{ij}\left(1+c_{ij}\frac{|H|^2}{f^2}\right)\bar{f}_{L_i}Hf_{R_j} = \frac{y_{ij}v}{\sqrt{2}}\left(1+c_{ij}\frac{v^2}{2f^2}\right)\bar{f}_{L_i}f_{R_j} + \left(1+3c_{ij}\frac{v^2}{2f^2}\right)\frac{y_{ij}}{\sqrt{2}}h\bar{f}_{L_i}f_{R_j}$$

Look for SM forbidden Flavour Violating decays $h \rightarrow \mu \tau$ and $h \rightarrow e \tau$ (look also at $t \rightarrow hc$)

- weak indirect constrained by flavour data ($\mu \rightarrow e\gamma$): BR<10%
- ATLAS and CMS have the sensitivity to set bounds O(1%)
- ILC/CLIC/FCC-ee can certainly do much better

Fermion Masses: Quark Mixings

In SM, the Yukawa interactions are the only source of the fermion masses

$$\mathcal{L}_{\text{Yuk}} = y_{ij}^U \bar{Q}_L^i H^\star u_R^i + y_{ij}^D \bar{Q}_L^i H d_R^i$$

$$\mathcal{U}_{L}^{\dagger} \begin{pmatrix} \frac{v}{\sqrt{2}} y_{ij}^{U} \end{pmatrix} \mathcal{U}_{R} = \begin{pmatrix} m_{u} & & \\ & m_{c} & \\ & & m_{t} \end{pmatrix} \qquad \mathcal{D}_{L}^{\dagger} \begin{pmatrix} \frac{v}{\sqrt{2}} y_{ij}^{D} \end{pmatrix} \mathcal{D}_{R} = \begin{pmatrix} m_{d} & & \\ & m_{s} & \\ & & m_{b} \end{pmatrix}$$

$$\mathbf{\nabla} \qquad \mathbf{\nabla} \qquad$$

$$\mathcal{L}_{\text{gauge}} = \frac{e}{\sqrt{2}\sin\theta_w} \left[W^+_\mu \bar{u} V \gamma^\mu \left(\frac{1-\gamma_5}{2} \right) d + W^-_\mu \bar{d} V^\dagger \gamma^\mu \left(\frac{1-\gamma_5}{2} \right) u \right] \qquad V = \mathcal{D}_L^\dagger \mathcal{U}_L$$

$$V_{\text{CKM}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Note: one complex phase \rightarrow CP violation

Neutrino Masses

The same construction doesn't work for neutrinos since in the SM there are only Left Handed neutrinos

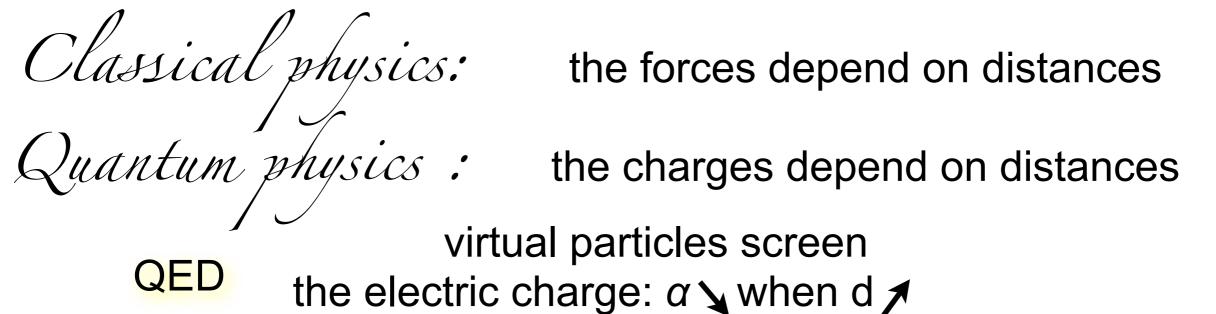
For an uncharged particle, it is possible to write a Majorana mass another Lorentz-invariant quadratic term in the Lagrangian (it involves the charge-conjugate spinor, see lecture #3-technical slides)

 $\mathcal{L}_{\text{Majorana}} = m\bar{\psi}_C \,\psi = m\left(\bar{\psi}_{L_C}\psi_L + \bar{\psi}_{R_C}\psi_R\right)$

can build such a term with LH field only!

In SM, such neutrino Majorana mass can be obtained from dim-5 operator:

Seesaw:
$$m_{\nu} = \frac{y_{\nu}v^2}{\Lambda}$$
 for y_v~I and Λ ~10¹⁴GeV


Note that such an operator breaks Lepton Number by 2 units

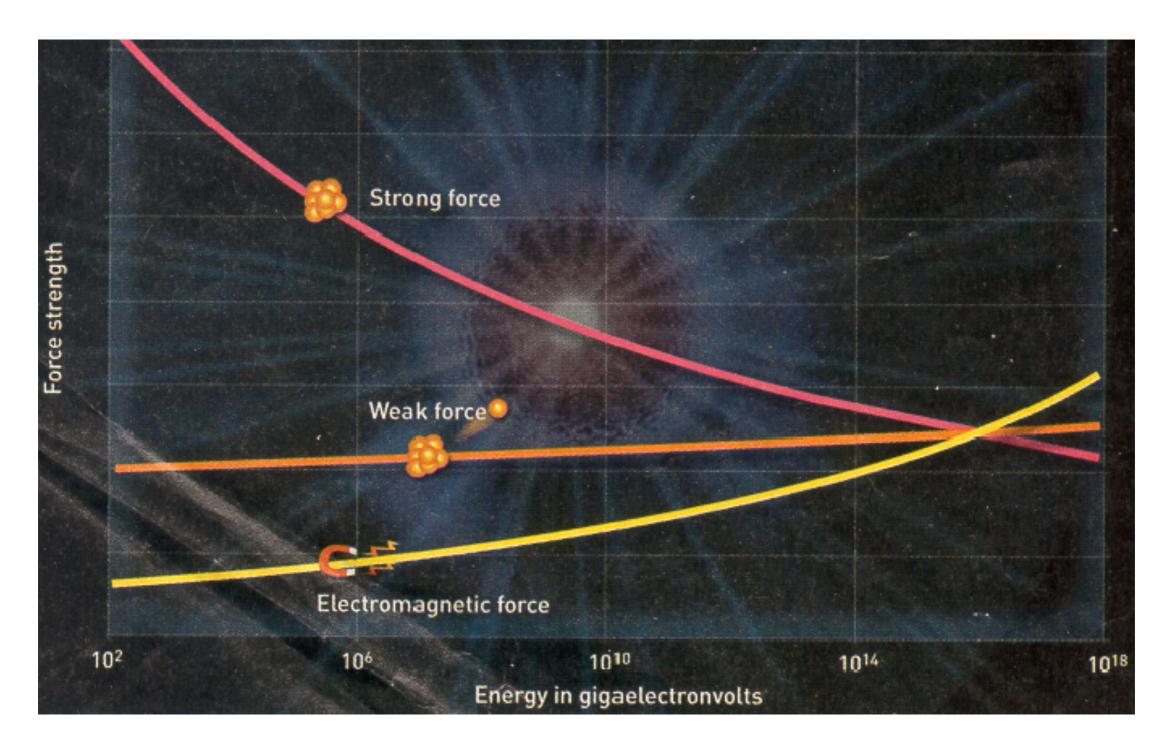
CG SSLP2022

SM Summary

			color	chirality	hypercharge	weak isospin	electric charge	_ effective	e coupling to Z boson
	SPIN	PARTICLES	SU (3)	× SU(2), ;	× U(I)	T _{3L}	$Q = T_{3L} + Y$	Self	MEANING
LEPTONS	1/2	L=(P)L		2	(-1/2 (-1/2)	(1/2 (-1/2)	(°)	$\begin{pmatrix} 1/2\\ -1/2 + \sin^2 \Theta_W \end{pmatrix}$	doublet under SU(2), singlet under SU(3)
LEP		er	I		-1	0	-1	$\sin^2 \Theta_W$	singlet under SU(2) and SU(3)
S		Q=(^u) _L	3	2	(1/6) 1/6)	(1/2) (-1/2)	(2/3) (-1/3)	$\begin{pmatrix} 1/2 - \frac{2}{3} \sin^2 \theta_W \\ -\frac{1}{2} + \frac{1}{3} \sin^2 \theta_W \end{pmatrix}$	doublet under SU(2), triplet under SU(3)
QUARKS		UR	3	ĺ	2/3	0	2/3	-½sin²θw	singlet under SU(2), triplet under SU(3)
		d _R	3		-1/3	0	-1/3	½ sin² θw	singlet under SU(2), triplet under SU(3)
HIGGS	0	H=(h+)	I	2	(1/2) 1/2)	(1/2 (-1/2)	(¦)	×	doublet under SU(2), singlet under SU(3)

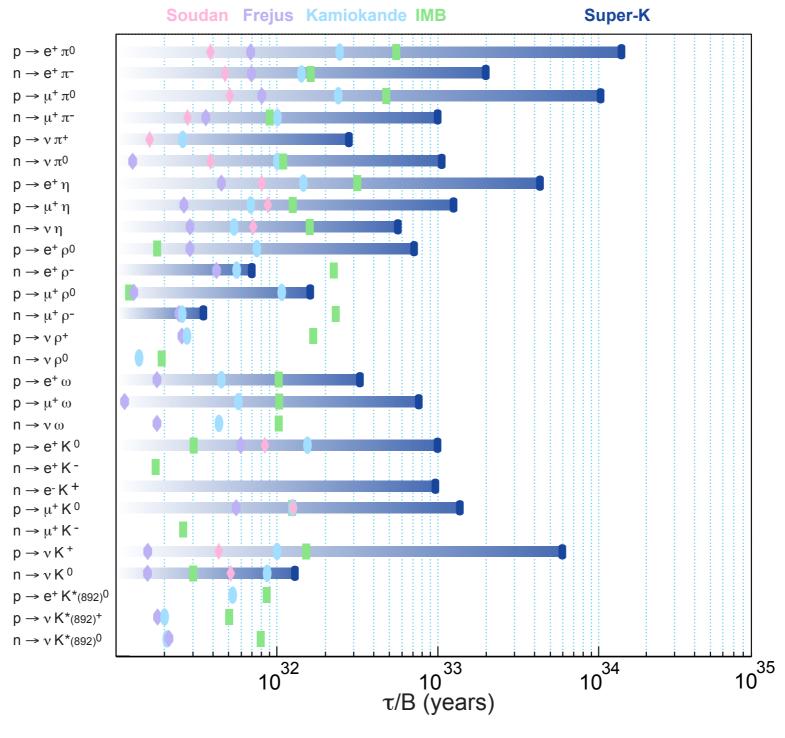
Evolution of coupling constants

QCD virtual particles (quarks and *gluons*) screen the strong charge: $\alpha_s \nearrow$ when d \nearrow


'asymptotic freedom'

$$\frac{\partial \alpha_s}{\partial \log E} = \beta(\alpha_s) = \frac{\alpha_s^2}{\pi} \left(-\frac{11N_c}{6} + \frac{N_f}{3} \right)$$

 α_s becomes infinite at long distance: the quarks cannot escape \rightarrow "confinement"


Grand Unified Theories

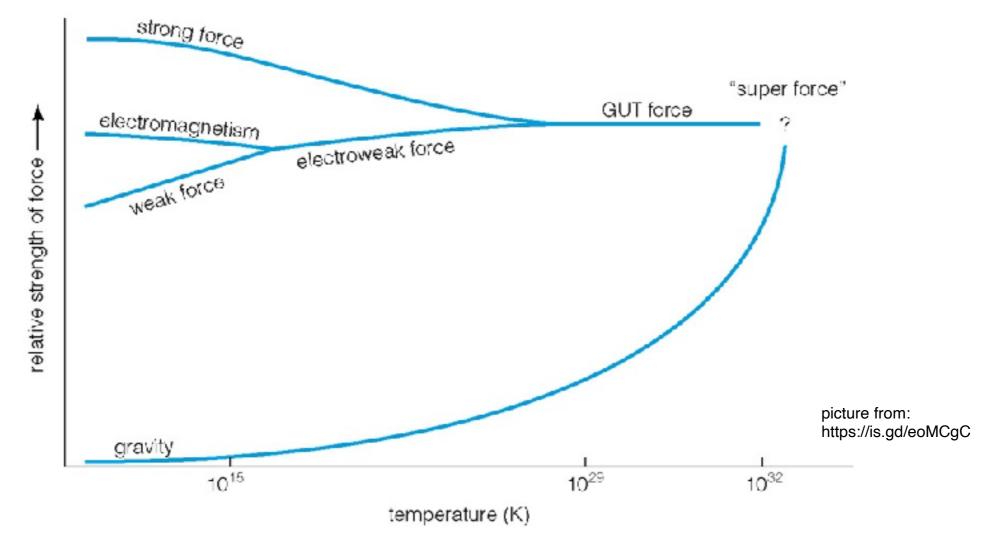
A single form of matter A single fundamental interaction

 10^{28}

 10^{32}

Babu et al '13

 10^{40}

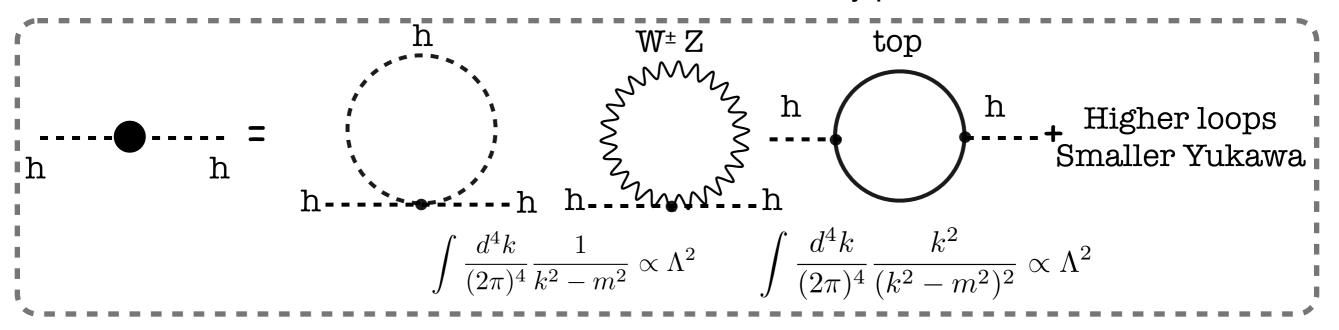

92

 10^{36}

CG SSLP2022

SM & Gravity

It is actually possible to couple the SM to gravity and to quantise the graviton. The issue is that gravity is not renormalisable and to get ride of infinities in loop computation, one needs to add more and more counter-terms that are not present originally in the classical GR Lagrangian. At most gravity can be treated as an effective field theory and there are arguments that show that its UV completion is unlikely to be a quantum field theory but rather a theory of more complicated objects like matrices or strings. There is an important difference between gauge (spin-1) interactions and gravity: the gauge couplings of the former exhibit a logarithmic evolution with the energy of the process, while the strength of gravity grows like E². An important question is to figure out the scale of quantum gravity: is it M_{Planck}~10¹⁹GeV? it could be lower down to few TeVs if there are (large or highly curved) extra dimensions. In that case, totally new phenomena could be observed at colliders... see the BSM lectures



Quantum Instability of the Higgs Mass

The running of gauge couplings and of the Higgs quartic coupling is logarithmic:

$$\alpha_i^{-1}(\mu) = \alpha_i^{-1}(\mu_0) - \frac{b_i}{4\pi} \ln \mu^2 / \mu_0^2$$

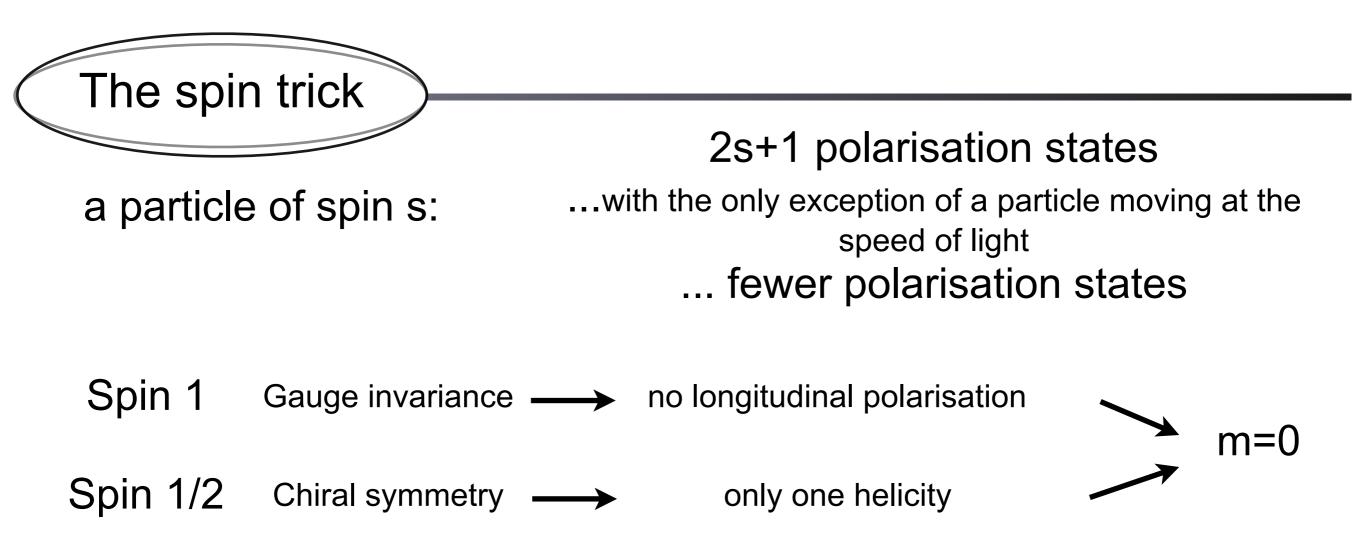
The Higgs mass has a totally different behaviour: it is highly dependent on the UV physics, which leads to the so called hierarchy problem.

Weisskopf '39 't hooft '79

$$\delta m_H^2 = \left(2m_W^2 + m_Z^2 + m_H^2 - 4m_t^2\right) \frac{3G_F \Lambda^2}{8\sqrt{2}\pi^2}$$
$$\vdots$$
$$m_H^2 \sim m_0^2 - (115 \text{ GeV})^2 \left(\frac{\Lambda}{700 \text{ GeV}}\right)^2$$

The hierarchy problem made easy

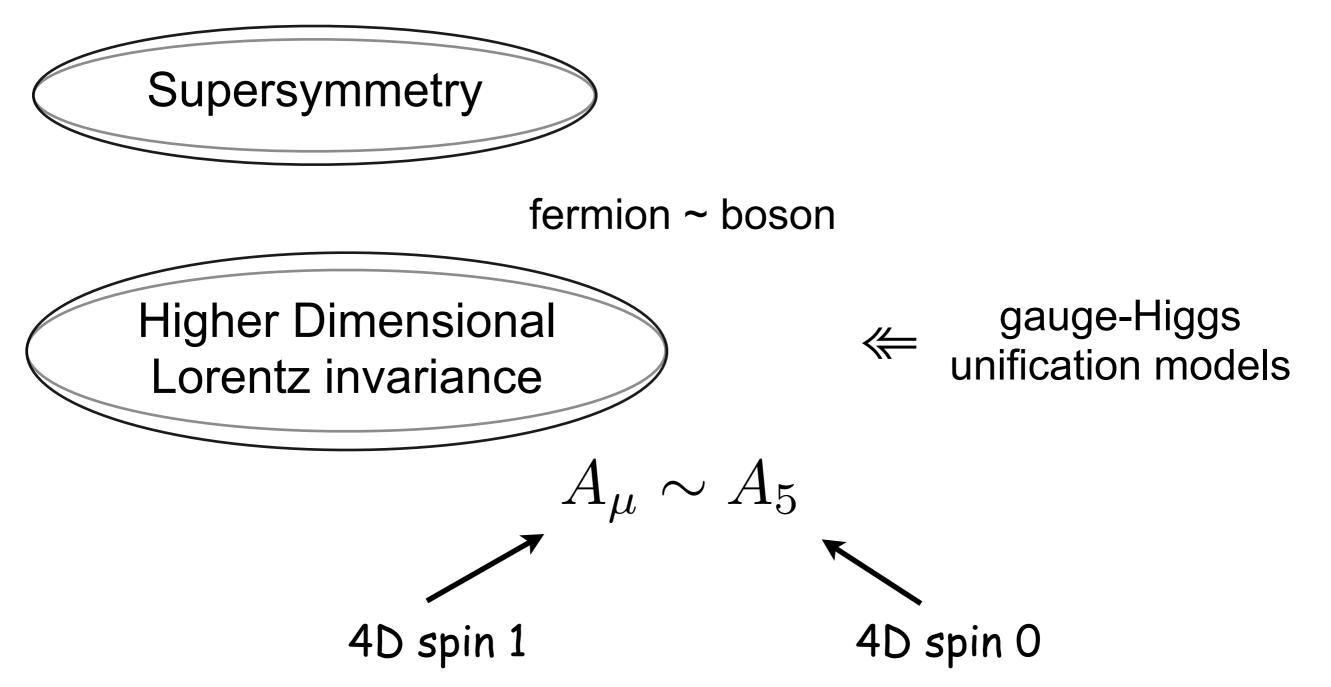
only a few electrons are enough to lift your hair (~ 10²⁵ mass of e⁻) the electric force between 2 e⁻ is 10⁴³ times larger than their gravitational interaction



we don't know why gravity is so weak? we don't know why the masses of particles are so small?

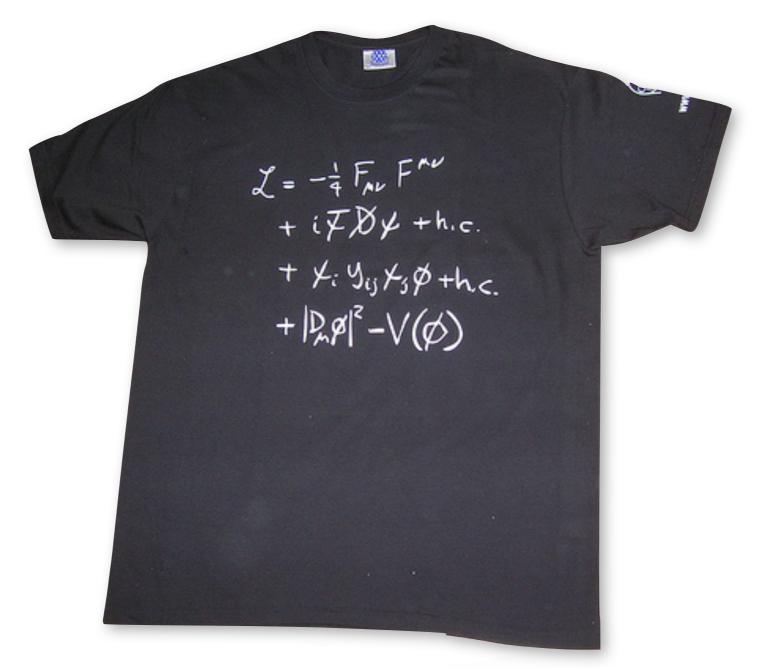
Several theoretical hypothesis new dynamics? new symmetries? new space-time structure? modification of special relativity? of quantum mechanics?

How to Stabilise the Higgs Scale



If the symmetries are broken, the radiative mass will be set by the scale of symmetry breaking, not the UV/Planck scale

... but the Higgs is a spin 0 particle


Symmetries to Stabilise a Scalar Potential

These symmetries cannot be exact symmetry of the Nature. They have to be broken. We want to look for a soft breaking in order to preserve the stabilisation of the weak scale.

Conclusions

Hopefully you now understand all what is written on the CERN T-shirt

and you can safely go to the beach with it without fearing any question

One day, one of you might take his job...

B. Clinton, Davos 2011 https://www.youtube.com/watch?v=p2dT7xVS6-s (around 54'20")

Hopefully, that day you'll remember what you have learnt during your stay at CERN

Thank you for your attention. Good luck for your studies!

if you have question/want to know more

do not hesitate to send me an email

christophe.grojean@desy.de

Technical Details for Advanced Students

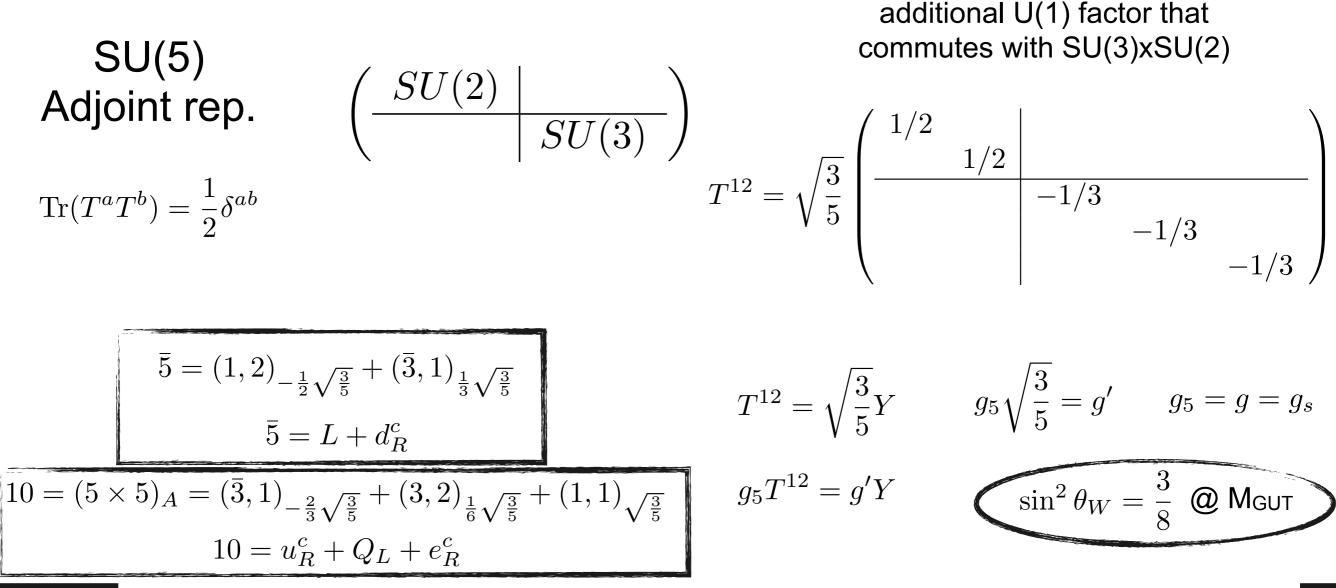
Dimensionality of π

In HEP natural units, we set $c=\hbar=1$, such that [length]=[time]=[mass]⁻¹=[energy]⁻¹ But these fundamental constants are dimensionful. And it might be useful to keep track of the h-dimensions in addition to the mass dimension of any physical quantity

		M^n	\hbar^n
scalar field	ϕ	1	1/2
fermion field	ψ	3/2	1/2
vector field	A_{μ}	1	1/2
mass	m	1	0
gauge coupling	g	0	-1/2
quartic coupling	λ	0	-1
Yukawa coupling	y_f	0	-1/2

$$\begin{split} \mathcal{S} &= \int d^4 x \left(\mathcal{L}_0 + \hbar \mathcal{L}_1 + \hbar^2 \mathcal{L}_2 + \dots \right) \\ &\uparrow \qquad & \swarrow \\ &\left[\mathcal{L}_0 \right]_{\hbar} = 1 \\ \left[\mathcal{L}_0 \right]_M = 4 \end{split} \begin{bmatrix} \mathcal{L}_1 \right]_{\hbar} = 0 \\ \left[\mathcal{L}_1 \right]_M = 4 \end{bmatrix} \begin{bmatrix} \mathcal{L}_2 \right]_{\hbar} = -1 \\ \left[\mathcal{L}_2 \right]_M = 4 \end{bmatrix} \begin{bmatrix} \mathcal{L}_2 \right]_M = 4 \\ \begin{bmatrix} \mathcal{L}_2 \right]_M = 4 \end{bmatrix}$$
example:
tree-level generated operator
(i) $\hbar = -1$
(i) $\hbar = 2$
 $\frac{1}{M^2} g_*^2 \left(\partial^{\mu} |H|^2 \right)^2 \end{bmatrix}$
 $\frac{1}{M^2} \frac{g^2}{16\pi^2} g'^2 |H|^2 B_{\mu\nu} B^{\mu\nu}$

$$\frac{1}{M^2} \frac{g^2}{16\pi^2} g^{\prime 2} |H|^2 B_{\mu\nu} B^{\mu\nu}$$


The factors of π are very often associated to loop factors which are counting the h-dimension Remember the normalisation of the states in QFT: $d^4k/(2\pi)^4$

SU(5) GUT: Gauge Group Structure

SU(3)_cxSU(2)_LxU(1)_Y: SM Matter Content

$$Q_{L} = \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} = (3,2)_{1/6}, \quad u_{R}^{c} = (\bar{3},1)_{-2/3}, \quad d_{R}^{c} = (\bar{3},1)_{1/3}, \quad L = \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} = (1,2)_{-1/2}, \quad e_{R}^{c} = (1,1)_{1}$$

How can you ever remember all these numbers?
$$SU(3)_{c} x SU(2)_{L} x U(1)_{Y} \subset SU(5)$$

1/)3

CG SSLP2022

SU(5) GUT: low energy consistency condition

$$\frac{1}{\alpha_i(M_Z)} = \frac{1}{\alpha_{GUT}} - \frac{b_i}{4\pi} \ln \frac{M_{GUT}^2}{M_Z^2} \quad i = SU(3), SU(2), U(1)$$

$$\alpha_3(M_Z), \alpha_2(M_Z), \alpha_1(M_Z) \quad \longleftarrow \text{ experimental inputs}$$

$$b_3, b_2, b_1 \quad \longleftarrow \text{ predicted by the matter content}$$
3 equations & 2 unknowns (α_{GUT}, M_{GUT})
one consistency relation on low energy parameters

SU(5) GUT: low energy consistency condition

$$\frac{1}{\alpha_i(M_Z)} = \frac{1}{\alpha_{GUT}} - \frac{b_i}{4\pi} \ln \frac{M_{GUT}^2}{M_Z^2} \quad i = SU(3), SU(2), U(1)$$

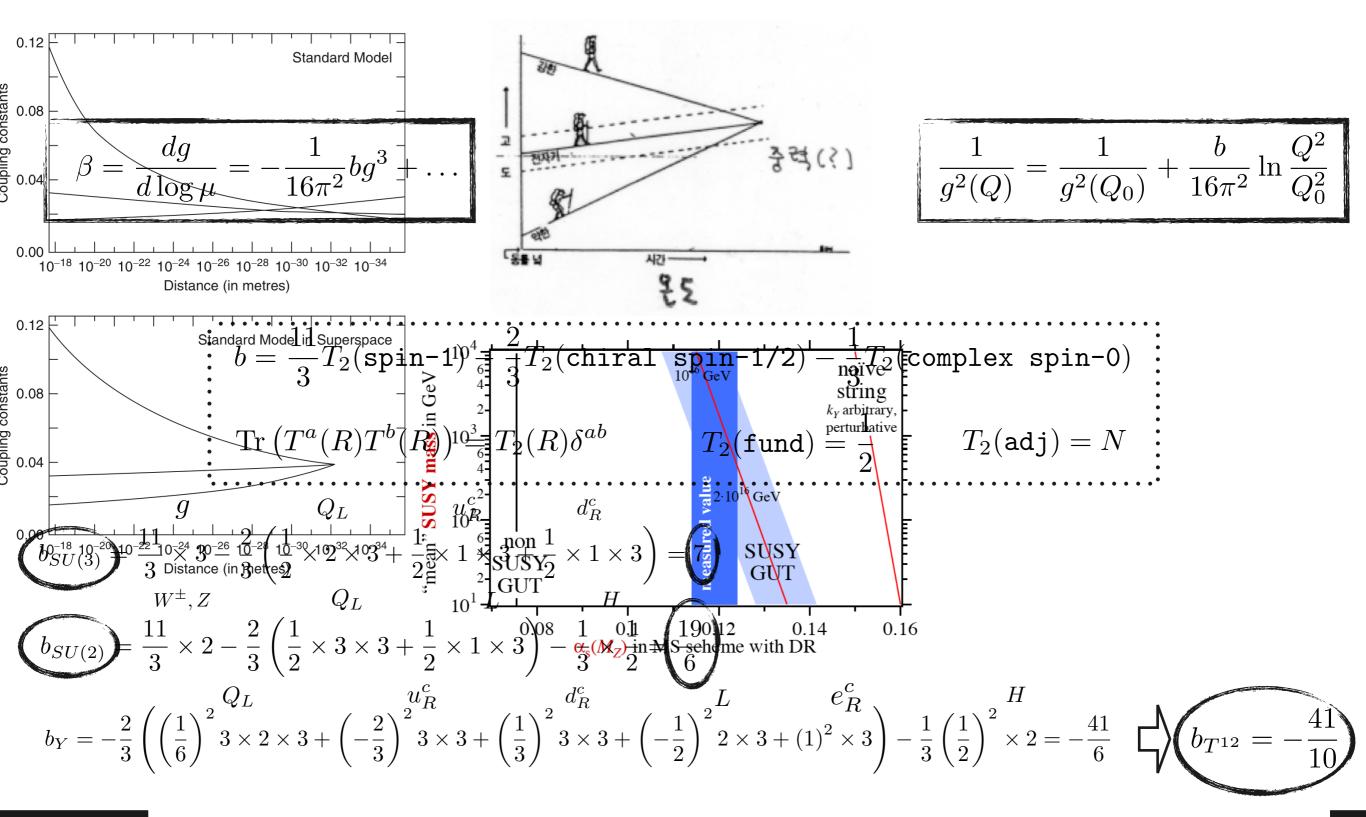
$$\alpha_3(M_Z), \alpha_2(M_Z), \alpha_1(M_Z) \quad \longleftarrow \text{ experimental inputs}$$

$$b_3, b_2, b_1 \quad \longleftarrow \text{ predicted by the matter content}$$
3 equations & 2 unknowns (α_{GUT}, M_{GUT})
ne consistency relation on low energy parameters

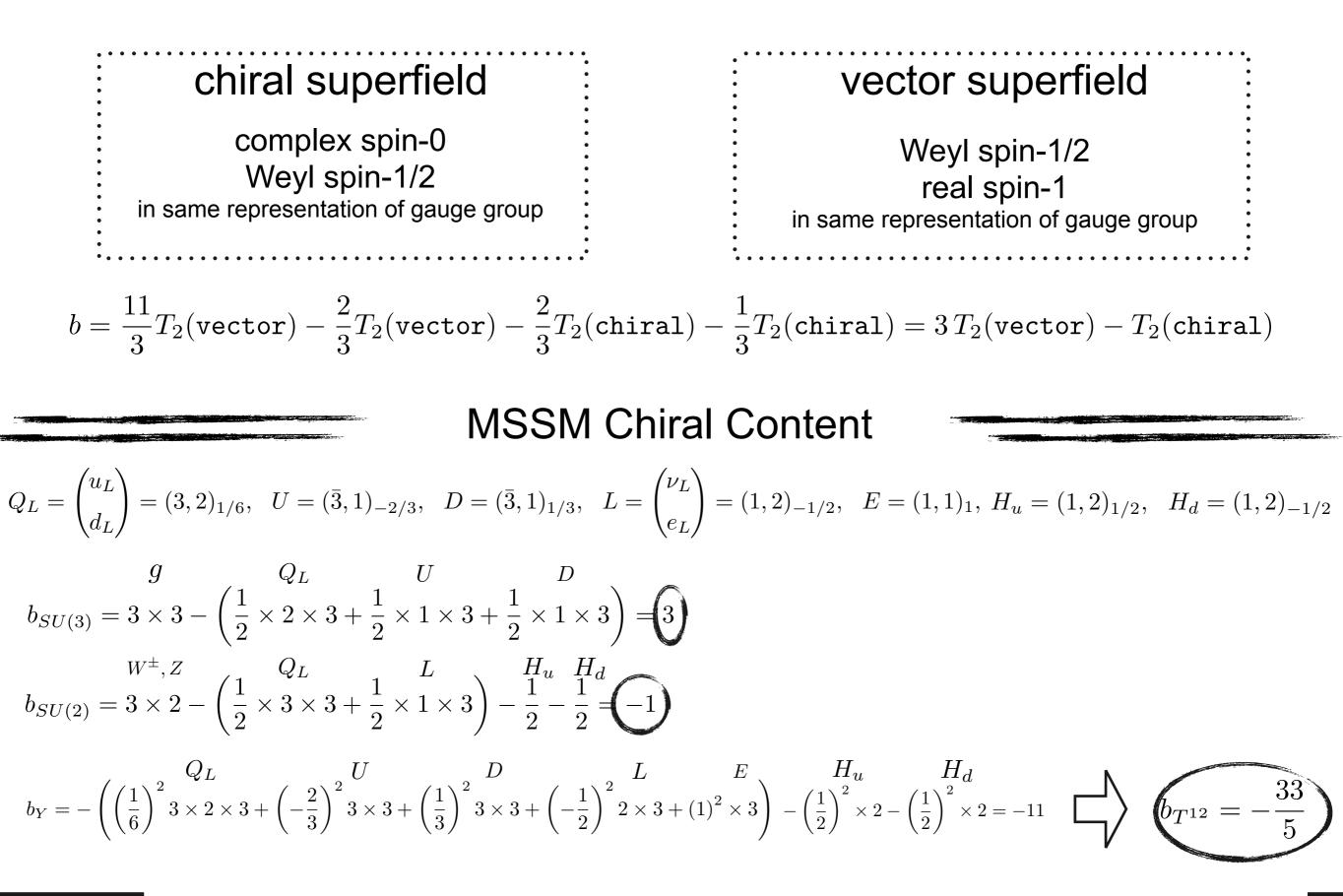
$$M_{GUT} = M_Z \exp\left(2\pi \frac{3\alpha_s(M_Z) - 8\alpha_{em}(M_Z)}{(8b_3 - 3b_2 - 5b_1)\alpha_s(M_Z)\alpha_{em}(M_Z)}\right) \approx 7 \times 10^{14} \text{ GeV}$$

$$\alpha_{GUT}^{-1} = \frac{3b_3\alpha_s(M_Z) - (5b_1 + 3b_2)\alpha_{em}(M_Z)}{(8b_3 - 3b_2 - 5b_1)\alpha_s(M_Z)\alpha_{em}(M_Z)} \approx 41.5$$

self-consistent computation:


0

- $M_{GUT} << M_{Pl}$ safe to neglect quantum gravity effects
- $\alpha_{GUT} << 1$ perturbative computation valid



SU(5) GUT: SM β fcts

g, g' and gs are different but this is a low energy artefact!

SU(5) GUT: SM vs MSSM β fcts

SU(5) GUT: MSSM GUT

$$b_3 = 3, \ b_2 = -1, \ b_1 = -33/5$$

low-energy consistency relation for unification

$$\sin^2 \theta_W = \frac{3(b_3 - b_2)}{8b_3 - 3b_2 - 5b_1} + \frac{5(b_2 - b_1)}{8b_3 - 3b_2 - 5b_1} \frac{\alpha_{em}(M_Z)}{\alpha_s(M_Z)} \approx 0.23$$

squarks and sleptons form complete SU(5) reps \rightarrow they don't improve unification! gauginos and higgsinos are improving the unification of gauge couplings

GUT scale predictions

$$M_{GUT} = M_Z \exp\left(2\pi \frac{3\alpha_s(M_Z) - 8\alpha_{em}(M_Z)}{(8b_3 - 3b_2 - 5b_1)\alpha_s(M_Z)\alpha_{em}(M_Z)}\right) \approx 2 \times 10^{16} \text{ GeV}$$

$$\alpha_{GUT}^{-1} = \frac{3b_3\alpha_s(M_Z) - (5b_1 + 3b_2)\alpha_{em}(M_Z)}{(8b_3 - 3b_2 - 5b_1)\alpha_s(M_Z)\alpha_{em}(M_Z)} \approx 24.3$$

Proton Decay

		Partial mean life	
	Mode	(10 ³⁰ years) Confidenc	e level
		Antilepton + meson	
$ au_1$	$N \rightarrow e^+ \pi$	> 2000 (n), > 8200 (p)	90%
	$N \rightarrow \mu^+ \pi$	>1000 (n), >6600 (p)	90%
	$N \rightarrow \nu \pi$	> 1100 (n), > 390 (p)	90%
$ au_{4}$	$ ho ightarrow ~e^+ \eta$	> 4200	90%
$ au_{5}$	$ ho ightarrow \ \mu^+ \eta$	> 1300	90%
	$n \rightarrow \nu \eta$	> 158	90%
	$N ightarrow e^+ ho$	>217 (n), >710 (p)	90%
	$N \rightarrow \mu^+ \rho$	> 228 (n), > 160 (p)	90%
$ au_{9}$	$N \rightarrow \nu \rho$	> 19 (n), > 162 (p)	90%
$ au_{10}$	$p \rightarrow e^+ \omega$	> 320	90%
$ au_{11}$	$ ho ightarrow \ \mu^+ \omega$	> 780	90%
$ au_{12}$	$n \rightarrow \nu \omega$	> 108	90%
$ au_{13}$	$N \rightarrow e^+ K$	> 17 (n), > 1000 (p)	90%
$ au_{14}$	$p \rightarrow e^+ K^0_S$		
τ_{15}	$egin{array}{rcl} p & ightarrow & e^+ {\cal K}^0_S \ p & ightarrow & e^+ {\cal K}^0_I \end{array}$		
$ au_{16}$	$N \rightarrow \mu^+ K$	> 26 (n), > 1600 (p)	90%
$ au_{17}$	$p \rightarrow \mu^+ K_S^0$) ((),) (P)	
$ au_{18}$	$p \rightarrow \mu^+ K_L^0$		
$ au_{10}^{r_{10}}$	$N \rightarrow \nu K$	> 86 (n), > 5900 (p)	90%
τ_{20}	$n \rightarrow \nu K_{S}^{0}$	> 260	90%
	$p \rightarrow e^+ K^* (892)^0$	> 84	90%
$ au_{21}$	$P \rightarrow \nu K^*(892)$ $N \rightarrow \nu K^*(892)$	> 78 (n), > 51 (p)	90%
$ au_{22}$	$\mathcal{N} \neq \mathcal{V}\mathcal{N} (0.92)$	> 10 (II), > 51 (P)	9070
		Antilepton + mesons	
$ au_{23}$	$p \rightarrow e^+ \pi^+ \pi^-$	> 82	90%
$ au_{24}$	$p \rightarrow e^+ \pi^0 \pi^0$	> 147	90%
$ au_{25}$	$n \rightarrow e^+ \pi^- \pi^0$	> 52	90%
$ au_{26}$	$p \rightarrow \mu^+ \pi^+ \pi^-$	> 133	90%
$ au_{27}$	$p \rightarrow \mu^+ \pi^0 \pi^0$	> 101	90%
$ au_{28}$	$n \rightarrow \mu^+ \pi^- \pi^0$	> 74	90%
$ au_{29}$	$n \rightarrow e^+ K^0 \pi^-$	> 18	90%

	Mode	Partial mean life (10 ³⁰ years)	Confidence leve
	Le	pton + meson	
$ au_{30}$	$n \rightarrow e^{-}\pi^{+}$	> 65	90%
$ au_{31}$	$n \rightarrow \mu^- \pi^+$	> 49	90%
$ au_{32}$	$n \rightarrow e^- \rho^+$	> 62	90%
$ au_{33}$	$n \rightarrow \mu^- \rho^+$	> 7	90%
$ au_{34}$	$n \rightarrow e^- K^+$	> 32	90%
$ au_{35}$	$n \rightarrow \mu^- K^+$	> 57	90%
		oton + mesons	
$ au_{36}$	$p \rightarrow e^{-} \pi^{+} \pi^{+}$	> 30	90%
$ au_{37}$	$n \rightarrow e^{-}\pi^{+}\pi^{0}$	> 29	90%
$ au_{38}$	$p \rightarrow \mu^- \pi^+ \pi^+$	> 17	90%
$ au_{30}$	$n \rightarrow \mu^{-} \pi^{+} \pi^{0}$	> 34	90%
$ au_{40}$	$p \rightarrow e^{-} \pi^{+} K^{+}$	> 75	90%
$ au_{41}$	$p \rightarrow \mu^{-} \pi^{+} K^{+}$	> 245	90%

$\Delta B=-\Delta L=1$ decay bounds

$\Delta B = \Delta L = 1$ decay bounds

Naturalness principle @ work

Following the arguments of Wilson, 't Hooft (and others): only small numbers associated to the breaking of a symmetry survive quantum corrections

Introduce new degrees of freedom to regulate the high-energy behavior

Beautiful examples of naturalness to understand the need of "new" physics

see for instance Giudice '13 (and refs. therein) for an account

▶ the need of the **positron** to screen the electron self-energy: $\Lambda < m_e/\alpha_{
m em}$

the **rho meson** to cutoff the EM contribution to the charged pion mass: \$\Lambda < \delta m_\pi^2 / \alpha_{em}\$
 the kaon mass difference regulated by the **charm** quark: \$\Lambda^2 < \frac{\delta m_K}{m_K} \frac{6\pi^2}{G_F^2 f_K^2 \sin^2 \theta_C}\$

the light Higgs boson to screen the EW corrections to gauge bosons self-energies

▶...

new physics at the weak scale to cancel the UV sensitivity of the Higgs mass?