

Accelerator Technology Challenges Magnets and Superconductivity PART I

Hélène Felice with material borrowed from P. Ferracin, E. Todesco, L.Bottura , A Devred

18/07/2022

Context and Goals of the lecture

- Why do we need magnets in accelerators?
- Why do we need Superconducting Magnets and what is superconductivity?
- How do we design and build magnets? From the conductor to the full magnet using well known Low Temperature **Superconductors**
- Which magnets for HL-LHC?
- Beyond HL-LHC? Many challenges ahead…

Why do we need magnets in accelerators?

- Electrical field accelerates particles
- Magnetic field steers the particles in a closed (circular) orbit to drive particles through the same accelerating structure several times

Dipole role and relation to beam energy

- Relation between *magnetic induction (commonly called Field in our business) B*, curvature radius ρ and momentum *p*
- Particle accelerated \rightarrow energy increased \rightarrow magnetic field increased ("synchro") to keep the particles on the same orbit of curvature

LHC example: curvature radius is 2800 m, field is 8.3 T, energy is 7000 GeV (i.e. 7 TeV)

E[*GeV*]⁼ 0.3´8.3´2800 ⁼ 7000

Dipoles in a nutshell

Vertical magnetic induction B_{y} in T produced by a current Density J_0 cos θ (A/mm2) with a1/a2 inner/outer radius

 $p = eBr$

$$
B_{y} = -\frac{\mu_0 I_0}{2} (a_2 - a_1)
$$

In dipoles, the larger B, the larger the steering strength

What about copper conductor?

- The greater the current density J, the greater the magnetic field
- Copper can typically transport 5 to 15 A/mm² when properly cooled
- Normal conducting magnets for accelerators are made with a copper winding around a ferromagnetic core that greatly enhances the field
	- The shape of the pole gives the field homogeneity
	- field limited to the iron saturation around 2T
- A large number of accelerators in the world are made with normal conducting magnets (Cu conductor) also called warm magnets
- A few examples of light sources

Beyond Copper conductor \rightarrow **Superconductors**

- Having 8 T magnets, we need 3 Km curvature radius to have 7 TeV
- If we had 800 T magnets, 30 m would be enough ...

In 1911, Kamerlingh Onnes discovered the superconductivity of mercury

- Below 4.2 K, mercury has a non measurable electric resistance => potential to transport very high current and to produce very high field
- Discovery thanks his success in liquifying Helium in 1908

 \mathcal{X}_{α}

 $4'30$ $4'40$

For T< Tc the material is superconducting

Superconductivity in a nutshell: discovery

Type I superconductors

The first superconductor material demonstrate a complete field exclusion called Meissner-Ochsenfeld effect (1933)

It behaves as a perfect diamagnetic material

- for $T < T_c$
- B must be $<$ B_c called critical field
- If we look closely, the field penetrates over a tiny depth (~10) nm) called London penetration depth λ_1

 B_c is very small a few mT to barely above 100 mT Not useful for Magnet engineers

Type II superconductors

In the 50's, discovery of a new type of superconductor For $B < B_{c1}$ => behaves like a type I superconductor For B_{c1} < B < B_{c2} => Mixed state

For B_{c1} < B < B_{c2} Penetration of the field as quantum of flux Φ_0 called fluxoids

 $\Phi_0 = h/2e = 2.07 \times 10^{-15}$ Wb

The core of the vortex is normal conducting and is of radius ζ

Super current are developing aroung each core over the London depth λ_1

For Type II superconductor $\xi < \lambda_1$

A Lorentz force is acting on the fluxoid when a transport current flows in the SC: $F_1 = JxB$

If the fluxoids are not anchored: flux flow regime => energy dissipation (dB/dt) => loss of superconductivity

Necessity to pin the fluxoids using defect and imperfections of the material => pinning centers exerting a pinning force F_p

As long as $F_L \leq F_p$ the superconductor can carry transport current

Jc is the critical current density at which, for a given **B** and at a given **T** we have $F_p \leq F_L$

Concept of critical surface

In summary – from Luca Bottura

Practical superconductors: NbTi and Nb₃Sn

Nb and Ti → **NbTi ductile alloy**

- Obtained by Extrusion + drawing
- **T^c** is ~ **9.2 K** at 0 T
- B_{c2} is \sim **14.5 T** at 0 K
- Firstly used in **Tevatron** (80s), then in all the other
- 1 euro per m

Nb and Sn →**Nb3Sn intermetallic compound**

- Brittle, strain sensitive, formed at $\sim650^{\circ}$ C
- **T^C** is ~**18 K** at 0 T
- \cdot **B**_{C2} is ~28 **T** at 0 K
- Used in **ITER**
- 5 euro per m

P. Ferracin

Practically, what are we talking about when we talk about accelerator magnets? A few key components

Practically, what are we talking about when we talk about accelerator magnets? A few key components

Ideal dipole Field # 1: Intersecting Ellipses/Circles

Within a cylinder carrying **j⁰** , perpendicular to the plane of the slide, the field is perpendicular to the radial direction and proportional to the distance to the centre *r*

$$
B=-\frac{\mu_0 j_0 r}{2}
$$

 $-J_0$

A little harder work to demonstrate

similar conclusion for **intersecting**

ellipses

Ideal dipole Field #2: Current density distribution in Cosq

If we assume

- $J = J₀ cos \theta$ where $J₀$ [A/m²] is \perp to the crosssection plane
- Inner (outer) radius of the coils = *a1 (a2)*

The generated field is a **pure dipole**

$$
B_{y} = -\frac{\mu_0 I_0}{2} (a_2 - a_1)
$$

 $B \propto$ current density $B \propto$ coil width *w=a2-a1 B* is independent of the aperture *r* (not so obvious)

From ideal dipole to practical magnetic configuration

Approximation of ideal shapes

- Sector stacking of conductor
- **Block approach**
- Sector with wedges

Consequence: the dipole field has some imperfections How do we assess them and how we deal with them?

Let's start with the 2D field representation: complex formalism

x and y perpendicular to the beam (transverse coordinates), z along the beam

Definition of field harmonics in 2D

B as an analytic function can be expressed as a series expansion with (x,y) in domain D (aperture of the magnet)

Each coefficient corresponds to a "pure" multipolar field

Definition of field harmonics in 2D

$$
B_y(x, y) + iB_x(x, y) = \sum_{n=1}^{\infty} C_n(x + iy)^{n-1} = \sum_{n=1}^{\infty} (B_n + iA_n)(x + iy)^{n-1}
$$

The field harmonics are rewritten as (EU notation)
We factorize 10⁻⁴ since the deviations
from ideal field are ~0.01%

B_y + *iB_x* = 10⁻⁴ *B₁* $\sum_{n=1}^{\infty} (b_n + ia_n) \left(\frac{x + iy}{R_{ref}}\right)^{n-1}$
Therefore, $A_n(x) = 10^{-4} B_n \sum_{n=1}^{\infty} (b_n + ia_n) \left(\frac{x + iy}{R_{ref}}\right)^{n-1}$
Therefore, $A_n(x) = 10^{-4} B_n \sum_{n=1}^{\infty} (b_n + ia_n) \left(\frac{x + iy}{R_{ref}}\right)^{n-1}$
Therefore, $A_n(x) = 10^{-4} B_n \sum_{n=1}^{\infty} (b_n + ia_n) \left(\frac{x + iy}{R_{ref}}\right)^{n-1}$
Therefore, B_2 for quadrupoles, coefficients

The coefficients b_n , a_n are called normalized multipoles: b_n are the <u>normal,</u> a_n are the <u>skew</u> (adimensional)

 $b_2^{US}=b_3^{EU}$ $=$ v_{3} **!!** US notation is different from EU notation

Now that we have the tools: how do we go from ideal to practical coil cross sections?

For symmetry reasons only certain harmonics are «allowed» In a dipole B_{2n+1} are allowed: B3, B5...

n $r + w$ *r n* $j\mu_{0}R_{\text{ref}}^{n-1}$ $2\sin(\omega n)$ *B n n n ref n*− π
− *n*− 2− $=-\frac{\int \mu_0 \kappa_{\text{ref}}}{\mu_0} \frac{2 \sin(\alpha n)}{\alpha} \frac{(r+w)^{2-n}}{\alpha}$ \overline{z} $\overline{$ 2 $\int_{0}^{1} 2\sin(\omega n) (r+w)^{2-n} - r^{2}$ $_{0}$ Λ_{ref} \sim \mathcal{L} S111(α 1 π $\mu_{\scriptscriptstyle (}$ Multipoles for a sector coil can be expressed for $n > 2$

Multipoles can be made equal to zero

$$
B_3 = \frac{\mu_0 j R_{ref}^2}{\pi} \frac{\sin 3\alpha_3 - \sin 3\alpha_2 + \sin 3\alpha_1}{3} \left(\frac{1}{r} - \frac{1}{r+w} \right)
$$

$$
B_5 = \frac{\mu_0 j R_{ref}^4}{\pi} \frac{\sin 5\alpha_3 - \sin 5\alpha_2 + \sin 5\alpha_1}{5} \left(\frac{1}{r^3} - \frac{1}{(r+w)^3} \right)
$$

l く \int $-\sin(5\alpha_2) + \sin(5\alpha_1) =$ $-\sin(\beta \alpha_2) + \sin(\beta \alpha_1) =$ $\sin(5\alpha_3) - \sin(5\alpha_2) + \sin(5\alpha_1) = 0$ $\sin(3\alpha_3) - \sin(3\alpha_2) + \sin(3\alpha_1) = 0$ 37 3μ 3μ 2μ 2μ 1 3μ 2μ 1 37^{3} 30^{1} 20^{2} 1^{3} 30^{1} (α_{2}) – Sin($\Im \alpha_{2}$) + Sin($\Im \alpha_{1}$ (α_{2}) – Sin($3\alpha_{2}$) + Sin($3\alpha_{1}$ Equations to set to zero B_3 and B_5

(48°,60°,72°) or (36°,44°,64°) are solutions

Coil cross sections (to scale) of the four superconducting colliders

 $\frac{Temp. (K) \text{ Field (T) Margin}}{Temp. (K) \text{ Field (T) Margin}}$ Increased coil complexity (nested layers, wedges and coil blocks) to achieve higher efficiency and improved field homogeneity

Coil cross sections (to scale) of the four superconducting colliders

Practical superconductors: strand

Focus on LTS since all existing accelerator magnets are made of LTS so far A word on HTS tomorrow

- Presence of Cu: Why?
- Any other detail?

Multi-filamentary wire: fighting flux jumps

Let's remember than in a Type II superconductor submitted to an external magnetic field, the flux penetrates by quantum of flux called fluxoids

If the superconductor is subjected to a thermal disturbance, J_c will change

Thermal disturbance => dJ_c/dt => dB/dt => E electrical field => E . J_c power dissipation

Reorganization of fluxoids called flux jump

Some criteria exist to evaluate the critical size of the superconductor In the case of a slab of superconductor of thickness 2a, according to the adiabatic criteria, the half size of the slab should be

$$
a \le \sqrt{\frac{3\gamma C(\theta_c - \theta_0)}{\mu_0 j_c^2}}
$$

where j_c is the critical current density [A m^{-2}], γ is the density [kg m $^{-3}$], C is the specific heat [J kg⁻¹], and θ_c is the critical temperature.

 The higher Jc, the higher risk of flux jump (low field) \Rightarrow Incentive to reduce the SC filament size $<$ 50 μ m

Multi-filamentary wire: dealing with magnetization

The current distribution in a Type II superconductor is given by the **Bean Critical state** (1962)

The local current density is either null or equal to Jc

When a filament is in a varying *Bext*, shielding currents are developing starting from the outer surface of the filament.

Based on Bean's model, the current H_{L_C} density is J_c They **do not decay** when *Bex* is held constant

→ Shielding / **persistent currents**

The shielding current are producing a magnetic moment A magnetization can be defined and causes:

- Field distorsion
- **losses**

This magnetization is proportional to J_c and to the filament size

 Incentive to reduce the SC filament size as much as possible (6-7 m in LHC)

Multifilament wire: inter-filament coupling

Wire composed of very small filaments

When a multi-filamentary wire is subjected to a time varying magnetic field, **current loops** are generated between filaments => inter-filament coupling

- If filaments are straight, large loops with large currents → **ac losses**
- If the strands are magnetically coupled the effective filament size is larger \rightarrow **flux jumps**
- To reduce these effects, filaments are **twisted**
- twist pitch of the order of 20-30 times of the wire diameter.

Multifilament wire: presence of a stabilizer (Cu)

Wire composed of very small filaments

When $T > Tc$, the resistivity of superconducting materials (in normal state) is very high $\rho_{Nbti,n} \sim 5 10^{-7} \Omega.m$ whereas $\rho_{Cu} \sim 1.7 10^{-8} \Omega.m$

If the SC becomes normal, its temperature will rise very quickly (ms) by Joule heating

Embedding the SC in a low resistivity matrix such as copper, allows the current to flow in the matrix in case of quench (transition to normal state)

by L. Bottura

Depending on the perturabation inducing the quench:

- Either the SC can recover
- Or the current flow through the matrix will allow gaining time to protect the magnet system (see later)

Fabrication of NbTi wire

- Nb-Ti ingots in Cu can
	- 200 mm Ø, 750 mm long
- Becomes Monofilament rods are stacked to form a multifilament billet
	- then extruded and drawn down
- Heat treatments are applied to produce pinning centers (precipitates).
- When the number of filaments is very large, multifilament rods can be re-stacked (double stacking process)

Fabrication of Nb₃Sn wire

- Nb₃Sn is brittle and cannot be drawn in final form.
- The precursors of Nb and Sn are drawn
- The wire must heat-treated to ≈650 C for several hours, to form the $Nb₃Sn phase$

We will see later that the heat treatment occurs after the full coil fabrication

Coil cross sections (to scale) of the four superconducting colliders

From the strand to the cable

Link to seminar

Why a cable?:

- To lower the inductance
- To ease coil wind- ability
- A.Devred
- Allow current redistribution

Rutherford cable made of two layers of multifilamentary strands: rectangular or trapezoidal

J. Fleiter – cabling machine Bldg 163 - CERN

Cable must be compacted enough to insure enough mechanical stability for winding But too much compaction can lead to edges deformation:

- reduction of the filament cross-sectional area (Nb-Ti)
- breakage of reaction barrier with incomplete tin reaction $(Nb₃Sn)$

Could affect magnet performance

Characterization of the critical surface

Electrical characterization of a SC strand looking at its Voltage vs current curve

"Self standing" strand

Versailles project on Advanced MAterials and Standards (VAMAS)

Criteria to define the critical current: *Ic* is defined as the current where $\rho_{sc} = 10^{-14} \Omega m$ or $E = 0.1 \mu V/cm$. Definition of I_c (B,T) for a virgin strand

Standardized procedure and mandrel material to mount the wire sample (called Short Sample)

Cable Ic

[36093021.pdf \(iaea.org\)](https://inis.iaea.org/collection/NCLCollectionStore/_Public/36/093/36093021.pdf)

Cabling can induce I_c degradation due to high compaction during cabling => Extracted strands (XS) from cables are also measured to quantify the possible degradation (typically a few %)

$$
I_{\text{c-cable}} = n_{\text{strand}} \times I_{\text{c} \times \text{S}}
$$

Cable Insulation

- Good **dielectric properties** to withstand turn-to-turn *V* after a quench
- Good **mechanical properties** to withstand high stress conditions
- **Porosity** to allow penetration of helium (or epoxy)
- **Radiation hardness**
- In Nb-Ti magnets overlapped layers of **polyimide**
- In Nb₃Sn magnets, **fiber-glass** braided or as tape/sleeve.
- Typically the insulation thickness: 100 and 200 µm.

Mastering the thickness of the insulation within a few microns is key due to the large number of turns

3D coil end design

So far, we have only discussed 2D design but we need to address the 3D. End design is important as the particle sees the integrated field over the magnet length!

Field quality in 3D

Example of the MQYYM quadrupole

Simulation and magnetic field computation

ROXIE: Routine for the Optimization of Magnet X-sections, Inverse Field Computation and Coil End Design

- Developped by S. Russenschuck at CERN
- Specific to superconducting accelerator magnet design
- coil geometry, iron geometry, and coil ends
- Several routines for optimization
- Evaluation of field quality, including iron saturation (BEM-FEM methods) and persistent currents

[Roxie CERN webpage](https://espace.cern.ch/roxie/default.aspx)

ROXIE Cross section of LHC dipole

- Peak field : maximum field in the coil
- Bore field : field at the center of the aperture

Concept of load line and quench

Field (T)

- The peak field as the function of the field defines the magnet load line
- The maximum magnet performance is obtained when the load line reaches the critical surface. Beyond that point the supercoductor becomes resistive
- \Rightarrow this the quench :transition from SC to normal material
- A similar bore field load line can be plotted SC fully penetrated and the

normal cores of the fluxoids are covering the material => fully resistive

Current (kA)

Margins in SC magnets

- Among magnet engineers, a commonly used concept is the loadline margin
- The concept is always criticized (not physical) but never replaced: the success of a magnet judged on its ability of reaching the max performance $LL\ margin = 1 - \frac{I_{op}}{I}$ I_{max}

E. Todesco

- A more physical margin is the temperature margin: T_{CS} - T_{on}
- How much can we heat locally to reach the critical surface (at the operational current density and field)?

Consideration on margins for NbTi and Nb3Sn

For $Nb₃Sn$ and Nb-Ti the temperature margin depends only on the loadline margin and very weakly on the field.

For a given a material and an operational temperature, load line margin and temperature margin are equivalent

For a given LL margin, $Nb₃Sn$ T margin is about 2.5 times greater than NbTi T margin

E. Todesco, S. Izquierdo Bermudez

Quench phenomenon : a few more details

Quench phenomenon and concept of protection

But in fact: what is the problem?

Stored energy in the magnet

$$
E_m = \mathop{\bigwedge}\limits_V^{} \frac{B^2}{2m_0} \, dv = \frac{1}{2} L I^2
$$

LHC dipole : 7 MJ A 20 ton truck at 100 km/h: 7.7 MJ

This energy has to be removed and/or dissipated in the magnet :

- To minimize the rise of temperature
- To minimize gradient of temperature inside the coil (homogeneous distribution)
- => Concept of quench Protection

How to protect a magnet against quench?

Protection: always watch the dielectric strength

- The energy extraction triggers high voltage at the magnet terminals usual limit set to 1 kV
- Internal voltages are developping due to the magnet inductance

Importance of the design of a proper dielectric insulation in the coil

Importance of the electrical QA tests

- **Hipot** • Look for leakage current between coil and magnet components under high DC voltage
	- Verify that the coil sustains the required voltage limits without breakout

Impulse test

• Look for turn-to turn shorts and insulation breakdown and coil to coil parts

$$
f = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}
$$

Examples of dielectric failure

Summary of Part I

- We need superconding magnets to bend high energy particle beams
- We need complex conductor: stabilizer, subdivision, twisting, cabling... => practical superconductors
- Superconductor operation is limited by a critical surface (B, I and T) beyond which the superconductor quenches = becomes highly resistive
- We have Ideal field distributions which we approximate
	- 2D and 3D design tools
	- Field homogenity
	- Margins
- Large magnetic stored energy in the magnets: we need to protect them in case of quench

Teaser of part II

We will take a look at:

- The **coil manufacturing**
- **the support structure** in which the coils are assembled
- The cold test and the concept of **training**

This should complete the overview of the magnet technology main concepts.

Then:

- HL-LHC at a glance with its zoo of magnets and associated challenges
- Beyond HL-LHC... what's next?

