Flavour Physics: A Taster

CERN Summer Student Lecture Programme 2022

Lecture 2 of 3: CP violation and the B factories

20-22 July 2022

Mark Williams University of Edinburgh

THE UNIVERSITY of EDINBURGH

NIVF

Yesterday we covered the foundations and motivations of the subject

- Quantum loops & indirect searches for new physics
- Discrete symmetries in nature
- Example: Neutral meson oscillations

Today we connect these ideas and examine them in the context of the standard model

- The CKM mechanism and quark mixing
- Complex CKM phases ⇒ CP violation
- Experimental constraints and the B factory era

Part I: Quark flavour in the SM

Quark mixing

Weak interaction breaks C and P maximally, and CP a bit – how?

In 1960s, list of fundamental particles was small:

- 4 leptons (e, μ , v_e , v_{μ})
- 3 quarks (u, d, s)

From particle lifetimes, can derive weak coupling strengths g for different decays...


```
Find g > g' >> g'' \Rightarrow why?
```

Quark mixing

Universal coupling can be recovered if weak interaction 'sees' rotated combination of quark flavours

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.10.531

UNITARY SYMMETRY AND LEPTONIC DECAYS

Nicola Cabibbo CERN, Geneva, Switzerland (Received 29 April 1963)

Quark mixing

Universal coupling can be recovered if weak interaction 'sees' rotated combination of quark flavours

 $\theta_c = 0.257$ from experiments

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.10.531

UNITARY SYMMETRY AND LEPTONIC DECAYS Nicola Cabibbo CERN, Geneva, Switzerland

(Received 29 April 1963)

Weak eigenstates are a **mixture** (superposition) of flavour states: $\begin{pmatrix} d' \\ s' \end{pmatrix} = \begin{pmatrix} \cos \theta_C & \sin \theta_C \\ -\sin \theta_C & \cos \theta_C \end{pmatrix} \begin{pmatrix} d \\ s \end{pmatrix}$

Saves universality of weak interaction, introduces concept of quark mixing
 Predicts additional kaon decays well above observed experimental limits...

Following Cabibbo, questions remain – some apparently allowed decays are never observed

Process $K^0 \rightarrow \mu^+\mu^-$ apparently highly suppressed (based on exp.) – but **why**?

Following Cabibbo, questions remain – some apparently allowed decays are never observed

Process $K^0 \rightarrow \mu^+\mu^-$ apparently highly suppressed (based on exp.) – but **why**?

Add charm quark \Rightarrow add second diagram (= amplitude)

Following Cabibbo, questions remain – some apparently allowed decays are never observed

Process $K^0 \rightarrow \mu^+\mu^-$ apparently highly suppressed (based on exp.) – but **why**?

Add charm quark \Rightarrow add second diagram (= amplitude)

Two amplitudes ~equal and have opposite sign ⇒ total amplitude **highly suppressed!**

Cancellation not perfect because u and c quarks have different mass.

 \Rightarrow GIM mechanism

[Neutral kaon mixing]

Same diagrams cause kaon mixing

Mixing rate strongly depends on charm quark mass – if we can observe kaon mixing we can **predict** this mass

Kaon mixing experimentally confirmed since 1960s

Measurement of Δm_k (=oscillation frequency) gave prediction $m_c = 1.5 \text{ GeV}$

$$\Delta m_k = \frac{G_F^2}{4\pi} m_K f_K^2 m_c^2 V_{cs} V_{cd} \Big|^2$$

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.2.1285

Weak Interactions with Lepton-Hadron Symmetry*

S. L. GLASHOW, J. ILIOPOULOS, AND L. MAIANI[†] Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02139 (Received 5 March 1970)

We propose a model of weak interactions in which the currents are constructed out of four basic quark fields and interact with a charged massive vector boson. We show, to all orders in perturbation theory, that the leading divergences do not violate any strong-interaction symmetry and the next to the leading divergences respect all observed weak-interaction selection rules. The model features a remarkable symmetry between leptons and quarks. The extension of our model to a complete Yang-Mills theory is discussed.

Leads to remarkable symmetry between quark and lepton sector

$$\begin{pmatrix} \nu_e \\ e \end{pmatrix}_L, \begin{pmatrix} \nu_\mu \\ \mu \end{pmatrix}_L \\ \begin{pmatrix} u \\ d' \end{pmatrix}_L, \begin{pmatrix} c \\ s' \end{pmatrix}_L$$

Makes testable prediction of existence and mass of charm quark...

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.2.1285

Weak Interactions with Lepton-Hadron Symmetry*

S. L. GLASHOW, J. ILIOPOULOS, AND L. MAIANI[†] Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02139 (Received 5 March 1970)

We propose a model of weak interactions in which the currents are constructed out of four basic quark fields and interact with a charged massive vector boson. We show, to all orders in perturbation theory, that the leading divergences do not violate any strong-interaction symmetry and the next to the leading divergences respect all observed weak-interaction selection rules. The model features a remarkable symmetry between leptons and quarks. The extension of our model to a complete Yang-Mills theory is discussed.

Leads to remarkable symmetry 242 Events+ between guark and lepton sector SPECTROMETER J/ψ meson 🛛 At normal current M(J/ψ) -10% current $(c\overline{c} bound state)$ ≈ 3 GeV ! $\left(\begin{array}{c} \nu_e \\ e \end{array} \right)_L, \left(\begin{array}{c} \nu_\mu \\ \mu \end{array} \right)_L$ discovered 50 EVENTS / 25 MeV simultaneously 1976 at BNL and SLAC $\left(\begin{array}{c} u \\ d' \end{array}\right)_{I}, \left(\begin{array}{c} c \\ s' \end{array}\right)_{I}$ 30 in 1974 20 Makes testable prediction of existence and mass of charm quark...

m_e+_e−[GeV]

Where's the CP violation?

https://doi.org/10.1143/PTP.49.652

CP violation experimentally verified in weak interaction, but couldn't fit into existing theory...

CP-Violation in the Renormalizable Theory of Weak Interaction

Makoto KOBAYASHI and Toshihide MASKAWA

Department of Physics, Kyoto University, Kyoto

(Received September 1, 1972)

KM realised that we need 3 generations to allow CP violation...

Cabibbo

Cabibbo Kobayashi Maskawa (CKM)

$$egin{bmatrix} d' \ s' \end{bmatrix} = egin{bmatrix} \cos heta_{
m c} & \sin heta_{
m c} \ -\sin heta_{
m c} & \cos heta_{
m c} \end{bmatrix} egin{bmatrix} d \ s \end{bmatrix} egin{bmatrix} d' \ s' \ b' \end{bmatrix} = egin{bmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{bmatrix} egin{bmatrix} d \ s \ b \end{bmatrix}$$

1 (real) parameter: mixing angle θ_c

4 parameters: 3 real mixing angles 1 complex phase!

Where's the CP violation?

https://doi.org/10.1143/PTP.49.652

CP violation experimentally verified in weak interaction, but couldn't fit into existing theory...

CP-Violation in the Renormalizable Theory of Weak Interaction

Makoto KOBAYASHI and Toshihide MASKAWA

Department of Physics, Kyoto University, Kyoto

(Received September 1, 1972)

KM realised that we need 3 generations to allow CP violation...

Cabibbo

Cabibbo Kobayashi Maskawa (CKM)

$$egin{bmatrix} d' \ s' \end{bmatrix} = egin{bmatrix} \cos heta_{
m c} & \sin heta_{
m c} \ -\sin heta_{
m c} & \cos heta_{
m c} \end{bmatrix} egin{bmatrix} d \ s \end{bmatrix} iggin{matrix} d' \ s' \ s' \ b' \end{bmatrix} = egin{bmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{bmatrix} egin{bmatrix} d \ s \ b \end{bmatrix}$$

Prediction of another 2 new quarks even before charm was discovered! ⇒ b (t) quark not discovered until 1977 (1994)!

[Discovering beauty/bottom]

CKM structure

Current experimental status:

http://pdg.lbl.gov/2016/reviews/rpp2016-rev-ckm-matrix.pdf

$$\begin{bmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \\ |V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}| & |V_{ts}| & |V_{tb}| \end{bmatrix} = \begin{bmatrix} 0.97434^{+0.00011}_{-0.00012} & 0.22506 \pm 0.00050 & 0.00357 \pm 0.00015 \\ 0.22492 \pm 0.00050 & 0.97351 \pm 0.00013 & 0.0411 \pm 0.0013 \\ 0.00875^{+0.00032}_{-0.00033} & 0.0403 \pm 0.0013 & 0.99915 \pm 0.00005 \end{bmatrix}$$

Magnitudes $|V_{ij}|^2$ appear in probabilities (=rates) of decays.

```
Magnitudes have suggestive pattern No known reason!
```

Transitions within same generation : "Cabibbo Favoured" (CF)

```
Processes with 1 (2) off-diagonal elements :
"Singly (doubly) Cabibbo Suppressed" (SCS / DCS)
```


CKM and CP violation

Highly predictive (= good theory!)

- Can make many independent measurements of V_{ii} from different systems
- Test if these are self-consistent

Next job: measure the magnitudes and phases of these complex parameters V_{ii}

CKM parameterization: `PDG'

Decompose into three rotation matrices:

$$\begin{split} V_{\mathrm{CKM}} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \end{split}$$

Parameters:

- 3 rotation angles $\theta_{12}, \theta_{13}, \theta_{23}$
- CP-violating phase δ

Observed hierarchy motivates an alternative parameterisation...

 $s_{ij} = sin\theta_{ij}$ $c_{ij} = cos\theta_{ij}$

CKM parameterization: Wolfenstein

$$egin{bmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3(
ho-i\eta) \ -\lambda & 1-\lambda^2/2 & A\lambda^2 \ A\lambda^3(1-
ho-i\eta) & -A\lambda^2 & 1 \end{bmatrix} = egin{bmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$

Expand CKM matrix elements in powers of $\lambda \approx 0.22$ (i.e. sin θ_c)

Here shown to order λ^3

Parameters: A, λ, ρ, η

Quantify CP violation

Part II: Testing the CKM mechanism a. Magnitudes

- How to measure CKM matrix elements?
- \Rightarrow magnitudes control rates of particle decays
- \Rightarrow Ratio of decay rates proportional to ratio of |amplitude|²

For V_{ud} , compare neutron (β decay) and muon decay rates

Often require theory inputs to relate hadron measurements to quark-level CKM

Unitarity triangle(s)

CKM matrix is unitary: $V_{CKM}V^{\dagger}_{CKM} = I$

Provides 9 constraints relating elements, e.g.

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

Sum of three complex numbers = 0 ⇒ triangle on Argand plane

There are in fact 6 triangles (one per quark pair) – this one ('bd') is most insightful

Unitarity triangle(s)

CKM matrix is unitary: $V_{CKM}V^{\dagger}_{CKM} = I$

Provides 9 constraints relating elements, e.g.

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

Sum of three complex numbers = 0 ⇒ triangle on Argand plane

Rescale by dividing all sides by $|V_{cd}V_{cb}*|$

$$\beta = \phi_1 = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right)$$
$$\alpha = \phi_2 = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right)$$
$$\gamma = \phi_3 = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

Im (modified Wolfenstein parameters)

$$\rho' + i\eta'$$

 $|V_{tb}^*V_{td}|$
 $|V_{tb}^*V_{cd}|$
 γ
 $(0,0)$
 1
 $(1,0)$ Re

Unitarity triangle(s)

CKM matrix is unitary: $V_{CKM}V^{\dagger}_{CKM} = I$

Provides 9 constraints relating elements, e.g.

 $V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$

Sum of three complex numbers = 0 ⇒ triangle on Argand plane

Rescale by dividing all sides by $|V_{cd}V_{cb}^*|$

Now experimental measurements form constraints of various shape on the position of the apex

- Length of sides (x2)
- Angles (x3)

Im Amount of CPV related
to area of triangle
$$\rho' + i\eta'$$

 $|V_{tb}^*V_{td}|$
 $V_{cb}^*V_{cd}|$
 $(0,0)$ 1 $|V_{cb}^*V_{cd}|$
 $(1,0)$ Re

SM CP violation and the universe

https://doi.org/10.1103/PhysRevLett.55.1039 (1985)

Jarlskog parameter J: Convention-invariant measure of CPV in quark sector

 $J = \pm Im(V_{us}V_{cb}V_{ub}^{*}V_{cs}^{*})$

Expressed as Wolfenstein parameters: $J = A^2 \lambda^6 \eta (1 - \lambda^2/2) + O(\lambda^{10}) \approx 3 \times 10^{-5}$

Cecilia Jarlskog with colleagues at the Nordic Institute of Theoretical Physics (NORDITA) in Copenhagen, in the early 1980s.

SM CP violation and the universe

Jarlskog parameter J: Convention-invariant measure of CPV in quark sector

$$J = \pm Im(V_{us}V_{cb}V_{ub}^{*}V_{cs}^{*})$$

But... if any quark masses are degenerate, CPV vanishes – and small differences suppress it....

Multiply by terms

 $P_{u} = (m_{t}^{2} - m_{c}^{2})(m_{t}^{2} - m_{u}^{2})(m_{c}^{2} - m_{u}^{2})$ $P_{d} = (m_{b}^{2} - m_{s}^{2})(m_{b}^{2} - m_{d}^{2})(m_{s}^{2} - m_{d}^{2})$

And divide by electroweak mass scale... $M_{\rm W}{}^{\rm 12}$

SM CP violation and the universe

Jarlskog parameter J: Convention-invariant measure of CPV in quark sector

$$J = \pm Im(V_{us}V_{cb}V_{ub}^{*}V_{cs}^{*})$$

But... if any quark masses are degenerate, CPV vanishes – and small differences suppress it....

Multiply by terms

And divide by electroweak mass scale... M_W¹²

$$\frac{n_B - n_B}{n_{\gamma}} \approx \frac{n_B}{n_{\gamma}} \sim \frac{J \times P_u \times P_d}{M^{12}} = O(10^{-10}) \quad \text{Observed!}$$

14020

⇒ Need to identify new sources of CPV associated with high energy scales

 $P_{u} = (m_{t}^{2} - m_{c}^{2})(m_{t}^{2} - m_{u}^{2})(m_{c}^{2} - m_{u}^{2})$

 $P_d = (m_b^2 - m_c^2)(m_b^2 - m_d^2)(m_c^2 - m_d^2)$

Unitarity triangle in 1995...

Top quark just discovered \Rightarrow CKM constraint can be derived from B⁰ meson mixing measurements (Δ M)

First constraints on $|V_{ub}|$ from from LEP, ARGUS, CLEO experiments

Minimum number of measurements needed to locate apex, and large uncertainties – **no measurements of angles**

Lots of work ahead! Sets the stage for the next phase in flavour physics... The era of the B factories!

Part II: Testing the CKM mechanism b. Phases

How to measure angles α , β , γ ?

Observables are rates, i.e. $|A|^2 \Rightarrow$ not sensitive to phases $|Ae^{i\phi}|^2 = A^2$

Need two amplitudes with different phases – then rate sensitive to their difference...

Unitarity triangle angles are phase differences between CKM elements

e.g. β is angle between $V_{cd}V_{cb}{}^{*}$ and $V_{td}V_{tb}{}^{*}$

top quark – must be in loop!

$$\beta = \phi_1 = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right)$$
$$\alpha = \phi_2 = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right)$$
$$\gamma = \phi_3 = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

 $|A_{1}e^{i\phi_{1}} + A_{2}e^{i\phi_{2}}|^{2} = A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}\cos(\delta\phi)$ $\delta\phi = \phi_{1} - \phi_{2}$

[3 types of CP violation]

Three ways to satisfy the criteria for CPV: >1 amplitudes with different strong and weak phases:

CP violation in interference

rference!

Consider the process $B^0 \rightarrow \overline{B}^0 \rightarrow f_{CP}$ $g_{+}(t) A_{f}$ **B**⁰ **f**_{CP} From last lecture, for B⁰ at time t=0 $\overline{\mathsf{A}}_{\mathsf{f}}$ $(q/p) g_{-}(t)$ **B**⁰ $|B^{0}(t)\rangle = g_{+}(t)|B^{0}\rangle + \left(\frac{q}{n}\right)g_{-}(t)|\bar{B^{0}}\rangle$ $\Rightarrow \text{Total amplitude} = A_{f_{CP}} \left[g_+(t) + \frac{q}{p} \frac{A_{f_{CP}}}{A_{f_{CP}}} g_-(t) \right] \text{ where } {}^{(\overline{A})}_{\text{CP}} = \langle f_{\text{CP}} | \overline{B}^0 \rangle$ $\langle f_{\rm CP} | B^0(t) \rangle$ $\lambda_{f_{CP}} \equiv \frac{q}{p} \frac{A_{f_{CP}}}{A_{f_{CP}}}$ = $A_{f_{CP}}[g_{+}(t) + \lambda_{f_{CP}} g_{-}(t)]$

Now plug-in $g_{\pm}(t)$ terms (see last lecture) and $||^2$ to get rate...

Reminder:

$$g_{+}(t) = e^{-imt}e^{-\Gamma/2t} \left[\cosh \frac{\Delta\Gamma t}{4} \cos \frac{\Delta M t}{2} - i \sinh \frac{\Delta\Gamma t}{4} \sin \frac{\Delta M t}{2} \right],$$

$$g_{-}(t) = e^{-imt}e^{-\Gamma/2t} \left[-\sinh \frac{\Delta\Gamma t}{4} \cos \frac{\Delta M t}{2} + i \cosh \frac{\Delta\Gamma t}{4} \sin \frac{\Delta M t}{2} \right]$$
$$B^{0} \text{ at } t=0: \qquad \Gamma(B(t) \to f) \propto e^{-\Gamma t} \\ \qquad \times [\cosh(\Delta\Gamma t/2) + A_{CP}^{dir}\cos(\Delta mt) + A_{\Delta\Gamma}\sinh(\Delta\Gamma t/2) + A_{CP}^{mix}\sin(\Delta mt)]$$

$$\overline{B}^{0} \text{ at } t=0: \qquad \Gamma(\overline{B}(t) \to f) \propto e^{-\Gamma t} \\ \qquad \times [\cosh(\Delta\Gamma t/2) - A_{CP}^{dir}\cos(\Delta mt) + A_{\Delta\Gamma}\sinh(\Delta\Gamma t/2) - A_{CP}^{mix}\sin(\Delta mt)]$$

where:

$$A_{CP}^{dir} = C_{CP} = \frac{1 - |\lambda_{CP}|^2}{1 + |\lambda_{CP}|^2} \qquad A_{\Delta\Gamma} = \frac{2 \Re (\lambda_{CP})}{1 + |\lambda_{CP}|^2} \qquad A_{CP}^{mix} = S_{CP} = \frac{2 \Im (\lambda_{CP})}{1 + |\lambda_{CP}|^2}$$

CPV in interference between mixing & decay

CP conserving part

X For B⁰ case, $\Delta\Gamma$ small – can be neglected...

X For 'golden mode' $B^0 \rightarrow J/\psi K_s^0$: No direct CPV ($A_{CP}^{dir} = 0, a = 0$)

and $A_{CP}^{mix} = -sin(2\beta)$

B ⁰ at t=0: $\Gamma(B(t) \rightarrow f) \propto e^{-\Gamma t} \times f$: [1 – <mark>sin(2β)</mark> sin(Δmt)]
---	---

B⁰ at t=0: $\Gamma(\overline{B}(t) \rightarrow f) \propto e^{-\Gamma t} \times [1 + sin(2\beta) sin(\Delta mt)]$

 \Rightarrow By time-dependent analysis, can extract β from amplitude of oscillations

B⁰ at t=0:
$$\Gamma(B(t) \rightarrow f) \propto e^{-\Gamma t} \times [1 - \sin(2\beta) \sin(\Delta m t)]$$

B⁰ at t=0: $\Gamma(\overline{B}(t) \rightarrow f) \propto e^{-\Gamma t} \times [1 + sin(2\beta) sin(\Delta mt)]$

- \Rightarrow By time-dependent analysis, can extract β from amplitude of oscillations
- \Rightarrow Even cleaner using CP asymmetry:

$$\frac{\Gamma(t) [B^0 \rightarrow J/\psi K_S^0] - \Gamma(t) [\overline{B}{}^0 \rightarrow J/\psi K_S^0]}{\Gamma(t) [B^0 \rightarrow J/\psi K_S^0] + \Gamma(t) [\overline{B}{}^0 \rightarrow J/\psi K_S^0]} = -\sin(2\beta)\sin(\Delta mt)$$
Hence,
"Golden mode"

But note: asymmetry integrates to zero over time

Part III: The B factories

The B Factories: BaBar and Belle

- Collide e^+e^- at Y(4S) resonance energy \Rightarrow Y(4S) $\rightarrow B^{(0,\pm)}\overline{B^{(0,\pm)}}$
- B hadrons quantum correlated can determine initial state from 'other B'
- Asymmetric beam energy ⇒ B hadrons move, so can measure 't'

The B Factories: BaBar and Belle

Example event

 $\overline{B}^{0} \rightarrow D^{*+} \pi^{-}_{fast}$ $\downarrow D^{0} \pi^{+}_{soft}$ $\downarrow \overline{K}^{-} \pi^{+}$

 K^- tags initial flavor as \overline{B}^0

 \Rightarrow Signal must be B⁰ at "t=0"

 $B^{0} \rightarrow J/\psi K_{S}^{0}$ $\downarrow \qquad \downarrow \qquad \mu^{+}\mu^{-}$

Golden mode results: sin(2β)

(both CP-odd and CP-even, $\eta_f = \pm 1$)

~K_s0

~ K⁰

Mark Williams

Golden mode results: sin(2β)

Golden mode results: sin(2)

other inputs

Other angles: α and γ

Similar approach to measure other angles...

$$\beta = \phi_1 = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right)$$
$$\alpha = \phi_2 = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right)$$
$$\gamma = \phi_3 = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

b→cW transitions, with B mixing (e.g. $B^0 \rightarrow J/\psi K_S^0$)

b→uW transitions, with B mixing (e.g. $B^0 \rightarrow \pi^+\pi^-$) Messy – many interfering processes, and direct CPV

Penguin pollution

Beyond tree-level...

Can have penguin diagrams with different weak phase

For $B^0 \rightarrow J/\psi K_S^0$, tree-level process dominates \Rightarrow penguin can be ignored (<1% effect)

With sufficient experimental precision, these penguin contributions must be included.

Measuring CKM angle α

Similar process allows α to be measured , **BUT** cannot ignore penguin pollution here

Several proposed techniques to reduce sensitivity to penguin pollution, e.g.

- 'Gronau London' (<u>https://doi.org/10.1103/PhysRevLett.65.3381</u>, 1990)
- 'Snyder-Quinn' (<u>https://doi.org/10.1103/PhysRevD.48.2139</u>, 1993)

CKM angle α: state-of-the-art

Current measurements from different channels not in perfect agreement – need more precision!

CKM angle α: state-of-the-art

Impact of B-factories

On the eve of the LHC...

All constraints consistent with single point for apex

Direct measurements of angles:

 $\beta = (21.15 \pm 0.90)^{\circ}$ $\alpha = (89.0^{+4.4}_{-4.2})^{\circ}$ $\gamma = (73^{+22}_{-25})^{\circ}$

 \Rightarrow Need to improve γ measurement!

Brings us to the LHC era of flavour

2009

Summary

Today we covered the foundations of b physics:

- CP violation in the SM (quark sector)
- Unitarity triangle(s)
- Measuring CKM phases
- B-factory measurements of β and α

Next time – we will cover b (and c) physics in the LHC era:

- Hadron colliders vs B-factories
- Mixing and CP violation in B_s⁰ and D⁰ mesons
- CKM angle gamma
- Rare decays and lepton universality

Extra Slides

- CKM parameters
- CPV and 'strong phases'
- Measuring |V_{ub}|
- Measuring sin(2β)

CKM matrix: Why 4 parameters?

Why does a **3×3** CKM matrix only have **3 real** and **1 complex** parameters?

Most general N×N complex matrix would have 2N² = **18 parameters**

- Must be unitary, i.e. $V_{CKM}V_{CKM}^* = I \implies N^2$ constraints, leaving $N^2=9$ parameters (in physics: $t \rightarrow d + t \rightarrow s + t \rightarrow b = 1$)
- We can readily change conventions which describe phases between quark fields
 ⇒ 6 quarks, so 5 phase differences, leaving 4 free parameters
- N(N-1)/2 = 3 are rotation angles
- Remaining parameter is irreducible phase

Note: For N=2 (Cabibbo), we have 8 - 4 - 3 = 1 free parameter (must be rotation angle)

Conditions for CPV

Consider a process with two interfering amplitudes – can it violate CP symmetry?

There is a second condition to allow CP violation...

Conditions for CPV

There is a second condition to allow CP violation...

Different strong phase (i.e. CP conserving – no sign change) between amplitudes

CP violation! Difference in rates: $\Gamma(i \rightarrow f) - \Gamma(\overline{i} \rightarrow \overline{f}) = -4A_1A_2 \sin(\delta \phi) \sin(\delta \kappa)$

 $|V_{ub}|$ determined from semileptonic b \rightarrow u decays:

Two different approaches:

- "Exclusive" semileptonic decays (i.e. a known set of particular decays, e.g. B⁰ → π⁻e⁺ν)
- "Inclusive" semileptonic decays (i.e. B⁰ → X_ue⁺v where X_u includes all possible hadrons)

Easier

Experiment

Theory

X Less clean – requires understanding of form factors (Lattice QCD)

X Harder – need to reject background from b→c Cleaner – can use Operator Product Expansion (OPE)

Exclusive approach

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} |p_\pi|^3 |f_+(q^2)|^2$$

⇒ $B^0 \rightarrow \pi^- e^+ v$ rate versus q^2 is sensitive to $|V_{ub}|$, but requires theory input $|f_+(q^2)|$

Inclusive approach

Total decay rate to all Xu is easier to calculate – don't care about details of hadronisation

- But large contamination from $b \rightarrow c$ needs to be rejected.
- ⇒Cut on lepton energy or q² charm hadrons more massive

Several theoretical approaches – this is a summary of one of them (from Heavy Flavour Averaging Group, HFlav)

Exclusive vs Inclusive

Why is
$$A_{CP}^{mix} = -sin(2\beta)$$
 for $B^0 \rightarrow J/\psi K_S^0$?

$$\beta = \phi_1 = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right)$$

(1) remember:
$$A_{CP}^{mix} = S_{CP} = \frac{2 \Im(\lambda_{CP})}{1 + |\lambda_{CP}|^2}$$

so this is satisfied if $\lambda_{CP} = -e^{-2i\beta}$ = $-\cos(2\beta) - i \sin(2\beta)$

$$\lambda_{f_{CP}} \equiv \frac{q}{p} \frac{\overline{A}_{f_{CP}}}{A_{f_{CP}}}$$

Why is $A_{CP}^{mix} = -\sin(2\beta)$ for $B^0 \rightarrow J/\psi K_S^0$?

$$\beta = \phi_1 = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right)$$

(1) remember:
$$A_{CP}^{mix} = S_{CP} = \frac{2 \Im(\lambda_{CP})}{1 + |\lambda_{CP}|^2}$$

so this is satisfied if $\lambda_{CP} = -e^{-2i\beta}$ = $-\cos(2\beta) - i \sin(2\beta)$

(2) remember:
$$\lambda_{f_{CP}} \equiv \frac{q}{p} \overline{A}_{f_{CP}} = \frac{V_{tb} * V_{td}}{V_{tb} V_{td} *} \dots$$

$$\overbrace{b \qquad t \qquad v_{tb} \qquad v_{tb} \qquad v_{td} \qquad v_{tb} * V_{td}}^{\overline{b} \qquad v_{tb} \sim v_{td}} = \frac{V_{tb} * V_{td}}{V_{tb} V_{td} *} \dots$$

Why is $A_{CP}^{mix} = -\sin(2\beta)$ for $B^0 \rightarrow J/\psi K_S^0$?

$$\beta = \phi_1 = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right)$$

(1) remember:
$$A_{CP}^{mix} = S_{CP} = \frac{2 \Im(\lambda_{CP})}{1 + |\lambda_{CP}|^2}$$
 so this is satisfied if $\lambda_{CP} = -e^{-2i\beta} = -\cos(2\beta) - i\sin(2\beta)$
(2) remember: $\lambda_{f_{CP}} \equiv \frac{q}{p} A_{f_{CP}}$
 $d = \frac{q}{p} A_$

Why is $A_{CP}^{mix} = -\sin(2\beta)$ for $B^0 \rightarrow J/\psi K_S^0$?

$$\beta = \phi_1 = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right)$$

Why is
$$A_{CP}^{mix} = -\sin(2\beta)$$
 for $B^0 \rightarrow J/\psi K_S^0$?

$$\beta = \phi_1 = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right)$$

(1) remember:
$$A_{CP}^{mix} = S_{CP} = \frac{2 \Im(\lambda_{CP})}{1 + |\lambda_{CP}|^2}$$
 so this is satisfied if $\lambda_{CP} = -e^{-2i\beta} = -\cos(2\beta) - i\sin(2\beta)$

(2) remember:
$$\lambda_{f_{CP}} \equiv \frac{q}{p} \frac{\overline{A}_{f_{CP}}}{A_{f_{CP}}} = \frac{V_{tb} * V_{td}}{V_{tb} V_{td}} \frac{V_{cb} V_{cs}}{V_{cb} * V_{cs}} \eta_{CP} \frac{V_{cd} * V_{cs}}{V_{cd} V_{cs} *}$$

Why is
$$A_{CP}^{mix} = -\sin(2\beta)$$
 for $B^0 \rightarrow J/\psi K_S^0$?

$$\beta = \phi_1 = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right)$$

(1) remember:
$$A_{CP}^{mix} = S_{CP} = \frac{2 \Im(\lambda_{CP})}{1 + |\lambda_{CP}|^2}$$
 so this is satisfied if $\lambda_{CP} = -e^{-2i\beta} = -\cos(2\beta) - i\sin(2\beta)$

(2) remember:
$$\lambda_{f_{CP}} \equiv \frac{q}{p} \frac{A_{f_{CP}}}{A_{f_{CP}}} = \frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*} \frac{V_{cb} V_{cs}^*}{V_{cb}^* V_{cs}} \eta_{CP} \frac{V_{cd}^* V_{cs}}{V_{cd} V_{cs}^*}$$
$$= -\frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*} \frac{V_{cb} V_{cd}^*}{V_{cb}^* V_{cd}} \qquad \begin{array}{c} \text{Cancel terms, and} \\ \eta_{CP} = -1 \text{ for } J/\psi K_S^0 \end{array}$$

$$\beta = \phi_1 = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right)$$

Why is $A_{CP}^{mix} = -\sin(2\beta)$ for $B^0 \rightarrow J/\psi K_S^0$?

(1) remember:
$$A_{CP}^{mix} = S_{CP} = \frac{2 \Im(\lambda_{CP})}{1 + |\lambda_{CP}|^2}$$
 so this is satisfied if $\lambda_{CP} = -e^{-2i\beta} = -\cos(2\beta) - i\sin(2\beta)$

$$\begin{array}{ll} \text{(2) remember:} & \lambda_{f_{CP}} \equiv \frac{q}{p} \overline{A_{f_{CP}}} & = \frac{V_{\text{tb}} * V_{\text{td}}}{V_{\text{tb}} V_{\text{td}}} & \frac{V_{\text{cb}} V_{\text{cs}}}{V_{\text{cb}} * V_{\text{cs}}} \, \eta_{\text{CP}} \frac{V_{\text{cd}} * V_{\text{cs}}}{V_{\text{cd}} V_{\text{cs}} *} \\ & = -\frac{V_{\text{tb}} * V_{\text{td}}}{V_{\text{tb}} V_{\text{td}}} & \frac{V_{\text{cb}} V_{\text{cd}}}{V_{\text{cb}} * V_{\text{cd}}} & \begin{array}{c} \text{Cancel terms, and} \\ \eta_{\text{CP}} = -1 & \text{for } J/\psi K_{\text{S}}^{\,0} \end{array} \\ & = -\frac{V_{\text{cb}} V_{\text{cd}}}{V_{\text{tb}} V_{\text{td}}} & \frac{V_{\text{tb}} * V_{\text{td}}}{V_{\text{cb}} * V_{\text{cd}}} & \begin{array}{c} \text{Rearrange} \end{array} \end{array}$$

Why is $A_{CP}^{mix} = -\sin(2\beta)$ for $B^0 \rightarrow J/\psi K_S^0$?

$$\beta = \phi_1 = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right)$$
$$\Rightarrow Ae^{i\beta} = \left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right)$$

(1) remember:
$$A_{CP}^{mix} = S_{CP} = \frac{2 \Im(\lambda_{CP})}{1 + |\lambda_{CP}|^2}$$
 so this is satisfied if $\lambda_{CP} = -e^{-2i\beta} = -\cos(2\beta) - i\sin(2\beta)$

(2) remember:
$$\lambda_{f_{CP}} \equiv \frac{q}{p} \frac{\overline{A}_{f_{CP}}}{A_{f_{CP}}} = \frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*} \frac{V_{cb} V_{cs}^*}{V_{cb}^* V_{cs}} \eta_{cP} \frac{V_{cd}^* V_{cs}}{V_{cd} V_{cs}^*}$$
$$= -\frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*} \frac{V_{cb} V_{cd}^*}{V_{cb}^* V_{cd}} \qquad \begin{array}{c} \text{Cancel terms, and} \\ \eta_{CP} = -1 \text{ for } J/\psi K_S^0 \end{array}$$
$$= \begin{bmatrix} -\frac{V_{cb} V_{cd}^*}{V_{tb} V_{td}^*} & \underbrace{V_{tb}^* V_{td}}{V_{cb}^* V_{cd}} & \text{Rearrange} \end{aligned}$$
$$= \begin{bmatrix} Ae^{i\beta} \end{bmatrix}^* = \begin{bmatrix} -Ae^{i\beta} \end{bmatrix}^{-1} \\ = Ae^{-i\beta} & = -A^{-1}e^{-i\beta} & \Rightarrow \lambda_{J/\psi KS0} = -e^{-2i\beta} & Q.E.D \end{array}$$

Flavour Physics Lecture 2 21 July 2022 Mark Williams