

CERN Summer Student Lectures 2022

Heavy lons 2/3

Francesca Bellini

University and INFN, Bologna, Italy Contact: francesca.bellini@cern.ch

Production and characterization of the QGP at the LHC

Rapidity distributions in HI collisions

Before the collision: beams with given rapidity

E.g. at RHIC:

- p_{BEAM} = 100 GeV/c per nucleon
- $E_{BEAM} = \sqrt{(m_p^2 + p_{BEAM}^2)} = 100.0044$ per nucleon
- β = 0.999956, γ_{BEAM}≈100
- y_{BEAM1} = - y_{BEAM2} = 5.36 → Δy = 10.8

After the collision, 2 possible scenarios

- 1. Nuclei stopping
 - For $\sqrt{s_{NN}} \sim 5$ -10 GeV (AGS,...)
- 2. Transparency
 - For $\sqrt{s_{NN}}$ > 100 GeV (RHIC, LHC)
 - nuclei slow down to lower γ and y
 - particles are produced with a "plateau" at midrapidity

Charged particle multiplicity vs centrality

ALI-PUB-115086

ALICE, Phys.Lett. B 772 (2017) 567-577

Charged particle production in central HI collisions

Particle production per participant in HI collisions follows a steeper power law than in pp, pA and increases by 2-3x from RHIC to the LHC

Heavy-ion collisions are more efficient in transferring energy from beam- to mid- rapidity than pp

How many particles are created in a collision?

In a central Pb-Pb collision at the LHC, more than 20000 charged tracks must be reconstructed.

→ High granularity tracking systems,
primary importance of tracking,
vertexing calibration

Particle "spectra"

Low p₇ (< 2 GeV/c)

- Particle spectra are described by a Boltzmann distribution \rightarrow "thermal", ~ exp(-1/k_BT)
- "Bulk" dominated by light flavor particles
- Non-perturbative QCD regime

High p_τ (> 8-10 GeV/c)

- Particle spectra described by a power law
- Dominated by parton fragmentation (jets)
- Perturbative QCD regime

Mid p₇ (2 to 8 GeV/c)

 Interplay of parton fragmentation and recombination of partons from QGP

Heavy-ion and high-energy physics have different goals and thus different detector requirements.

Observables:

- soft (low p_T) and hard (high p_T) probes •
- hadron production rates (needs PID) ۰
- flow (needs acceptance coverage) \bullet
- photon/W/Z (calorimetry) \bullet
- jets (coverage, high p_{T}) •

In HI physics also emphasis on:

- midrapidity measurements
- identification of hadron species
- soft (non-perturbative) regime, i.e. low p_T
- minimum bias events

Complementarity of the LHC experiments

- ALICE
 - Low p_T
 - PID

ATLAS/CMS

- **ATLAS**
- Wide pseudorapidity coverage
- High p_{T} jets

LHCb

- Forward pseudorapidity
- PID
 - Fixed target

LHCb

The standard model of heavy-ion collisions

Probes 1/2

1 fm/c = $3x10^{-24}$ s, 1 MeV ~ 10^{10} K

High-p_T partons (\rightarrow jets), charm and beauty quarks (\rightarrow open HF, quarkonia) produced in the early stages in hard processes,

traverse the QGP interacting with its constituents = colored probes in a colored medium

- \rightarrow rare, calibrated probes, perturbative QCD
- \rightarrow in-medium interaction (energy loss) and transport properties
- \rightarrow in-medium modification of the strong force and of fragmentation

Probes 2/2

1 fm/c = $3x10^{-24}$ s, 1 MeV ~ 10^{10} K

Low-p_T particles, light flavour hadrons (u,d,s, +nuclei)

produced from hadronization of the strongly-interacting, thermalized QGP constitute the bulk of the system

- \rightarrow non-perturbative QCD regime
- \rightarrow thermodynamical, hydrodynamical and transport properties

How does the presence of a colored QGP affect particle production?

Jets

In the early stages of the collision, hard scatterings produce back-to-back recoiling partons, which fragment into collimated "sprays" of hadrons.

 \rightarrow in-vacuum fragmentation

ATLAS, pp collision event display

Jets

In the early stages of the collision, hard scatterings produce back-to-back recoiling partons, which fragment into collimated "sprays" of hadrons.

 \rightarrow in-vacuum fragmentation

When a QGP is formed, the colored partons traverse and interact with a colored medium.

- \rightarrow in-medium fragmentation
- \rightarrow jet ''quenching" (energy loss)

Goal: understand the nature of this energy loss to characterize the strongly-interacting QGP

The nuclear modification factor, R_{AA}

$$R_{AA}(p_T) = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{AA} / dp_T}{dN_{pp} / dp_T}$$

If a AA collision is a incoherent superposition of independent pp collisions, the p_T spectra in AA collisions can be obtained by scaling the p_T spectra in pp collisions by the number of nucleon-nucleon collisions, N_{coll} :

 $\mathrm{d}N_{AA} / \mathrm{d}p_T = N_{coll} \times \mathrm{d}N_{pp} / \mathrm{d}p_T$

and $R_{AA} = 1$ at high p_T \rightarrow the medium is transparent to the passage of partons

If $R_{AA} < 1$ at high p_T

 \rightarrow the medium is opaque to the passage of partons \rightarrow parton-medium final state interactions, energy loss, modification of fragmentation in the medium

A strong suppression of high- p_T hadrons and jets is observed in central Pb-Pb collisions. No suppression observed in p-Pb collisions, nor for the color-less Z bosons and photons. \rightarrow Jet quenching is explained as **parton energy loss in a strongly interacting plasma**

Radiative energy loss

In the BDMPS (*Baier-Dokshitzer-Mueller-Peigné-Schiff*) approach, the energy loss depends on

- the color-charge via the Casimir factors C_r
 - $C_r = C_A = 3$ for g interactions
 - $C_r = C_F = 4/3$ for q,qbar interactions
- the strong coupling
- the path length L
- the **transport coefficient** \hat{q} ("q-hat")
 - gives an estimate of the "strength" of the jet quenching
 - is <u>not directly measurable</u> \rightarrow from data through model(s)

Baier-Dokshitzer-Mueller-Peigné-Schiff, Nucl. Phys. B. 483 (1997) 291

How much energy is lost?

From the BDMPS formula :

$$\left< \Delta E \right> = \frac{1}{4} \alpha_s \ C_R \ \hat{q} \ L^2$$
 Dimensional analysis $\left< \Delta E \right> = \frac{\alpha_s \ C_R \ \hat{q} \ L^2}{4\hbar c}$

If we take

- $-\hat{q} \sim 5 \text{ GeV}^2/\text{fm}$
- $\alpha_{\rm S}$ = 0.2, strong coupling for Q² = 10 GeV
- $C_{R} = 4/3$
- L = 7.5 fm

we obtain $<\Delta E > \sim 95 \text{ GeV}$

Only partons with E \gtrsim 105 GeV can traverse a 7.5 fm radius fireball and exit with $p_T \gtrsim$ 10 GeV/c

In other words, it takes a ~7.5 fm radius QGP droplet to stop a jet of ~100 GeV (or ~1.5m of hadronic calorimeter)

Jet transport coefficient \hat{q}

A recent combined analysis of the RHIC and the LHC data on jet quenching (inclusive hadron R_{AA}) allowed to extract a value for the \hat{q} parameter

$$\frac{\hat{q}}{T^3} \approx \begin{cases} 4.6 \pm 1.2 & \text{at RHIC,} \\ 3.7 \pm 1.4 & \text{at LHC,} \end{cases}$$

For a quark jet with E = 10 GeV

$$\hat{q} \approx \begin{cases} 1.2 \pm 0.3 \\ 1.9 \pm 0.7 \end{cases} \text{ GeV}^2/\text{fm at} & \begin{array}{c} \text{T}=370 \text{ MeV} \\ \text{T}=470 \text{ MeV} \end{cases}$$

 \rightarrow Still large uncertainties, but important step **towards a quantitative characterisation** of the QGP.

In-medium jets: main questions

Related to the nature and properties of the medium

- Density of the medium and transport properties
- Nature of the scattering centers
- Distribution of the radiated energy
- ...

Related to the nature of the energy loss mechanism

- Path length dependence
- Broadening effects
- Microscopic mechanism for energy loss

 \rightarrow Study the shape and structure of jets for insight into the details of jet modification mechanisms due to interactions with the plasma

- Flavour dependence
 - \rightarrow measure charm and beauty R_{AA}

Charm and beauty

Heavy flavours: m(charm) ~ 1.3 GeV/c² m(beauty) ~ 4.7 GeV/c²

are ideal probes of the QGP at the LHC:

- large production cross sections
- Produced in **initial hard** parton scatterings
- controlled values of mass and colour charge of the propagating parton
- "brownian" motion through the medium, diffusion
- sensitive to QGP hadronisation (baryon/meson)

Energy loss of charm and beauty

Charm and beauty loose energy via gluon radiation + elastic collisions

Due to the large masses, radiative energy loss is subject to the **dead cone effect** = suppression of the gluon radiation emitted by a (slow) heavy quark at small angles, $\vartheta < \vartheta_{DC} \sim m_q/E_q$

 \rightarrow hierarchy in energy loss: $\Delta E_g > \Delta E_c > \Delta E_b$

 \rightarrow radiative energy loss reduced by 25% (c) and 75% (b) [μ = 1 GeV/c²]

Baier-Dokshitzer-Mueller-Peigné-Schiff, Nucl. Phys. B. 483 (1997) 291

$$\langle \Delta E \rangle \propto \alpha_s C_r \hat{q} \mathsf{L}^2$$

 $= \frac{\mu^2}{\lambda} \stackrel{\text{Average transverse}}{\underset{\text{Mean free path ~1/density}}{\text{Average transverse}}}$

Nuclear modification of charm and beauty

A strong suppression is observed in the R_{AA} of D mesons J/psi from b decay. J/ ψ from beauty is less suppressed than D mesons from charm $\rightarrow \Delta E_c > \Delta E_b$

Collisional energy loss

It depends on

- **path length** through the medium, L (linearly)
- parton type
 - For light quarks
 - For heavy quarks

$$\Delta E_{q,g} \sim \alpha_s C_R \mu^2 L \ln \frac{ET}{\mu^2} + \alpha_s^2 T^2 C_R \mu^2 L \ln \frac{ET}{M^2}$$

- temperature of the medium, T
- mass of the heavy quark M
- average transverse momentum transfer $\boldsymbol{\mu}$ in the medium

 \rightarrow Data are well described by models that include both collisional and radiative E_{loss}

Summary 1/2

Evidence of the creation of a strongly-interacting

medium in central heavy ion collisions comes from the observed strong suppression of particle production, explained by the energy loss of colored partons in the colored QGP.

- Radiative energy loss dominates at high p_T for light flavours, gluons and charm
- Collisional and radiative energy loss play similar role for beauty

A **quantitative characterization** of the properties of the medium (e.g. transport coefficient, ...) requires **models**.

How does the presence of a colored QGP affect hadron formation?

Quarkonia

c-cbar (J/ Ψ , Ψ ',..) and b-bar (Y', Y",Y") pairs are a laboratory for QCD:

 \rightarrow Goal: understand mechanisms of **dissociation and regeneration** in QGP

- Small decay width (~keV), significant BR into dileptons
- Intrinsic separation of energy scales: $m_Q >> \Lambda_{QCD}$ and $m_Q >> B_E$
- A variety of states characterized by different binding energies

Quarkonium as a thermometer for QGP

Charmonium suppression $(J/\psi, \psi',...)$ suggested as "smoking gun" signatures for the QGP back in the 1980's.

In vacuum (T=0), qqbar is bound by the Cornell potential. α

$$V(r) = -\frac{\alpha}{r} + kr$$

When the qqbar is immersed in the dense and hot QGP (T>0), the surrounding color charges screen the binding potentials (color Debye screening), resulting in

 $V(r) = -\frac{\alpha}{r} e^{-r/\lambda_D}$

The effective coupling between q and qbar at large distances gets reduced \rightarrow q-qbar melting

J/ψ suppression

- observed at the SPS ($\sqrt{s_{NN}} = 17 \text{ GeV}$)
- later measured at RHIC (√s_{NN}=200 GeV) up to very high multiplicities

For similar multiplicities the suppression at SPS is similar to that at RHIC despite the energy difference

At the LHC, $\sqrt{s_{NN}} = 2.76$ TeV, yet J/ ψ is less suppressed, due to the larger charm cross section.

F. Bellini | SSL 2022 | Heavy Ions

J/ ψ production vs \sqrt{s}

The cross section for producing a c-cbar pair increases with \sqrt{s}

In a central event At SPS ~0.1 c-cbar At RHIC ~10 c-cbar At LHC ~100 c-cbar

c from one c-cbar pair may combine with cbar from another c-cbar pair at hadronization to form a J/ψ \rightarrow regeneration!

J/ψ suppression vs regeneration 1/2

(Re)generation of charmonium and charmed hadron production take place at the phase boundary or in QGP. Dissociation and regeneration work in opposite directions vs energy density.

P. Braun-Munzinger, J. Stachel., Nature 448, 302–309 (2007)

J/ψ suppression vs regeneration 2/2

ALICE data from 5.02 TeV Pb-Pb collisions confirm the J/ ψ recombination picture:

- $R_{AA}(LHC) > R_{AA}(RHIC)$
- R_{AA} midrapidity > R_{AA} forward rapidity

→ Signature of de-confinement.

Sequential melting of quarkonia

Measurements reveal a sequential suppression of high mass bottomonium states. The centrality dependence of the suppression is consistent with progressive suppression in a hotter medium.

Sequential melting of quarkonia

 R_{AA} (Y(3S) ~ 0.5 R_{AA} (Y(2S)) → Can be used to constrain models!

Increased suppression with increased collision energy → no recombination at hadronisation

Quarkonia as probes

ALI-DER-65274

Charm is partially equilibrated (thermalised) with the medium \rightarrow a partially-equilibrated probe of the late hadronization stages

Beauty/bottomonia: no evidence that beauty is even partially equilibrated with the medium **>** non-equilibrium probe

Summary 2/2

The study of quarkonium (ccbar, bbar) states provides information on the mechanisms of **dissociation and regeneration** of strongly-bound state in a medium (T>0).

- The high density of color charges in the QGP leads to melting of quarkonia
- The large abundance of charm quarks at LHC results in regeneration of the amount of J/ψ
- States with smaller binding energies are more suppressed

