

CERN Summer Student Lectures 2022

Heavy lons 3/3

Francesca Bellini

University and INFN, Bologna, Italy Contact: francesca.bellini@cern.ch

Recap: jets, heavy-flavour

Bulk particle production

The bulk of particles is **soft** and composed by **light flavour** hadrons that are produced when the QGP hadronises.

The p_T and azimuthal distributions of hadrons carry information about the **collective evolution** of the system and its thermodynamical properties.

Goal: determine the thermodynamical and transport properties of the QGP

The hadron-gas phase and freeze-outs

After hadronisation, the system is a hot (T< 155 MeV) and dense gas of hadrons and resonances.

Chemical freeze-out

- Inelastic collisions stop
- Relative particle abundances are fixed

Kinetic freeze-out

- (pseudo)elastic collisions stop
- Momentum distributions are fixed
- → Fit abundance of identified hadrons: probe chemical equilibrium at **chemical freeze-out**
- \rightarrow Fit shape of p_T spectra: probe final hadron kinematics at kinetic freeze-out

Identified particle production

Statistical hadronisation model in a nutshell

It models an ideal relativistic gas of hadrons and resonances in **chemical equilibrium** (as the result of the hadronization of a QGP in thermodynamical equilibrium.

Particle abundances are obtained from the partition function of a Grand Canonical (GC) ensemble

$$n_i = N_i/V = -\frac{T}{V} \frac{\partial \ln Z_i}{\partial \mu} = \frac{g_i}{2\pi^2} \int_0^\infty \frac{p^2 \mathrm{d}p}{\exp[(E_i - \mu_i)/T] \pm 1}$$

where chemical potential for quantum numbers are constrained with conservation laws.

 $\mu_{i} = \mu_{B}B_{i} + \mu_{S}S_{i} + \mu_{I_{3}}I_{3,i} + \mu_{C}C_{i}$

□ Predict yields (see right figure) at a given temperature □ Fit measured particle yields (or ratios) to extract $\mu_{\rm B}$, $T_{\rm ch}$, V.

Chemical freeze-out temperature

Production of (most) light-flavour hadrons (and anti-nuclei) is described (χ^2 /ndf ~ 2) by thermal models with a **single chemical freeze-out** temperature, **T**_{ch} ≈ 156 MeV

→ Approaches the critical temperature roof from lattice QCD: limiting temperature for hadrons!

 \rightarrow the success of the model in fitting yields over 10 orders of magnitude supports the picture of a system in **local thermodynamical equilibrium**

Hydrodynamics at play: radial flow 1/2

A collective motion is superimposed to the thermal motion of particles \rightarrow the system as a medium

Radial flow

radial expansion of a medium in the vacuum under a common velocity field

 \rightarrow Affects the low p_T distribution of hadrons and their ratios depending on their mass

Hydrodynamics at play: radial flow 2/2

At low $p_{T,}$ the radial flow "pushes" particles to higher momenta \rightarrow spectra get "harder" for more central collisions \rightarrow mass dependence

A simplified hydrodynamical model, the Boltzmann-Gibbs blastwave model is used to **quantify radial flow and the kinetic freeze-out temperature.**

More central (higher multiplicity) events have lower T_{kin} and higher flow velocity

Hydrodynamics at play: anisotropic flow (1/2)

Initial geometrical anisotropy ("almond" shape) in non-central HI collisions \rightarrow eccentricity

Pressure gradients develop \rightarrow more and faster particles along the reaction plane than out-of-plane

Scatterings among produced particles convert **anisotropy** in coordinate space into an observable momentum anisotropy \rightarrow **anisotropic flow**

ightarrow quantified by a Fourier expansion in azimuthal angle arphi

$$v_n = \text{harmonics}$$
$$E\frac{\mathrm{d}^3 N}{\mathrm{d}p^3} = \frac{1}{2\pi} \frac{\mathrm{d}^2 N}{p_{\mathrm{T}} \mathrm{d}p_{\mathrm{T}} \mathrm{d}y} (1 + 2\sum_{n=1}^{\infty} v_n \cos[n(\varphi - \Psi_n)]),$$

Hydrodynamics at play: anisotropic flow (2/2)

The strong centrality dependence of v_2 reflects the degree of "anisotropy" in initial geometry.

Fluctuations of the initial state energy-density lead to different shapes of the overlap region \rightarrow **non-zero higher-order flow** coefficients ("harmonics")

F. Bellini - QCD in extreme conditions

Two-particle correlations in Pb-Pb collisions

Collectivity can also be studied by looking at correlations of two particles vs $\Delta \eta$ (difference in rapidity) and $\Delta \varphi$ (difference in azimuthal angle).

ALICE, Phys.Lett. B 708 (2012) 249-264

Two-particle correlations in Pb-Pb collisions

Collectivity can also be studied by looking at correlations of two particles vs $\Delta \eta$ (difference in rapidity) and $\Delta \varphi$ (difference in azimuthal angle).

 \rightarrow Decomposition in Fourier series of the azimuthal distribution at large η .

Hydrodynamical modeling

Ideal hydrodynamics

- applies to a system in local equilibrium (e.g. thermodynamical)
- requires energy and charge conservation
- system is described by energy density ε , pressure P, velocity u^{ν} , and charge n and by 5 equation of motion, closed by one equation-of-state (EOS) $\varepsilon = \varepsilon(P)$
- The response of the system to external solicitation is controlled by the EOS

Viscous hydrodynamics

Includes corrections for dissipative effects:
bulk ζ and shear viscosity η, charge diffusion, κ

$$\nabla_{\mu}T^{\mu\nu} = 0 \qquad \nabla_{\mu}J^{\mu}_{B} = 0$$

$$T^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - (P - \zeta \Theta) \Delta^{\mu\nu} - 2\eta \sigma^{\mu\nu}$$
$$J^{\mu} = q u^{\mu} + \kappa \nabla^{\mu}_{\perp} (\mu/T)$$

Shear viscosity

Shear viscosity (expressed as viscosity over entropy, η /s) washes out initial-state anisotropies

- Larger consequences on higher-order harmonics
- Larger η /s reduces flow

QGP properties from flow 1/2

Bayesian analysis of yields, mean p_T , flow harmonics measured by ALICE has been used to extract the QGP properties.

J. E. Bernhard et al, Nature Physics 15 (2019) 1113

QGP properties from flow 2/2

Bayesian analysis of yields, mean p_T , flow harmonics measured by ALICE has been used to extract the QGP properties.

J. E. Bernhard et al, Nature Physics 15 (2019) 1113

Hadronisation by fragmentation and recombination

Ratios of production distribution of baryons to mesons are sensitive to competing particle production mechanisms, depending on transverse momentum

Fragmentation (a) of high- p_T partons into mid- p_T hadrons

Recombination (b,c) of low- p_T partons close in phase space into mid- p_T hadrons via coalescence

+ influence of **collective flow**

Investigating hadronization mechanisms

At intermediate p_T , a **baryon/meson enhancement** is observed and more evident for particle ratios where mass difference is larger, e.g. p/π , Λ/K_{S}^{0} and less evident for small Δm , e.g. p/ϕ

Baryon/meson ratios are sensitive to hadronisation mechanisms \rightarrow interplay of **radial flow** and **recombination**

Hadronisation via recombination/coalescence

Recombination/coalescence of (hard) charm quarks traveling through the QGP with a light quarks from the medium (QGP) would result in modifications of the spectra and R_{AA} at low/mid p_T .

- Charm $v_2 > 0 \rightarrow$ initially produced isotropically, charm is strongly affected by the QCD medium
- Modification of the p_T distribution and v_2 of open-HF hadron \rightarrow c picks up flow from the light q
- Modification of chemistry, e.g. enhancement of $\Lambda_{\rm c}/{\rm D}$

Summary

Bulk particle abundances are described by the statistical hadronization model assuming chemical equilibrium and with Tch ~ 156 MeV

The QGP expands rapidly under radial flow. Spatial anisotropy of the initial collision region causes anisotropic flow.

Spectra and flow coefficients are well described by viscous hydrodynamics with a very low shear viscosity $(\eta/s \sim 0.08 - 0.16) \rightarrow$ "perfect liquid"

The success of SHM and hydrodynamic description also supports the idea of a medium in local thermodynamical equilibrium.

From large to small systems

First signs of collectivity in small systems

The first indication of the presence of collective phenomena in high-multiplicity pp collisions came from the study of two-particle correlations vs $\Delta \eta$ and $\Delta \varphi$.

A **ridge** is observed in high multiplicity pp but not in minimum bias pp collisions! The ridge is not reproduced by pp Monte Carlo generators, e.g. PYTHIA.

The "ridge" in pp, p-Pb collisions

Signs of collectivity in **small systems** "discovered" at the LHC in terms of long-range ($2 < |\Delta \eta| < 4$) near-side ($\Delta \phi = 0$) "ridge" in 2-particle correlations, visible in **high multiplicity** pp, p-Pb, Pb-p collisions

Are these long-range correlations coming from (hydrodynamic) flow?

Collectivity correlates many particles over a wide η range

Elliptic flow from multi-particle correlations:

 $v_2{4} \approx v_2{6} \approx v_2{8} > 0$

- subtract jets and other physical 2-particle correlations due to non-flow
- measure with rapidity gap

In AA collisions, collectivity originates from the presence of a strongly-interacting QGP

OPEN QUESTION: what is the origin of the emerging collectivity in pp, p-Pb collisions?

Chemistry from small to large systems

Multi-strange to non-strange yield ratios increase significantly and smoothly with multiplicity in pp and p-Pb collisions until saturation in Pb-Pb

 strangeness enhancement relative to pp suggested in the 1980's as QGP signature

→ Particle composition evolves smoothly across collision systems, depending only on final-state multiplicity

OPEN QUESTION: "emergence" in hadron production mechanism, from microscopical hadron production mechanisms (string overlap, color reconnection) to the onset of a QGP (thermalization, equilibration)?

 \rightarrow A challenge for models!

Summary and outlook

Experimental probes and evidence that a QGP is formed in heavy-ion collisions

- Strong jet quenching and medium-induced modification
- Quarkonium suppression \rightarrow Melting of states as a function of temperature
- Regeneration and partial thermalisation of charm
- Radial and anisotropic flow \rightarrow Collective behavior of a QGP with very low shear viscosity (η /s),
- High temperatures, mostly statistical particle production (Tchem, Tkin)
- Heavy-ion-like effects observed in pp and p-Pb collisions

A new frontier

- Is there QGP in small systems?
- Can we explain these effects without a QGP?
- Can we describe these emerging phenomena in one unified picture across systems?

Big progress towards a quantitative characterisation of the properties of the QGP with still open questions to be addressed in Run3 and beyond.

Open heavy-flavour: energy loss and hadronization

Study mass dependence of energy loss, in-medium thermalization of heavy-flavours and their hadronization as a probe of the medium transport properties (e.g. charm spatial diffusion coefficient)

High-precision elliptic-flow and R_{AA} measurement at mid- and forward rapidity for both c and b sectors

Quarkonia: melting vs regeneration vs energy loss

Study regeneration and thermalization of heavy flavours with precision measurements of charmonia flow, RAA and $\psi(2S)/J/\psi$, explore feeddown

Nuclei, dileptons, small systems and more...

Clarify formation mechanisms of nuclear bound states from a dense partonic state: (anti-)nuclei and (anti-)(hyper-)nuclei up to A = 4

Access to the thermal dilepton

excess after subtraction of light

hadron decay and charm

+ net-charge fluctuations, jets (the QCD objects!), heavy-quark jets, light ions, nPDFs, low-x physics,...

A "small systems" programme to study collectivity, strangeness production, the onset of QGP like features

Thank you for your attention!

Run number: 520143 First TF orbit: 692888 Date: Tue Jul 5 16:53:05 2022 Detectors: ITS,TPC,TRD,TOF,PHS,EMC,MFT,MCH,MID fbellini@cern.ch