

# Experimental Physics at Lepton Colliders



#### Frank Simon

@ Summer Student Lectures CERN/Zoom - July 2022







# Overview

A two-part story

- Part 1:
  - Scientific motivation
  - Future e<sup>+</sup>e<sup>-</sup> colliders in broad strokes
  - Detectors at future e<sup>+</sup>e<sup>-</sup> and  $\mu^+\mu^-$  colliders
- Part 2:
  - Higgs physics
  - Electroweak precision
  - Top quark physics
  - Into the unknown



# Disclaimer

I have taken material from many different presenters - impossible to list them all. I want to single out Mogens Dam, who gave excellent lectures on the same topic in the last years, which I took as inspiration. An excellent resource reflecting the current state of this field is the just completed Snowmass '21 CSS Meeting in Seattle: <u>https://indico.fnal.gov/event/22303</u>

The selection of material reflects my personal bias. I am not trying to "sell" a particular future facility - but use your own judgment to form you opinion!





# Part I

# Introduction

Where we are, how we got there



## The Standard Model of Particle Physics

A Collider Success Story

**SPEAR / AGS 1974** Fermilab 1977 Tevatron 1995

AGS 1962 **SPEAR 1975** Fermilab 2000



• The result of generations of accelerators, and the interplay of experiment and theory Providing testable predictions

**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022



**PETRA 1979** SppS 1983 LHC 2012

- e<sup>+</sup>e<sup>-</sup> colliders
- hadron colliders
- fixed target





## Understanding the Universe

Success and limits of the Standard Model



**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022



Frank Simon (fsimon@mpp.mpg.de)

## Understanding the Universe

Success and limits of the Standard Model



**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022



Frank Simon (fsimon@mpp.mpg.de)

## Strategies for Discovery in Particle Physics

Direct and indirect



**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022



Direct observation of new particles: Requires sufficient energy for production





## Strategies for Discovery in Particle Physics

#### Direct and indirect





Direct observation of new particles: Requires sufficient energy for production

Indirect discovery: **Deviations from** expectation hinting at new phenomena at (much) higher energy scale











## **Precision Measurements**

#### An established discovery strategy

| Particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Indirect                    |                          |         | Direct                            |               |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|---------|-----------------------------------|---------------|------|
| ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | β decay                     | Fermi                    | 1932    | Reactor v-CC                      | Cowan, Reines | 1956 |
| W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | β decay                     | Fermi                    | 1932    | W→ev                              | UA1, UA2      | 1983 |
| С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $K^0 \rightarrow \mu\mu$    | GIM                      | 1970    | J/ψ                               | Richter, Ting | 1974 |
| b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | СРV <i>К<sup>0</sup>→пп</i> | CKM, 3 <sup>rd</sup> gen | 1964/72 | Y                                 | Ledermann     | 1977 |
| Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | v-NC                        | Gargamelle               | 1973    | $Z \rightarrow e^+e^-$            | UA1           | 1983 |
| t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B mixing                    | ARGUS                    | 1987    | $t \rightarrow Wb$                | D0, CDF       | 1995 |
| н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e+e-                        | EW fit, LEP              | 2000    | $H \rightarrow 4\mu/\gamma\gamma$ | CMS, ATLAS    | 2012 |
| ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | What's next ?               |                          | ?       |                                   |               | ?    |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ W^{-} \\ \end{array} \\ \begin{array}{c} \end{array} \\ e^{-} \\ \overline{\nu}_{e} \\ \end{array} \\ K^{0} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \mu^{-} \\ \end{array} \\ \begin{array}{c} \end{array} \\ p \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} $ \left( \end{array} \\ \end{array} \\ \end{array} \\ \end{array}  \left( \end{array} \\ \end{array} \\ \end{array} \\ \end{array}  \left( \end{array} \\ \bigg{)} \end{array} \\ \bigg{)} \end{array} \\ \bigg{)} \\ \end{array} \\ \bigg{)} \\ \end{array}  \left( \end{array} \\ \bigg{)} \\ \bigg{)} \\ \end{array} \\ \bigg{)} \\ \bigg{)} \\ \end{array}  \left( \end{array} \\ \bigg{)} \\ \bigg |                             |                          |         |                                   |               |      |
| $d$ $\mu^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |                          |         | <i>b d</i> taken from Niels Tu    |               |      |

**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022



with a well-founded theoretical model, precision measurements can be turned into discoveries - and precision measurements can guide the development of new models.

Iring, ICHEP 2018

Frank Simon (fsimon@mpp.mpg.de)





### **Precision Measurements**

#### An established discovery strategy











# Why e<sup>+</sup>e<sup>-</sup> Colliders?



The main workhorses of HEP

• Colliders accelerate charged particles to high energy and bring them to collision - two main types so far:

proton-proton collider





#### electron-positron collider



The main workhorses of HEP

#### proton-proton collider



composite particles

dominated by strong interaction

**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022



#### • Colliders accelerate charged particles to high energy and bring them to collision - two main types so far:

#### electron-positron collider



The main workhorses of HEP

#### proton-proton collider



composite particles

dominated by strong interaction

**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022



#### • Colliders accelerate charged particles to high energy and bring them to collision - two main types so far:

electron-positron collider



dominated by electroweak interaction

Frank Simon (fsimon@mpp.mpg.de)

The main workhorses of HEP



and e<sup>+</sup>e<sup>-</sup> colliders

composite particles

dominated by strong interaction

**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022



• Colliders accelerate charged particles to high energy and bring them to collision - two main types so far:



Frank Simon (fsimon@mpp.mpg.de)

Higgs production as an example to illustrate differences









Higgs production as an example to illustrate differences









Higgs production as an example to illustrate differences











#### Experimental Conditions at e<sup>+</sup>e<sup>-</sup> Colliders Looking back at LEP

- LEP the first occupant of the tunnel we now know as the "LHC tunnel": 1989 2000, 91 209 GeV • Fantastically clean events: No pile-up, no underlying events -> All you see is the physics! • Signal and physics background cross sections comparable: no trigger challenge!



**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022







# Experimental Conditions at e<sup>+</sup>e<sup>-</sup> Colliders

Looking back at LEP

- of the final state is known.
  - Can be exploited in event reconstruction kinematic fitting, et. al., used to eliminate jet energy scale uncertainties in WW events, for example

Here:

$$e^+e^- \rightarrow W^+W^- \rightarrow q\bar{q}q\bar{q}$$

accurate measurements of the jet directions, together with event constraints provide precise jet energies and di-jet masses (W mass)



• A key feature: Excellent knowledge of initial state, given by  $\sqrt{s} \rightarrow$  Energy conservation means the four-vector



Frank Simon (fsimon@mpp.mpg.de)

#### LEP Legacy A few examples

• An era of precision measurements - still dominating many parameters 25 years later...

After 5 years at LEP1: per-mille level precision  $N_v = 2.984 \pm 0.008$ Γ<sub>Z</sub> = 2495.2 ± 2.3 MeV m<sub>z</sub> = 91187.5 ± 2.1 MeV  $\alpha_s = 0.1190 \pm 0.0025$ 

Precision measurements could predict the top and Higgs masses prior to discovery







#### The Higgs @10 Where we are today

• The coupling of many different particles to the Higgs have been observed - to date all agree with SM expectations



**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022



#### The Higgs @10 Where we are today



**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022



16

Frank Simon (fsimon@mpp.mpg.de)

## The Big Questions

What we know we don't know

- How can the Higgs boson be so light?
- What is the mechanism behind electroweak symmetry breaking?
- What is Dark Matter made out of?
- What drives inflation?

. . .

- Why is the universe made out of matter?
- What generates Neutrino masses?



## The Big Questions

What we know we don't know

- How can the Higgs boson be so light?
- What is the mechanism behind electroweak symmetry breaking?
- What is Dark Matter made out of?
- What drives inflation?

. . .

- Why is the universe made out of matter?
- What generates Neutrino masses?



The answers to these questions have to be *outside* of the Standard Model!

# **The Way Forward**

- What we do know:

  - Most hints for new phenomena come from the electroweak + Higgs sector: Expect some new particles to be charged under electroweak interactions
- What we don't know:
  - The energy scale of new particles / phenomena

• The Higgs is connected to all particles we know - and is at the center of some of our questions



#### No Guarantees

The challenge of making the case for future colliders

• Before the start of LHC: The "no-lose theorem"







#### **No Guarantees**

The challenge of making the case for future colliders

Before the start of LHC: The "no-lose theorem"



With the "completion" of the standard model: No certainty - and no clear indication of the energy scale of new phenomena





## Asking for Directions

Promising Areas for a New Precision Program

- Study with highest precision what has not yet been scrutinized in depth: The Higgs Boson, the top quark
- Revisit areas of previous precision exploits with a whole new level of scrutiny: The Z pole: Electroweak, QCD, flavour; the W boson
- Explore the unknown: Search for new phenomena at high energies, and with extreme luminosity / sensitivity at lower energies





A new precision program







A new precision program



**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022



#### The Top Quark a precise measurement of its properties. A possible window to new physics due to its high The Higgs Boson mass! model-independent study of all accessible couplings





A new precision program

#### **Electroweak Precision**

push down the uncertainties on all electroweak measurements to push the SM to (hopefully beyond) its breaking point



#### The Top Quark a precise measurement of its properties. A possible window to new physics due to its high **The Higgs Boson** mass! model-independent study of all accessible couplings





A new precision program

#### **Electroweak Precision**

push down the uncertainties on all electroweak measurements to push the SM to (hopefully beyond) its breaking point

#### The Top Quark a precise measurement of its properties. A possible window to new physics due to its high The Higgs Boson mass! model-independent study of all accessible couplings

#### **Flavour Physics**

use extremely large data sets to explore, resolve and understand the puzzles in the flavour sector







A new precision program

#### **Electroweak Precision**

push down the uncertainties on all electroweak measurements to push the SM to (hopefully beyond) its breaking point

#### The Higgs Boson

model-independent study of all accessible couplings

#### **Flavour Physics**

use extremely large data sets to explore, resolve and understand the puzzles in the flavour sector

**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022



#### The Top Quark

a precise measurement of its properties. A possible window to new physics due to its high mass!

#### **New Particles**

searches for weakly coupled new particles with high luminosity / high energy in a clean environment

Frank Simon (fsimon@mpp.mpg.de)






# Perspectives of Energy

Bringing together physics goals and collider energy



**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022





# Perspectives of Energy

Bringing together physics goals and collider energy



**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022





# Perspectives of Energy

Bringing together physics goals and collider energy



**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022





Collider Types Circular and Linear

## **Circular Colliders**:

Collision of two particle beams on circular orbits in opposite direction



Re-use of non-collided particles in future turns, acceleration can proceed over many revolutions. Need for bending magnets to keep particles on track.





Collider Types Circular and Linear

## **Circular Colliders**:

Collision of two particle beams on circular orbits in opposite direction



Re-use of non-collided particles in future turns, acceleration can proceed over many revolutions. Need for bending magnets to keep particles on track.



### Linear Colliders:

Collision of two particle beams from linear accelerators pointed at each other



Full acceleration in a "single shot", unused particles are lost. No need for magnets



Collider Types Circular and Linear

## **Circular Colliders**:

Collision of two particle beams on circular orbits in opposite direction



Re-use of non-collided particles in future turns, acceleration can proceed over many revolutions. Need for bending magnets to keep particles on track.



### Linear Colliders:

Collision of two particle beams from linear accelerators pointed at each other



Full acceleration in a "single shot", unused particles are lost. No need for magnets

Makes sense for light particles at high energy: Synchrotron radiation losses scale with E<sup>4</sup> and m<sup>-4</sup> and r<sup>-2</sup>







## Circular vs Linear e<sup>+</sup>e<sup>-</sup>

Differences in luminosity and energy reach



**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022



• Circular colliders very efficient at low energies, at higher energies synchroton radiation becomes a key limiting factor:

Power proportional to  $E^4/R^2$  - Loss per turn ~  $E^4/R$ 

- ⇒ The scaling of the size of the facility with energy is very different:
  - Circular colliders have to grow at least with E<sup>2</sup>
  - Linear colliders grow with E but inherently more complicated, with a large cost offset



Conceptual differences in physics reach







#HL-CHC



Conceptual differences in physics reach







#HL-CHC



Conceptual differences in physics reach







Conceptual differences in physics reach





Fature Leoten Collides Future Hadron Colliders HL-CHC



Conceptual differences in physics reach







Conceptual differences in physics reach



**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022





Maximising physics output, react to discoveries

- A general challenge: Colliders and the associated infrastructure are expensive - making long-term scientific exploitation mandatory
- It is basic research:

Discoveries or new insights may call for changes in direction







Maximising physics output, react to discoveries

- A general challenge: Colliders and the associated infrastructure are expensive - making long-term scientific exploitation mandatory
- It is basic research: Discoveries or new insights may call for changes in direction

## **Evolution scenarios:**







Maximising physics output, react to discoveries

- A general challenge: Colliders and the associated infrastructure are expensive - making long-term scientific exploitation mandatory
- It is basic research:

Discoveries or new insights may call for changes in direction

**Evolution scenarios:** 



A big ring: Full length required on day one, then can be used for a lepton and a hadron collider sequentially







Maximising physics output, react to discoveries

- A general challenge: Colliders and the associated infrastructure are expensive - making long-term scientific exploitation mandatory
- It is basic research:

Discoveries or new insights may call for changes in direction

## **Evolution scenarios:**



- e<sup>+</sup>e<sup>-</sup> Collider
- Hadron Collider

highest possible energy: 100(+) TeV

A big ring: Full length required on day one, then can be used for a lepton and a hadron collider sequentially







Maximising physics output, react to discoveries

- A general challenge: Colliders and the associated infrastructure are expensive - making long-term scientific exploitation mandatory
- It is basic research:

Discoveries or new insights may call for changes in direction

## **Evolution scenarios:**



- e<sup>+</sup>e<sup>-</sup> Collider
- Hadron Collider

highest possible energy: 100(+) TeV

A big ring: Full length required on day one, then can be used for a lepton and a hadron collider sequentially sequence

**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022









A linear collider: Step-wise extension, lepton collisions at different energies in



Maximising physics output, react to discoveries

- A general challenge: Colliders and the associated infrastructure are expensive - making long-term scientific exploitation mandatory
- It is basic research:

Discoveries or new insights may call for changes in direction

## **Evolution scenarios:**



A big ring: Full length required on day one, then can be used for a lepton and a hadron collider sequentially

A linear collider: Step-wise extension, lepton collisions at different energies in sequence

**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022







e<sup>+</sup>e<sup>-</sup> Collider

longer tunnel:

higher energy



Maximising physics output, react to discoveries

- A general challenge: Colliders and the associated infrastructure are expensive - making long-term scientific exploitation mandatory
- It is basic research:

Discoveries or new insights may call for changes in direction

## **Evolution scenarios:**



A big ring: Full length required on day one, then can be used for a lepton and a hadron collider sequentially

sequence

**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022





e<sup>+</sup>e<sup>-</sup> Collider

- longer tunnel:
  - higher energy
  - new acceleration technology

- A linear collider: Step-wise extension, lepton collisions at different energies in





Maximising physics output, react to discoveries

- A general challenge: Colliders and the associated infrastructure are expensive - making long-term scientific exploitation mandatory
- It is basic research:

Discoveries or new insights may call for changes in direction

## **Evolution scenarios:**



A big ring: Full length required on day one, then can be used for a lepton and a hadron collider sequentially

A linear collider: Step-wise extension, lepton collisions at different energies in sequence

**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022







e<sup>+</sup>e<sup>-</sup> Collider

- longer tunnel:
  - higher energy
- new acceleration technology
- as source for other accelerators





A Linear Collider Story





A Linear Collider Story







A Linear Collider Story







A Linear Collider Story







A Linear Collider Story







A Linear Collider Story

• Linear colliders provide a staged physics program - matched to the variety of center-of-mass energies relevant for a broad e<sup>+</sup>e<sup>-</sup> program

~ 250 GeV

- ~ 350 380 GeV
- ~ 500 550 GeV

~ 1 - 1.5 TeV

~ 3 TeV





+ direct & indirect discovery potential increasing with energy





A Linear Collider Story

• Linear colliders provide a staged physics program - matched to the variety of center-of-mass energies relevant for a broad e<sup>+</sup>e<sup>-</sup> program





+ direct & indirect discovery potential increasing with energy





A Linear Collider Story

• Linear colliders provide a staged physics program - matched to the variety of center-of-mass energies relevant for a broad e<sup>+</sup>e<sup>-</sup> program



**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022







A Circular Collider Story







A Circular Collider Story







A Circular Collider Story











A Circular Collider Story



together: 50+ years from first e<sup>+</sup>e<sup>-</sup> collisions to completion of pp program

**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022





# **Concrete Facilities**

A selection of lepton colliders

discussion of a wider range of possibilities see the lecture by Barbara Dalena.

• Very quick panorama of the main facilities discussed since ~10+ years - for more details, and a



# The International Linear Collider

e<sup>+</sup>e<sup>-</sup> Collider - Construction in Japan?



**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022







# The International Linear Collider

e<sup>+</sup>e<sup>-</sup> Collider - Construction in Japan?

- The main technology: Superconducting acceleration structure
- operation






## The Compact Linear Collider

e<sup>+</sup>e<sup>-</sup> Collider - a backup option at CERN

- CLIC at CERN: A linear e+e- Collider with 3 energy stages from 380 GeV to 3 TeV
  - Novel acceleration technology to reach high gradients in an energy-efficient manner







## The Compact Linear Collider

e<sup>+</sup>e<sup>-</sup> Collider - a backup option at CERN

- CLIC at CERN: A linear e+e- Collider with 3 energy stages from 380 GeV to 3 TeV
  - Novel acceleration technology to reach high gradients in an energy-efficient manner













- An electroweak, Higgs factory, running at 91 GeV, ~ 160 GeV, 240 GeV
  - Upgrade to the top: threshold around 350 GeV, and 365 GeV











- An electroweak, Higgs factory, running at 91 GeV, ~ 160 GeV, 240 GeV
  - Upgrade to the top: threshold around 350 GeV, and 365 GeV
- Main dipoles: 14 57 mT field normal conducting
- Central: RF acceleration structures: Up to 11 GV total at 182.5 GeV, in both main rings and booster









**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022



- An electroweak, Higgs factory, running at 91 GeV, ~ 160 GeV, 240 GeV
  - Upgrade to the top: threshold around 350 GeV, and 365 GeV
- Main dipoles: 14 57 mT field normal conducting
- Central: RF acceleration structures: Up to 11 GV total at 182.5 GeV, in both main rings and booster

A similar proposal in China: CEPC









**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022



- An electroweak, Higgs factory, running at 91 GeV, ~ 160 GeV, 240 GeV
  - Upgrade to the top: threshold around 350 GeV, and 365 GeV
- Main dipoles: 14 57 mT field normal conducting
- Central: RF acceleration structures: Up to 11 GV total at 182.5 GeV, in both main rings and booster

A similar proposal in China: CEPC

Long-term perspective: a ~100 TeV Hadron Collider FCC-hh / SppC

Frank Simon (fsimon@mpp.mpg.de)









## **Collision Energy Precision**

A circular collider feature

- the beam energy is a key systematic.
- GeV beam energy), measuring the beam energy via resonant depolarisation.

#### *Key ingredients:*

Beam energy in a ring given by radius of particle orbit and dipole field:

$$E \sim p = eBR = \frac{e}{2\pi}BL$$

in real life B is not perfectly uniform, the orbit not a perfect circle:

$$E = \frac{e}{2\pi} \oint Bdl$$
 For FCC to monormal to measure this!

**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022

Exploit transverse polarisation: spin precesses in B field!

Measure precession frequency (excitation with an RF magnet) with different frequency, bringing polarisation to 0)



• In particular for electroweak precision measurements at the Z pole and the WW threshold the knowledge of

• Exploit the fact that the beams get transversely polarized over time - this effect drops with beam energy, was usable at LEP up to ~ 60 GeV, for FCC-ee expected to extend a bit further, up to WW threshold (< 90

> C-ee: dedicated bunches itor beam energy



Frank Simon (fsimon@mpp.mpg.de)

34

## Longitudinally Polarized Beams

A Linear Collider Feature

- Longitudinal polarization can be preserved in a linear accelerator - enables the collision of polarized beams
- Requires polarized sources for electrons and positrons
  - High polarization for electrons routinely achievable planning with 80%
  - 30% for positrons for ILC

Presents interesting physics possibilities:

- Suppression of physics background
- Increase of signal cross sections
- Additional analyzing power for a wide range of electroweak processes





Frank Simon (fsimon@mpp.mpg.de)



## Muon Collider

A path to high energies with leptons



Power efficient at high energies, key challenge the decay of muons.





# **Detectors at Future Lepton Colliders**

- Extensively developed for linear colliders (ILC, CLIC)
- Activities for FCC-ee now picking up, requiring some modifications
- Muon colliders the latest addition, challenges being understood, concepts emerging



### **General Detector Features**

Aiming for precision, profiting from benign backgrounds



**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022





#### HL-LHC

from this...



### **General Detector Features**

Aiming for precision, profiting from benign backgrounds









### **General Detector Features**

Aiming for precision, profiting from benign backgrounds



- Need detector systems that match the ambitious precision goals of lepton colliders: Resolution, calibration accuracy, stability...
- The main concern is not survival: (With very few exceptions) radiation tolerance requirements are very minor, occupancies and rates typically low







### **Detector Performance Goals - Tracking**

Motivated by key physics signatures

 Momentum resolution Higgs recoil measurement, H ->  $\mu\mu$ , BSM decays with leptons

#### σ(p<sub>T</sub>) / p<sub>T</sub><sup>2</sup> ~ 2 x 10<sup>-5</sup> / GeV

precise and highly efficient tracking, extending to 100+ GeV

low mass, good resolution:

for Si tracker ~ 1-2%  $X_0$  per layer, 7 µm point resolution







# **Detector Performance Goals - Tracking**

Motivated by key physics signatures







# **Detector Performance Goals - Tracking**

Motivated by key physics signatures



single point resolution in vertex detector  $\sim 3 \,\mu m$  $< 0.2 X_0$  per layer







**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022



Frank Simon (fsimon@mpp.mpg.de)



## **Detector Performance Goals - Jets, Photons, PID**

Motivated by key physics signatures

• Jet energy resolution Recoil measurements with hadronic Z decays, separation of W, Z, H bosons, ...

**σ(E**<sub>jet</sub>) / E<sub>jet</sub> ~ 3% - 5% for E<sub>jet</sub> > 45 GeV

reconstruction of complex multi-jet final states.

#### • Photons

Resolution not in the focus:  $\sim 15 - 20\%/\sqrt{E}$ Worth another look ?

Coverage to 100s of GeV important





Arbitrary Units



## **Detector Performance Goals - Jets, Photons, PID**

Motivated by key physics signatures

• Jet energy resolution Recoil measurements with hadronic Z decays, separation of W, Z, H bosons, ...

#### **σ(E**<sub>jet</sub>) / E<sub>jet</sub> ~ 3% - 5% for E<sub>jet</sub> > 45 GeV

reconstruction of complex multi-jet final states.

#### • Photons

Resolution not in the focus:  $\sim 15 - 20\%/\sqrt{E}$ Worth another look ?

Coverage to 100s of GeV important

#### Particle ID

Clean identification of e,  $\mu$  up to highest energies

PID of hadrons to improve tagging, jets,...





**Arbitrary Units** 



## **Detector Performance Goals - Jets, Photons, PID**

Motivated by key physics signatures

• Jet energy resolution Recoil measurements with hadronic Z decays, separation of W, Z, H bosons, ...

#### **σ(E**<sub>jet</sub>) / E<sub>jet</sub> ~ 3% - 5% for E<sub>jet</sub> > 45 GeV

reconstruction of complex multi-jet final states.

#### • Photons

Resolution not in the focus: ~  $15 - 20\%/\sqrt{E}$ Worth another look ?

Coverage to 100s of GeV important

#### Particle ID

Clean identification of  $e, \mu$  up to highest energies

- PID of hadrons to improve tagging, jets,...
- Hermetic coverage

Dark matter searches in mono-photon events, ...

N.B.: Achievable limits do not depend strongly on  $\sigma(E_v)$ 

**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022





Arbitrary Unit

## **Linear Collider Conditions**

... and the consequences for the detector design

• Linear Colliders operate in bunch trains:



- at CLIC: Δt<sub>b</sub> = 0.5 ns; f<sub>rep</sub> = 50 Hz
- at ILC:  $\Delta t_b = 554 \text{ ns}$ ;  $f_{rep} = 5 \text{ Hz}$



- Enables power pulsing of front-end electronics, resulting in dramatically reduced power consumption
  - $\Rightarrow$  Eliminates need for active cooling in many areas of the detectors: Reduced material, increased compactness





## **Linear Collider Conditions**

... and the consequences for the detector design

• Linear Colliders operate in bunch trains:



- at CLIC: Δt<sub>b</sub> = 0.5 ns; f<sub>rep</sub> = 50 Hz
- at ILC:  $\Delta t_b = 554 \text{ ns}$ ;  $f_{rep} = 5 \text{ Hz}$
- ... and require extreme focusing to achieve high luminosity





- $\Rightarrow$  Enables power pulsing of front-end electronics, resulting in dramatically reduced power consumption
  - $\Rightarrow$  Eliminates need for active cooling in many areas of the detectors: Reduced material, increased compactness

- Significant beam-induced backgrounds
  - Constraints on beam pipe geometry, crossing angle and vertex detector radius
  - In-time pile-up of hadronic background: sufficient granularity for topological rejection
  - $\Rightarrow$  At CLIC: small  $\Delta t_b$  also results in out-of-time pile-up: **ns-level timing** in many detector systems









## **The Linear Collider Detector Design - Main Features**

Focusing on general aspects



**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022



- A large-volume solenoid 3.5 5 T, enclosing calorimeters and tracking
- Highly granular calorimeter systems, optimised for particle flow reconstruction, best jet energy resolution [Si, Scint + SiPMs, RPCs]
- Low-mass main tracker, for excellent momentum resolution at high energies [Si, TPC + Si]
- Forward calorimeters, for low-angle electron measurements, luminosity [Si, GaAs]
- Vertex detector, lowest possible mass, smallest possible radius [MAPS, thinned hybrid detectors]
- Triggerless readout of main detector systems

all: capable of dealing with beam background via timing, granularity, radiation hardness where needed









### From linear to circular

Key differences with detector implications

- Energy: Focus on lower energy for FCCee a maximum of 365 GeV
  - Reduced calorimeter depth
  - Less collimated jets can potentially compromise on calorimeter compactness, granularity
- Need the beams to survive, and reach high luminosity
  - Limits on solenoidal field
    - Reduced momentum resolution at constant tracker size
    - Larger magnetic volume "affordable": A path to recover momentum resolution
- No bunch train structure: DC operation of the detector readout
  - Active cooling (or compromises on granularity, speed) required in many areas of the detector: Increased material, less compact construction of calorimeters

In addition: slightly different physics emphasis: Flavour at the Z pole in particular - which makes PID more important, adding additional detector requirements.





• A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLIC to CLD



**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022





Frank Simon (fsimon@mpp.mpg.de)





• A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLIC to CLD









• A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLIC to CLD







• A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLIC to CLD









• A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLIC to CLD







## FCC-ee: Additional Concepts

Different calorimeter concepts, other track solutions

• Putting more emphasis on (low-energy) photons: Requires better resolution in the ECAL



#### **IDEA**: Based on dual readout calorimetry, low-mass drift chamber as main tracker





## FCC-ee: Additional Concepts

Different calorimeter concepts, other track solutions

Putting more emphasis on (low-energy) photons: Requires better resolution in the ECAL



**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022



different tracker options



## FCC-ee: Additional Concepts

Different calorimeter concepts, other track solutions

• Putting more emphasis on (low-energy) photons: Requires better resolution in the ECAL



**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022



different tracker options

+ investigating detector concepts with added PID





### Detectors at Muon Colliders

The background challenge

- The constant decay μ -> evv creates a very large beam-induced background (BIB): High-energy showers induced by electrons, creating a wide range of different background particles.
  - Radiation levels comparable to HL-LHC.







### Detectors at Muon Colliders

First ideas

A modified CLIC detector concept, adjusted for background conditions

#### hadronic calorimeter



**Experiments at Lepton Colliders -** CERN Summer Student Lectures, July 2022



#### tracking system Vertex Detector: double-sensor layers . (4 barrel cylinders and 4+4 endcap disks); 25x25 µm<sup>2</sup> pixel Si sensors. Inner Tracker: 3 barrel layers and • 7+7 endcap disks; 50 µm x 1 mm macro-

pixel Si sensors.

#### Outer Tracker:

- 3 barrel layers and 4+4 endcap disks;
- 50 µm x 10 mm microstrip Si sensors.

~ 10 degree acceptance limitation in forward region due to tungsten nozzles

precise timing throughout detector important to reject **BIB** 

#### shielding nozzles

Tungsten cones + borated polyethylene cladding.



# Lecture 1 Wrap-up



### Conclusions Key Points Part 1

- generation of experiments needs to show where it breaks.
- Global agreement: a e<sup>+</sup>e<sup>-</sup> Higgs-Elektroweak-Top Factory as the next step:
  - A new era of precision measurements, profiting from benign background conditions, well-defined initial state, and low physics backgrounds.
  - Different possible realisations linear or circular, each with specific strengths and weaknesses  $\bullet$
- Well-established detector concepts tailored to physics goals and experimental conditions but a lot of room for new ideas and further innovation!



• Lepton and hadron colliders have been instrumental in firmly establishing the Standard Model. The next


## Perspectives: Physics Emphasis & Collider Geometry

In broad strokes

• e<sup>+</sup>e<sup>-</sup> collider geometry determines experimental focus beyond the core Higgsstrahlung program:

## **Circular**:

extreme statistics at the Z pole and W threshold: precision electroweak







## Linear:

reach to (multi-)TeV energy - double higgs production, high energy exploration



