

KM3NeT physics perspective

Universiteit Leiden Instituut voor Onderzoek in de Natuurkunde

KM3NeT

The neutrino as messenger

What is the origin of cosmic rays?

What are the sources of high energy neutrinos?

Hints of new physics?

Neutrino energy spectrum

KM3NeT characteristics

KM3NeT effective area

KM3NeT/ARCA (analysis cuts) comparison to IceCube

Caiffi et al., *JINST* **16** C09030, 2021

KM3NeT strengths

Instantaneous Field of view with horizontal tracks

- -> 'sweet spot' for PeV events
- -> complementary between neutrino detectors

Average visibility for *, background-free*' view (upwards) in galactic coordinates:

KM3NeT strengths

Mediterranean Sea:

Transparent water, good scattering properties => Excellent angular resolutions for track- and cascade signatures (all flavors)

KM3NeT resolution

KM3NeT Physics potential

- Cosmic Rays
- Astrophysical diffuse neutrino flux
- Galactic neutrino flux
- Cosmic sources
 - => MeV -> PeV
 - => Steady/Transients
- Dark matter / exotics
- Oscillations -> talk Paschal Coyle

Cosmic Rays

Most signals (muons & neutrinos) in detector from atmospheric cosmic ray interactions

=> information on hadronic interaction models
=> measurement of muon prompt flux
=> information on cosmic ray composition

Observables:

 muon bundle multiplicity/diameter/zenith/energy
 => First promising reconstructions using GNNs on few-string detector simulations

Excellent resolutions of event topologies already with few strings

Cosmic Neutrinos

Discovery of astrophysical neutrino flux by IceCube

 $3\sigma/2\sigma$ confirmation from GVD/ANTARES

Where does it come from?

Differences in flux size and spectral index for different subsets of neutrinos?

To be taken into account:

- different energy ranges
- different parts of the sky probed
- different interaction and observation channels
- different. systematic uncertainties

Abbasi et al , ApJ 928 50, 2022

Cosmic Neutrinos

Discovery of astrophysical neutrino flux by IceCube

~3 σ /~2 σ confirmation from GVD/ANTARES

Where does it come from?

Differences in flux size and spectral index for different subsets of neutrinos?

To be taken into account:

- different energy ranges
- different parts of the sky probed
- different interaction and observation channels
- different. systematic uncertainties

KM3NeT will probe neutrino flux with complementary view

For the diffuse cosmic neutrino flux of [2]: 1.44 x 10 ⁻¹⁸ (E/100TeV) ^{-2.28} [GeV ⁻¹ cm ⁻² s ⁻¹ sr ⁻¹]		Number of events
Φ _{90%CL} [GeV ⁻¹ cm ⁻² s ⁻¹ sr ⁻¹]	Φ _{5σ} [GeV ⁻¹ cm ⁻² s ⁻¹ sr ⁻¹]	N _{atm.muν} = 68.4
17.3 x 10 ⁻¹⁸	51.4 x 10 ⁻¹⁸	N _{cosmic nu} = 1.3

Cosmic Neutrinos

Discovery of astrophysical neutrino flux by IceCube

 $3\sigma/2\sigma$ confirmation from GVD/ANTARES

Where does it come from?

Differences in flux size and spectral index for different subsets of neutrinos?

To be taken into account:

- different energy ranges
- different parts of the sky probed
- different interaction and observation channels
- different. systematic uncertainties

KM3NeT will probe neutrino flux with complementary view

Flavor triangle

Neutrino flavor composition expected in 'standard' scenario 1:1:1

-> Different astrophysics or new physics => different flavor ratio

KM3NeT

Good event topology resolution -> efficient recovery of tau neutrino 'double bang' signature => additional information for flavor distribution

Flavor triangle

New physics assumptions

Neutrino flavor composition expected in 'standard' scenario 1:1:1

-> Different astrophysics or new physics=> different flavor ratio

KM3NeT

Good event topology resolution -> efficient recovery of tau neutrino 'double bang' signature => additional information for flavor distribution

Ackermann et al., Snowmass 2021

Flavor triangle

Neutrino flavor composition expected in 'standard' scenario 1:1:1

-> Different astrophysics or new physics => different flavor ratio

KM3NeT

Good event topology resolution -> efficient recovery of tau neutrino 'double bang' signature => additional information for flavor distribution (not yet used in this evaluation)

T. Eberl, T. Heid, PoS(ICRC2017)1006 Lowest significance level here limited by number of pseudo-experiments

Cosmic neutrino source candidates: The usual suspects

Blazars, Starburst galaxies, GRBs, TDEs, Supernoavae remnants,

- Best evidence so far for blazar TXS0506, several hints also for other neutrino correlations
 -> no clear picture yet
- Multi-messenger observation needed for understanding of production and acceleration
 -> separate unambigously leptonic/hadronic processes
- Real-time follow-up crucial

KM3NeT/ARCA6 (92 days) source limits KM3NeT/ARCA6 (92 days) sensitivity ANTARES (13yr) sensitivity IceCube (7yr) sensitivity KM3NeT/ARCA330 (7yr) sensitivity KM3NeT/ARCA330 (3yr) sensitivity

0

0.5

sin(δ)

KM3NeT/ARCA 2x115 string prospects (3 years)

Galactic sources

Prospects for prominent TeV γ -sources, flux assumption based on γ flux Flux sensitivity versus time (assuming 2 x 115 strings for KM3NeT/ARCA)

Modeled fluxes of the sources

Galactic sources

Prospects for prominent TeV γ -sources, flux assumption based on γ flux Flux sensitivity versus time (assuming 2 x 115 strings for KM3NeT/ARCA)

KM3NeT track resolution @100TeV

KM3NeT track resolution @10TeV

At lower energies also intrinsic neutrino-muon distance relevant

H.E.S.S. collaboration, Astronomy & Astrophysics, Volume 612, 2018

Probing leptonic/hadronic scenarios in combination with CTA

Inverse Compton (IC) / Pion decay (PD) model fits to HESS data

Starburst Galaxies as cosmic neutrino sources

Aartsen et. Al, Astrophys. J. Lett. 898, 2020

Transient sources

Supernova (SN) monitoring in KM3NeT

Supernova MeV neutrinos => collective excess of multi-fold coincidences on all DOMs

Looking for the 'known unknowns'

Dark matter (DM) (e.g. in Sun, Galactic Center)

WIMP annihilation or decay to Standard Model Particles => expect also neutrino flux => astrophysical effects (e.g. matter profile) relevant in evaluation

Looking for the 'known unknowns'

Excellent resolution of event topologies also allows sensitive search for further dark matter signatures, e.g. 'double bang' or muon-doublets

Multi-messenger network

Neutrinos IceCube, **GVD-Baikal Cosmic Rays** GeV/TeV γ rays Pierre Auger, Fermi, H.E.S.S. HAWC/LHAASO/... Telescope Array KM3Ne Radio/Optical/X-ray Grav Waves MWA, TAROT, MASTER, LIGO, VIRGO Swift, INTEGRAL

A decade of discoveries lies ahead!

Image credits

TDE, artists view DESY, Science Communications Lab

Starburst Galaxy: M82 NASA, ESA, and The Hubble Heritage Team (STScI/AURA)

Blazar, artists view DESY, Science Communications Lab

SN remnant: Crab Nebula NASA and STScl