

Town Hall KM3NET meeting — 22 September, 2022 — Catania

High energy emission from starburst galaxies and their winds

Giovanni Morlino INAF/Oss. Astrofisico di Arcetri Firenze ITALY

Starburst Galaxies

SB galaxies are usually associated to events of galaxy mergers

* High star formation rate (10-100 times the Milky Way) in a small region (~200 pc)

 \Rightarrow large SN rate \Rightarrow high CR production

- * High level of turbulence \Rightarrow efficient CR confinement \Rightarrow Calorimetry?
- * High gas density \Rightarrow efficient γ and ν production
- * Abundant at high redshift \Rightarrow Contribution to diffuse flux?

Typical starburst environment* SFR $\simeq 10 - 100 M_{\odot} \mathrm{yr}^{-1}$ * Average ISM density $n \simeq 10^2 - 10^3 \mathrm{cm}^{-3}$ * Magnetic field $B \simeq 50 - 250 \,\mu\mathrm{G}$ * Radiation field density $U_{\mathrm{rad}} 10^3 \mathrm{eV cm}^{-3}$ * Wind velocity $v_{\mathrm{wind}} \simeq 500 \mathrm{km/s}$ * Supernova rate $\mathscr{R}_{\mathrm{SN}} \simeq 0.03 - 0.3 \mathrm{yr}^{-1}$ * Starburst lifetime $\simeq 10 \mathrm{Myr}$

Observation of Starburst Galaxies - gamma

- * Many SB observed at GeV
- Most nearby also detected at TeV
 - M82, NGC 253 (<4 Mpc)
- * Most distant source: Arp 220 (77 Mpc)
- * Observed spectrum usually hard:

$$\sim E^{-2.2} \div E^{-2.3}$$

CR propagation and confinement in SB nuclei

[Peretti, Blasi, Aharonian, GM (2019)]

We adopt a leaky-box model

$$\frac{f(p)}{\tau_{\text{loss}}} + \frac{f(p)}{\tau_{\text{adv}}} + \frac{f(p)}{\tau_{\text{diff}}} = Q_{\text{inj}}(p)$$

Injection

$$Q_{inj}(p) = N(p) \mathcal{R}_{SN} V^{-1}$$
$$N_p(p) \propto p^{-\alpha} e^{-p/p_{max}}$$
$$N_e(p) \propto k_{ep} p^{-\alpha} e^{-(p/p_{max})^2}$$

Losses

$$\frac{1}{\tau_{\rm loss}} = \Sigma_i \left(-\frac{1}{E} \frac{dE}{dt} \right)_i$$

 $p \rightarrow \text{ionisation}, p-p \text{ collision}, \text{Coulomb}$ $e \rightarrow \text{ionisation}, \text{sync. IC}, \text{brem.}$

CR propagation and confinement in SB nuclei

Diffusion

$$D(p) = \frac{r_L(p)v}{3} \frac{1}{k_{\text{res}}W(k_{\text{res}})}$$

Magnetic turbulence

$$W(k) = W_0 \left(kL_0\right)^{-\alpha}$$

- A) Kolmogorov: d = 5/3; $L_0 \simeq 1 \text{ pc}$
- B) Bohm: d = 0
- C) Milky Way-like: d = 5/3; $L_0 = 100 \text{ pc}$

- Electrons are confined in SBNi
- Advection and losses mainly regulate the transport of protons

G. Morlino, KM3NET meeting, 22 Sept. 2022

[Peretti, Blasi, Aharonian, GM (2019)]

1 \rightarrow primaries 2 \rightarrow secondaries: $\pi^{\pm} \rightarrow \mu^{\pm} \rightarrow e^{\pm}$ 3 \rightarrow tertiaries: $\gamma\gamma \rightarrow e^{+}e^{-}$

[Peretti, Blasi, Aharonian, GM (2019)]

1 \rightarrow primaries 2 \rightarrow secondaries: $\pi^{\pm} \rightarrow \mu^{\pm} \rightarrow e^{\pm}$ 3 \rightarrow tertiaries: $\gamma \gamma \rightarrow e^{+} e^{-}$

[Peretti, Blasi, Aharonian, GM (2019)]

1 \rightarrow primaries 2 \rightarrow secondaries: $\pi^{\pm} \rightarrow \mu^{\pm} \rightarrow e^{\pm}$ 3 \rightarrow tertiaries: $\gamma\gamma \rightarrow e^{+}e^{-}$

[Peretti, Blasi, Aharonian, GM (2019)]

Application to individual SB galaxies: M82

Photon background fitted from available data

Parameters	M82
$U_{ m eV/cm^3}^{ m FIR}$ [$rac{ m kT}{ m meV}$]	1618 [3.0]
$U_{ m eV/cm^3}^{ m MIR}$ [$rac{ m kT}{ m meV}$]	1132 [7.5]
$U_{ m eV/cm^3}^{ m NIR}$ [$rac{ m kT}{ m meV}$]	809 [24.0]
$U_{\rm eV/cm^3}^{\rm OPT} \left[\frac{\rm kT}{\rm meV} \right]$	970 [330.0]

[Peretti, Blasi, Aharonian, GM (2019)]

Application to individual SB galaxies: M82

[Peretti, Blasi, Aharonian, GM (2019)] 10-4 star-light Photon background 10⁻⁵ M82 **Parameters** E² F(E) [GeV cm ⁻² s⁻¹] fitted from available data 10⁻⁶ $U_{\rm eV/cm^3}^{\rm FIR}$ [$\frac{\rm kT}{\rm meV}$] 1618 [3.0] × 10⁻⁷ free-free $U_{\rm eV/cm^3}^{\rm MIR}$ [$\frac{\rm kT}{\rm meV}$] 1132 [7.5] 10⁻⁸ 10⁻⁹ $U_{\rm eV/cm^3}^{\rm NIR}$ [$\frac{\rm kT}{\rm meV}$] 809 [24.0] 10⁻¹⁰ syncrothron $U_{\mathrm{eV/cm^3}}^{\mathrm{OPT}}$ [$\frac{\mathrm{kT}}{\mathrm{meV}}$] 970 [330.0] 10⁻¹ 10⁻³ 10-2 10-4 10⁰ 10⁻⁵ 10-1 10¹ E [eV] **M82** Parameters Gamma-ray spectrum π^0 $\rightarrow \gamma \gamma$ Fermi-LAT D_L (Mpc) [z] 3.9 [9 10⁻⁴] IC Brem H۲ Chandra 10⁻⁹) $\mathcal{R}_{\rm SN}$ (yr⁻¹) 0.05 E² F(E) [GeV cm ⁻² s⁻¹] Sync **R** (pc) 220 Veritas 10⁻¹⁰ 4.25 α 3 *B* (μG) 225 $M_{\rm mol} (10^8 M_{\odot})$ 1.94 10⁻¹¹ $n_{\rm ISM}~({\rm cm}^{-3})$ 175 $n_{\rm ion}~({\rm cm}^{-3})$ 22.75 10-12 10² 10⁰ 10-4 10⁻² 10⁴ 10-6 $v_{\rm wind}$ (km/s) 600 Energy [GeV] T_{plasma} (K) 7000

[Peretti, Blasi, Aharonian, GM, Cristofari (2020)]

1) Determining the calorimetric condition

To be efficient neutrinos factories, SB nuclei should confine CRs efficiently

Using the Kennicutt (1998) relation:

$$\frac{\Sigma_{\rm SFR}^*}{M_{\odot} {\rm yr}^{-1} {\rm kpc}^{-2}} = (2.5 \pm 0.7) \times 10^{-4} \left[\frac{\Sigma_{\rm gas}^*}{1 \ M_{\odot} {\rm pc}^{-2}}\right]^{1.4 \pm 0.15}$$

$$\psi^* = \Sigma_{\text{SFR}}^* \pi R^2 \approx 0.9^{+2.2}_{-0.7} \left[\frac{R}{0.25 \text{ kpc}} \right]^2 M_{\odot} \text{yr}^{-1}.$$

Efficient calorimeter if
$$\psi > \psi^*$$

[Peretti, Blasi, Aharonian, GM, Cristofari (2020)]

- 1) Determining the calorimetric condition
- 2) Counting the SBNi
- Gamma and neutrino spectra

 $q_{\gamma,\nu}(E) \propto \begin{cases} q(p) & \tau_{\text{loss}} \ll \tau_{\text{adv}} \\ [n_{\text{ISM}} \sigma_{pp} c] q_p(p) R / v_{\text{wind}} & \tau_{\text{loss}} \gg \tau_{\text{adv}} \end{cases}$

Calorimetric limit

• Gamma and neutrino flux from a single SNB

$$f_{\gamma,\nu}^{\text{SBN}}(E,\psi) = \left(\frac{\psi}{\psi_{\text{M82}}}\right) f_{\gamma,\nu}^{M82}(E), \quad \text{for } \psi > \psi^*$$

- Determining the SFRF from a fit to the IR+UV data [Gruppioni et al. (2015)] $\Phi(\psi) \, d \log \psi = \tilde{\Phi} \left(\frac{\psi}{\tilde{\psi}}\right)^{1-\tilde{\alpha}} \exp\left[-\frac{1}{2\tilde{\sigma}^2}\log^2\left(1+\frac{\psi}{\tilde{\psi}}\right)\right] d \log \psi,$
- Gamma-ray and neutrino flux integrated over the cosmological history

$$\Phi_{\gamma,\nu}(E) = \frac{1}{4\pi} \int d\Omega \int_0^{4.2} dz \; \frac{dV_{\rm C}(z)}{dz \, d\Omega} \times \int_{\psi^*} d\log\psi \; \Phi_{\rm SFR}(\psi,z) \; [1+z]^2 f_{\gamma,\nu}(E[1+z],\psi).$$

G. Morlino, KM3NET meeting, 22 Sept. 2022

- 1) Determining the calorimetric condition
- 2) Counting the SBNi
- 3) Results

- 1) Determining the calorimetric condition
- 2) Counting the SBNi
- 3) Results
- IceCube ν can be explained by at E > 100 TeV

- 1) Determining the calorimetric condition
- 2) Counting the SBNi
- 3) Results
- IceCube ν can be explained by at E > 100 TeV
- Contribution to HESE neutrinos ~ 25%

- 1) Determining the calorimetric condition
- 2) Counting the SBNi
- 3) Results
- IceCube ν can be explained by at E > 100 TeV
- Contribution to HESE neutrinos ~ 25%
- Diffuse gamma-ray flux still compatible with FermiLAT: ≤ 40 % (Blazar contribution is between 60% and 85%)

- 1) Determining the calorimetric condition
- 2) Counting the SBNi
- 3) Results
- IceCube ν can be explained by at E > 100 TeV
- Contribution to HESE neutrinos ~ 25%
- Diffuse gamma-ray flux still compatible with FermiLAT: ≤ 40 % (Blazar contribution is between 60% and 85%)

Requirements:

• Hard acceleration slope: $\propto E^{-2.2}$ (Compatible with Milky Way SNRs)

G. Morlino, KM3NET meeting, 22 Sept. 2022

- 1) Determining the calorimetric condition
- 2) Counting the SBNi
- 3) Results
- IceCube ν can be explained by at E > 100 TeV
- Contribution to HESE neutrinos ~ 25%
- Diffuse gamma-ray flux still compatible with FermiLAT: ≤ 40 % (Blazar contribution is between 60% and 85%)

Requirements:

- Hard acceleration slope: $\propto E^{-2.2}$ (Compatible with Milky Way SNRs)
- Maximum energy ~ 100 PeV is required: How can be produced?

G. Morlino, KM3NET meeting, 22 Sept. 2022

- * Particle acceleration in SBNi is powered by SNRs
- * The dynamic of single SNRs should be similar to the ones in the Milky Way

- * Particle acceleration in SBNi is powered by SNRs
- * The dynamic of single SNRs should be similar to the ones in the Milky Way
- * But from observation of local SNRs $E_{\text{max}} \lesssim 100 \text{ TeV}$

- * Particle acceleration in SBNi is powered by SNRs
- * The dynamic of single SNRs should be similar to the ones in the Milky Way
- * But from observation of local SNRs $E_{\text{max}} \lesssim 100 \text{ TeV}$
- * Even theoretically $E_{\text{max}} \lesssim 1 \text{ PeV}$

Shure & Bell (2013) Type Ia Type II $n_{ism} = 0.85$ $n_{i}^{ism} = 0.05$ v = 4.7 km/sSchure & Bell (2013) E_{max} (eV) $\tilde{v} = 15 \text{ km/s}$ v =1000 km/s 1 PeV 10^{15} ·1·0¹⁵ E_{max} (eV) 10^{14} 10^{14} 10 100 1000 1 10 100 1000 time (year) time (year)

Maximum energy predicted using the non-resonant streaming instability [Bell, 2004]

G. Morlino, KM3NET meeting, 22 Sept. 2022

- * Particle acceleration in SBNi is powered by SNRs
- * The dynamic of single SNRs should be similar to the ones in the Milky Way
- * But from observation of local SNRs $E_{\text{max}} \lesssim 100 \text{ TeV}$
- * Even theoretically $E_{\text{max}} \lesssim 1 \text{ PeV}$
- * Larger energies could be obtained as a result of SNRs overlap

<image><text><text>

multiple shock crossing However difficult to reach 100 PeV

- * Particle acceleration in SBNi is powered by SNRs
- * The dynamic of single SNRs should be similar to the ones in the Milky Way
- * But from observation of local SNRs $E_{\text{max}} \lesssim 100 \text{ TeV}$
- * Even theoretically $E_{\text{max}} \lesssim 1 \text{ PeV}$
- * Larger energies could be obtained as a result of SNRs overlap

[Peretti, GM, Blasi, Cristofari, (2022)]

G. Morlino, KM3NET meeting, 22 Sept. 2022

[Peretti, GM, Blasi, Cristofari, (2022)]

Transport equation in spherical coordinates (approximation)

$$r^{2}u(r)\frac{\partial f}{\partial r} = \frac{\partial}{\partial r}\left[r^{2}D\frac{\partial f}{\partial r}\right] + \frac{1}{3}\frac{\partial}{\partial r}\left[r^{2}u\right]p\frac{\partial f}{\partial p} + r^{2}Q(r,p) - r^{2}\Lambda(r,p)$$

[Peretti, GM, Blasi, Cristofari, (2022)]

Transport equation in spherical coordinates (approximation)

G. Morlino, KM3NET meeting, 22 Sept. 2022

[Peretti, GM, Blasi, Cristofari, (2022)]

Transport equation in spherical coordinates (approximation)

[Peretti, GM, Blasi, Cristofari, (2022)]

Transport equation in spherical coordinates (approximation)

[Peretti, GM, Blasi, Cristofari, (2022)]

Transport equation in spherical coordinates (approximation)

$$f_{s}(p) = s \frac{\eta_{\text{inj}} n_{1}}{4\pi p_{\text{inj}}^{3}} \left(\frac{p}{p_{\text{inj}}}\right)^{-s} e^{-\Gamma_{1}(p)} e^{-\Gamma_{2}(p)}$$

Standard power-law
for plane shocks
$$f_{s}(p) = \left[s \frac{\eta_{\text{inj}} n_{1}}{4\pi p_{\text{inj}}^{3}} \left(\frac{p}{p_{\text{inj}}}\right)^{-s}\right] e^{-\Gamma_{1}(p)} e^{-\Gamma_{2}(p)}$$
$$s = \frac{3u_{1}}{u_{1} - u_{2}}$$

G. Morlino, KM3NET meeting, 22 Sept. 2022

G. Morlino, KM3NET meeting, 22 Sept. 2022

Solution of diffusive shock acceleration in spherical geometry

the effective plasma speed decreased reducing the energy gain

The diffusion coefficient has a strong impact on the cutoff shape and effective maximum energy

Typical values for massive stellar clusters

$$\begin{cases} \dot{M} = 10^{-4} M_{\odot} \,\text{yr}^{-1} \\ v_w = 3000 \,\text{km/s} \\ L_{\text{CR}} = 0.1 \,L_w \\ \eta_B = 0.01 \end{cases}$$

For SBNi $\dot{M} \simeq (1 - 10) M_{\odot} \text{yr}^{-1} \Rightarrow E_{\text{max}} \approx 100 \text{ PeV}$

G. Morlino, KM3NET meeting, 22 Sept. 2022

High energy SED and neutrinos

Total gamma and neutrino emission from SBN and Wind

Diffuse emission from SBGs

Acceleration at the wind TS need to be harder $\propto E^{-2}$

G. Morlino, KM3NET meeting, 22 Sept. 2022

The transition between Gal. and Extragal. CRs

If galactic sources produce protons with $E_{\max,p} \approx 1 \text{ PeV} \Rightarrow E_{\max,Fe} \approx 26 \text{ PeV}$

What about $3 \cdot 10^{16} \text{eV} \lesssim E \lesssim 3 \cdot 10^{18} \text{ eV}$?

- Galactic ⇒ "Super-PeVatrons"
- Extra-galactic?

Multi-messenger emission from SBGs

SB nucleus is a calorimeter but the wind bubble is not

CRs can escape from the wind-bubble

Proton contribution from SB winds to the all-particle CR spectrum

A possible non negligible contribution at ~100 PeV

Heavy CR nuclei up to $\gtrsim 1000 \text{ PeV}$

Conclusions

- Starburst galaxies can produce a significant fraction of IceCube neutrinos and EBL:
 - * neutrinos compatible with IceCube flux for $E \gtrsim 100 \text{ TeV}$
 - * γ -rays probable responsible of $\leq 40\%$ of the EBL at ~50 GeV
- Two possible acceleration sites:
 - Starburst nuclei
 - calorimeters for electrons and protons →efficient production of gamma-rays and neutrinos
 - * BUT unclear if maximum emerges of ~100 PeV can be reached
 - Starburst wind
 - * $E_{\rm max} \approx 100 \text{ PeV}$ can be reached
 - * no calorimeter \rightarrow protons can escape
 - * Wind-bubbles can produce a sizeable contribution to the CR spectrum in the range $10^{17} \text{ eV} \lesssim E \lesssim 10^{18} \text{ eV}$

G. Morlino, KM3NET meeting, 22 Sept. 2022