Contribution ID: 28 Type: not specified ## Construction of density dependent α -nucleon interaction to describe α -nucleus scattering Monday 12 June 2023 10:00 (30 minutes) A microscopic description of the nucleus-nucleus reaction system has been attempted. The double-folding model with effective nucleon-nucleon interaction is widely successful to describe nucleus-nucleus scatterings. However, we need a special prescription for the microscopic description of the α -nucleus scatterings, for example for the application of the strong renormalization factor or the change of the local density approximation. Namely, α scattering and heavy-ion scattering are not described in the same framework. We consider the reason as follows. Almost the effective nucleon-nucleon interactions reflect the property in the nuclear matter. However, the α particle is far from the condition of the nuclear matter. Then, we should reconsider describing the α scattering with such nucleon-nucleon interaction. In this work, we provide a complex density-dependent α -nucleon (DD- αN) interaction to construct the α -nucleus potential in the wide ranges of the incident energy and the target nucleus. The α -nucleus potential is obtained by folding the present DD- αN interaction with the point nucleon density obtained by the mean-field model (HF+BCS). The present DD- αN interaction is based on the phenomenological optical potential to reproduce the p + 4 He elastic scattering. Namely, the $\alpha\text{-nucleon}$ system is considered to be an elementary process. The real part of the p + ⁴He potential has a form of the double Woods-Saxon (WS) type. The short-range WS potential has a role in repulsive behavior at high energy. However, the present density dependence of the DD- αN interaction is phenomenologically fixed to reproduce the α -nucleus elastic scattering. The α -nucleus potential with the present DD- αN interaction well reproduces the experimental data. **Authors:** Dr TSUBAKIHARA, Kosuke (National Institute of Technology, Asahikawa College); Dr EBATA, Shuichiro (Saitama University); FURUMOTO, Takenori (Yokohama National University); Dr HORIUCHI, Wataru (Osaka Metropolitan University) **Presenter:** FURUMOTO, Takenori (Yokohama National University) **Session Classification:** Nuclear potentials Track Classification: Nuclear potential models