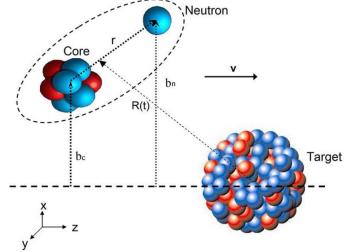
Angela Bonaccorso

Varenna 12-16 June 2023

Nuclear reaction cross sections and the optical potentials for the n-¹²C and N-¹²C scattering

In collaboration with Imane Moumene, INFN-GGI, Firenze, now at Milano University.

Goal: need accurate S-matrices \rightarrow phase shifts \rightarrow optical potentials in the eikonal approach for a ¹²C target


Breakup formulae

$$\sigma_{-n}^{inel} = \int d^2 \mathbf{b_c} |S_{ct}(\mathbf{b_c})|^2 \int d^2 \mathbf{r_\perp} (1 - |S_n(\mathbf{b_n})|^2) |\tilde{\phi}_0(\mathbf{r_\perp})|^2$$

$$\sigma_{-n}^{el} = \int d^2 \mathbf{b}_c |S_{ct}(\mathbf{b}_c)|^2 \int d^2 \mathbf{r_\perp} |1 - S_n(\mathbf{b}_n)|^2 |\tilde{\phi}_0(\mathbf{r_\perp})|^2.$$

See also *arXiv:2212.06056v2*

C. Hebborn, T. R. Whitehead, A. E. Lovell, 3 and F. M. Nunes,

Comparison between phenomenological potentials and single folding and/or double folding potentials

S.F.
$$W^{NN}(\mathbf{r}) = \int d\mathbf{b}_1 W^{nN}(\mathbf{b}_1 - \mathbf{b}, z) \int dz_1 \rho(\mathbf{b}_1, z_1). \quad (4)$$

D.F.
$$W^{NN}(\mathbf{r}) = -\frac{1}{2} \hbar v \sigma_{nn} \int d\mathbf{b}_1 \rho_p(\mathbf{b}_1 - \mathbf{b}, z) \int dz_1 \rho_t(\mathbf{b}_1, z_1). \quad (5)$$

s.f. $W^{nN}(\mathbf{r}) = -\frac{1}{2}\hbar v \sigma_{nn} \rho_t(\mathbf{r})$ (6)

Motivations to fit optical potentials

The Optical Potential (OP) is obtained from the reduction of the many body scattering problem to a one body Schrödinger equation A good OP can give useful information on the structure of a nucleus besides helping describing complex reactions.

- ¹²C and ⁹Be are the most used targets for nuclear breakup (knockout) with RIBs
- Energy dependence of the OP
- Phenomenological vs *microscopic* OP.
- n+⁹Be
- n+ ¹²C
- ¹²C+¹²C as a test
- ¹²C+⁹Be

More Motivations to calculate reaction cross section

- An immediate test for the accuracy of the imaginary part of the optical potential. Plenty of data to compare to.
- Reaction cross section data are crucial in optical model analyses of elastic scattering, and they can in many cases eliminate ambiguities present in calculations based only on angular distributions.
- Realistic nuclear reaction cross-section (σ_R) models are an essential ingredient of reliable heavy-ion transport codes. Such codes are used for risk evaluation of manned space exploration missions as well as for ion-beam therapy dose calculations and treatment planning.
- From the beginning of physics with RIBs, comparison of measured and calculated σ_R has been applied to, deduce density distributions of exotic nuclei as well as their root mean square radii (rms). (Tanihata et al., Y. Suzuki et al....)
- Predictive power of models?

Final state interaction effects in breakup reactions of halo nuclei

A. Bonaccorso* Institute for Nuclear Theory, Seattle, Washington 98195-1550 and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56100 Pisa, Italy[†]

F. Carstoiu Institute of Atomic Physics, P.O. Box MG-6, Bucharest, Romania (Received 1 October 1999; published 11 February 2000)

Nuclear Physics A 706 (2002) 322-334

NUCLEAR PHYSICS

Optical potentials of halo and weakly bound nuclei

A. Bonaccorso^{a,*}, F. Carstoiu^b

A. Bonaccorso $\,\cdot\,$ F. Carstoiu $\,\cdot\,$ R. J. Charity $\,\cdot\,$ R. Kumar G. Salvioni

Differences Between a Single- and a Double-Folding Nucleus-⁹Be Optical Potential

PHYSICAL REVIEW C 94, 034604 (2016)

Imaginary part of the ⁹C - ⁹Be single-folded optical potential

A. Bonaccorso,^{1,*} F. Carstoiu,² and R. J. Charity³

N+N

The Glauber reaction cross section is given by

$$\sigma_R = 2\pi \int_0^\infty b db (1 - |S_{NN}(\mathbf{b})|^2), \qquad (1)$$

where

$$|S_{NN}(\mathbf{b})|^2 = e^{2\chi_I(b)} \tag{2}$$

is the probability that the nucleus-nucleus (NN) scattering is elastic for a given impact parameter **b**.

The imaginary part of the eikonal phase shift is given by

$$\chi_{I}(\mathbf{b}) = \frac{1}{\hbar v} \int dz W^{NN}(\mathbf{b}, z)$$
$$= \frac{1}{\hbar v} \int dz \int d\mathbf{r}_{1} W^{nN}(\mathbf{r}_{1} - \mathbf{r}) \rho(\mathbf{r}_{1}), \qquad (3)$$

where W^{NN} is negative defined as

S.F.
$$W^{NN}(\mathbf{r}) = \int d\mathbf{b}_1 W^{nN}(\mathbf{b}_1 - \mathbf{b}, z) \int dz_1 \rho(\mathbf{b}_1, z_1). \quad (4)$$

D.F.
$$W^{NN}(\mathbf{r}) = -\frac{1}{2}\hbar v \sigma_{nn} \int d\mathbf{b}_{1} \rho_{p}(\mathbf{b}_{1} - \mathbf{b}, z) \int dz_{1} \rho_{t}(\mathbf{b}_{1}, z_{1}).$$
(5)

Also

s.f.
$$W^{nN}(\mathbf{r}) = -\frac{1}{2}\hbar v \sigma_{nn} \rho_t(\mathbf{r})$$
(6)

The double folding (5) for W^{NN} is conceptually wrong because the interaction acts only to first order, infact it was originally introduced for the REAL part. Eq.(4) with a phenomenological W^{nN} is in principle more accurate.

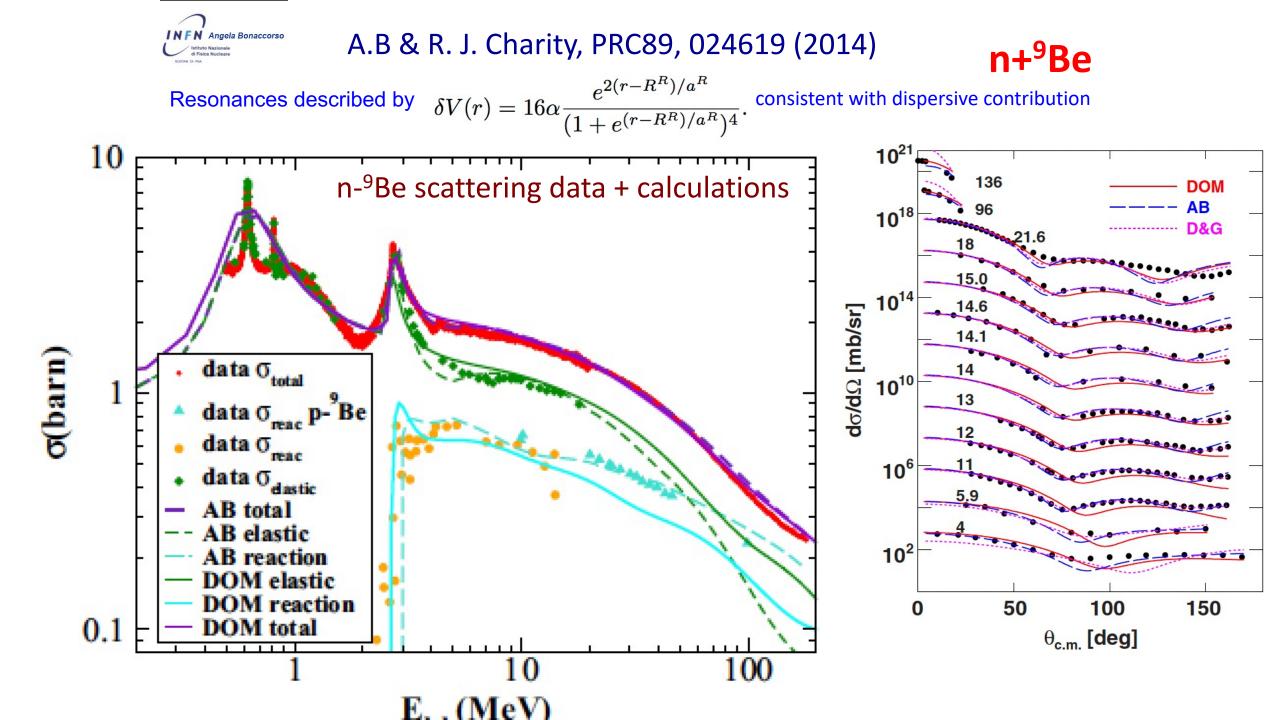
First I will discuss the difference between a phenomenological W^{nN} and others obtained by Eq.(6).

Then I will compare results for σ_r with W^{NN} from Eq.(4) with a phenomenological W^{nN} and with W^{NN} from Eq.(5)

As an intermediate step....

PHYSICAL REVIEW C, VOLUME 62, 034608

Scatterings of complex nuclei in the Glauber model


B. Abu-Ibrahim* and Y. Suzuki

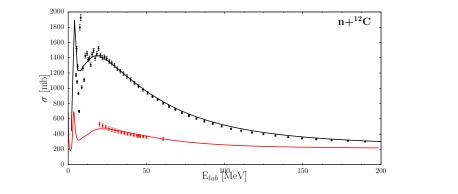
$$e^{i\tilde{\chi}_{\text{OLA}}(b)} = \exp\left(-\int d\mathbf{r} \rho_P(\mathbf{r})\Gamma_{NT}(\boldsymbol{\xi}+\boldsymbol{b})\right)$$
, Modified Optical Limit (MOL)

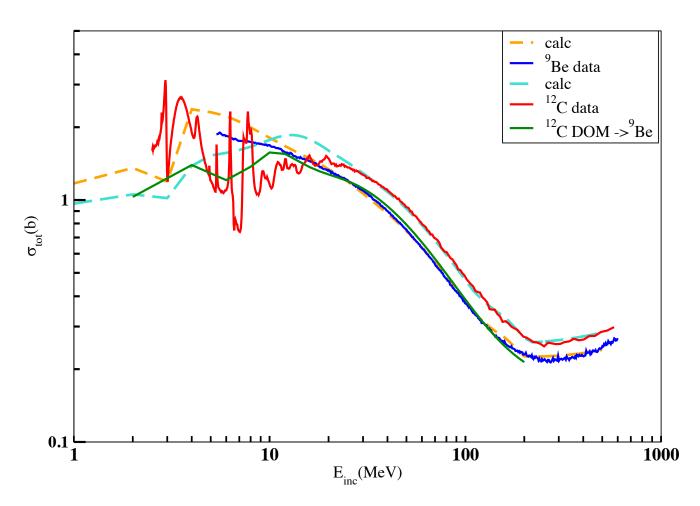
Nucleon-target profile function. Can be interpreted as the z-integral of a nucleon-target microscopic optical potential

$$\Gamma_{NT}(\boldsymbol{b}) = \sum_{k=1}^{K} \frac{1 - i \alpha_k}{4 \pi \beta_k} \sigma_k \exp\left(-\frac{\boldsymbol{b}^2}{2 \beta_k}\right),$$

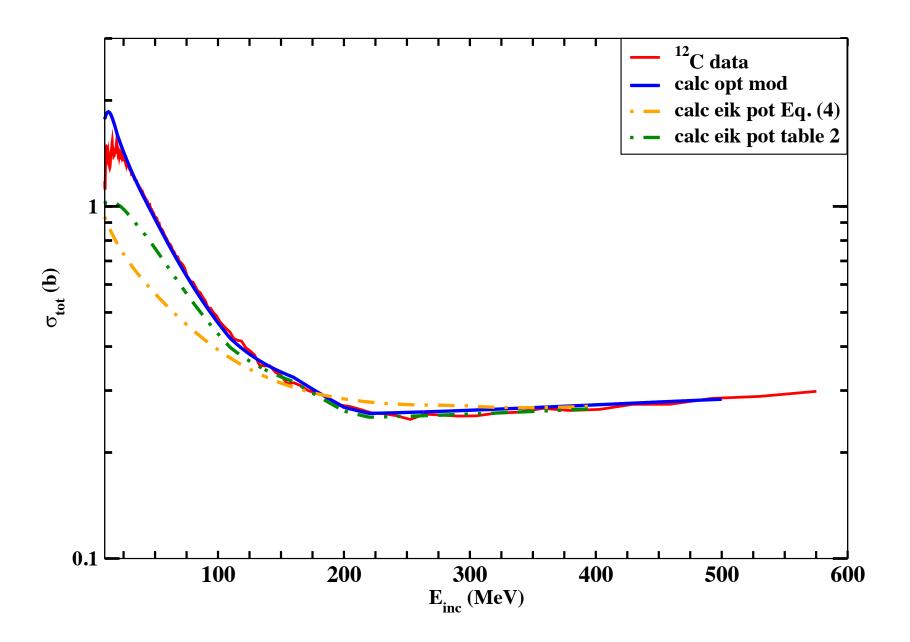
 α_{nn} =Re f_{nn}(0)/Im f_{nn}(0)

Phenomenological potentials

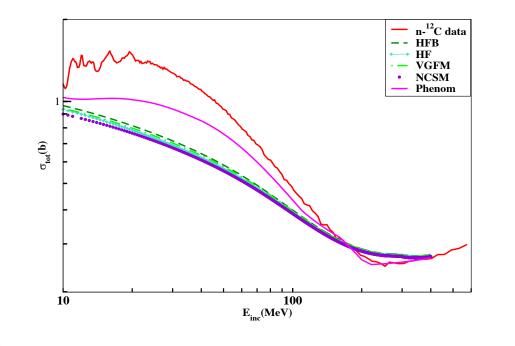

$E_{lab} \ ({ m MeV})$	V^R (MeV)	r_0^R (fm)	a^R (fm)	W^{sur} (MeV)	W^{vol} (MeV)	
_ • • • • •	$31.304 - 0.145E_{lab}$	$1.647 - 0.005(E_{lab} - 5)$	$0.3-0.0001E_{lab}$	$1.65 + 0.365 E_{lab}$	$5.6 - 0.005(E_{lab} - 20)$	
$40 \le E_{lab} < 111$ $111 \le E_{lab} < 160$	22 22	22 22	0.288	$\begin{array}{c} 16.25 - 0.05(E_{lab} - 40) \\ 12.7 \\ 10.7 \\ 0.025(E_{lab} - 100) \end{array}$	$5.5 - 0.01(E_{lab} - 40)$ 4.8	
$\begin{array}{l} 160 \leq E_{lab} < \! 200 \\ 200 \leq E_{lab} < \! 215 \\ 215 \leq E_{lab} \leq \! 500 \end{array}$	"	22 22	27 27	$\frac{12.7 - 0.025(E_{lab} - 160)}{11.7 + 0.02(E_{lab} - 200)}$	$4.8 - 0.025(E_{lab} - 160) 3.8 + 0.02(E_{lab} - 200)$	


TABLE I: Energy-dependent optical-model parameters for the (AB) potential for $n+{}^{9}Be$. $r_{0}^{I}=1.3$ fm, $a^{I}=0.3$ fm at all energies.

$E_{lab} \ ({ m MeV})$	V^R (MeV)	r_0^R (fm)	a^R (fm)	W^{sur} (MeV)	W^{vol} (MeV)
$160 \le E_{lab} < 200$	$31.304 - 0.145 E_{lab}$	$1.647 - 0.005(E_{lab} - 5)$	0.288	$12.7 - 0.025(E_{lab} - 160)$	$4.8 - 0.025(E_{lab} - 160)$
$200 \le E_{lab} < 215$ $215 \le E_{lab} < 220$	0	"	"	11.7	3.8
$220 \le E_{lab} \le 500$	"	0.1	"	$11.7 + 0.02(E_{lab} - 220)$	$3.8 + 0.02(E_{lab} - 220)$


TABLE II: Energy-dependent optical-model parameters of the potential n-¹²C for $E_{lab} \ge 160$ MeV. At lower energies, the parametrization is the same as for ⁹Be on Table **[**.

Total experimental and calculated cross sections. Lower blue symbols for ⁹Be, upper red symbols for ¹²C. The optical model calculations are given by the orange and cyan dashed lines, respectively. The solid green line is a calculation made with a DOM potential obtained for ¹²C and applied to ⁹Be. DOM calculations (LHS) curtesy of Mack Atkinson (LLNL)



N+ ¹²C, ¹²C+ ¹²C We confirm dominance of surface absorption for light systems A. Ingemarsson and M. Lantz Phys. Rev. C 67, 064605

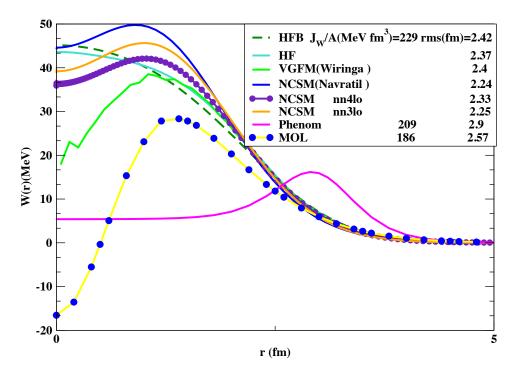
$$W^{nN}(\mathbf{r}) = -\frac{1}{2}\hbar v \sigma_{nn} \rho_t(\mathbf{r})$$
(6)

In medium effects?

Microscopic calculation of in-medium proton-proton cross sections G. Q. Li and R. Machleidt

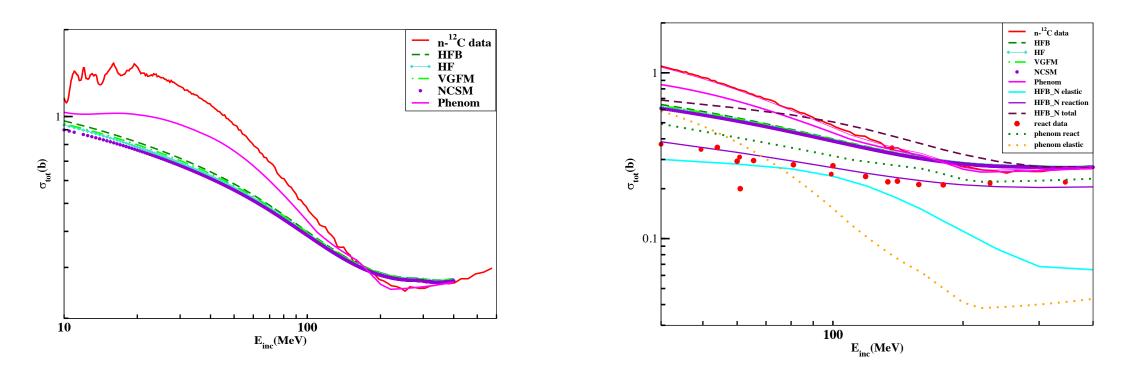
Phys. Rev. C 49, 566

 σ_nn can be fixed but what about α_nn ?


MOL: B. Abu-Ibrahim and Y. Suzuki, Phys. Rev. C 62, 034608 (2000).

VGFM(Wiringa) NV2+3-IIb* https://www.phy.anl.gov/theory/research/density/ Light-Nuclei Spectra from Chiral Dynamics M. Piarulli et al., Phys. Rev. Lett. 120, 052503

NCSM M. Vorabbi, et al., Phys. Rev. C103, 024604 (2021).

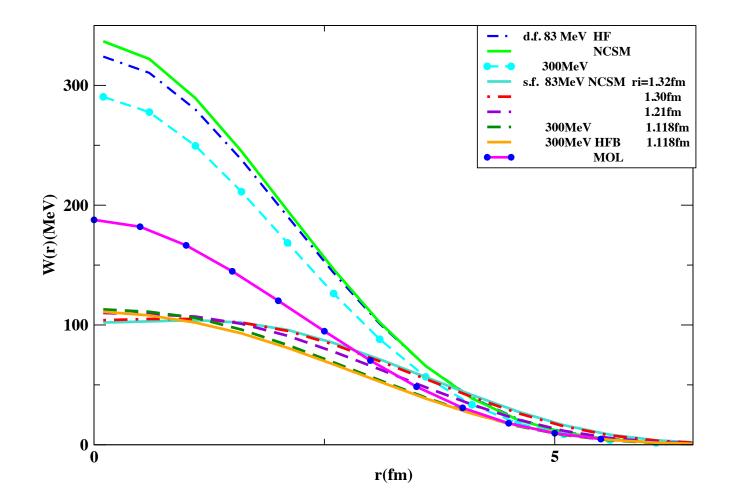

Thanks to Petr Navratil and Michael Gennari for providing the numerical densities

Also see Phys. Rev. C 99, 044603 (2019) *M. Burrows ,* Ch. Elster *et al.,*

α_{nn} =Re f_{nn}(0)/Im f_{nn}(0)

- Accurate Re $f_{nn}(0)$ are difficult to obtain and so are the α_{nn}
- There are many papers in the literature offering tables of σ_{nn} and α_{nn} but when used to calculate the energy dependence of n-N elastic xsecs the results are unsatisfactory

Values of $\sigma_{nn} \alpha_{nn}$ from B. Abu-Ibrahim et al., Phys. Rev. C 77 (2008) 034607. They reproduce σ_R but not σ_{tot}


Constant values of α_{nn}

Problem with the absolute values ot total n, p+¹²C

O_e (J. Klug et a., PRC 68, 064605 (2003), Elastic neutron scattering at 96MeV from ¹²C and ²⁰⁸Pb)

• For 12C, on the other hand, significant differences have been demonstrated between predictions and experiment. Possible explanations might be that ${}^{12}C$ exhibits surface effects and deformations coming from a three cluster structure. Another effect, such as a more diffuse edge than anticipated, may also play a role. These contributions have not been taken into account in the model calculations presented here, and therefore it is not surprising that the description of the ¹²C data is poor in the $30^{\circ}-50^{\circ}$ range. This defectiveness is also found in the evaluated (ENDF-6) cross section, which might call for a reevaluation in the future.

D.F. vs S.F. for NN potentials

PHYSICAL REVIEW C 79, 061601(R) (2009)

Reaction cross sections at intermediate energies and Fermi-motion effect

M. Takechi,^{1,*} M. Fukuda,¹ M. Mihara,¹ K. Tanaka,² T. Chinda,¹ T. Matsumasa,¹ M. Nishimoto,¹ R. Matsumiya,¹ Y. Nakashima,¹ H. Matsubara,¹ K. Matsuta,¹ T. Minamisono,³ T. Ohtsubo,⁴ T. Izumikawa,⁵ S. Momota,⁶ T. Suzuki,⁷ T. Yamaguchi,⁷ R. Koyama,⁴ W. Shinozaki,⁴ M. Takahashi,⁴ A. Takizawa,⁴ T. Matsuyama,⁴ S. Nakajima,⁷ K. Kobayashi, M. Hosoi,⁷ T. Suda,² M. Sasaki,⁸ S. Sato,⁹ M. Kanazawa,⁹ and A. Kitagawa⁹

MOL approch with no simple physical interpretation

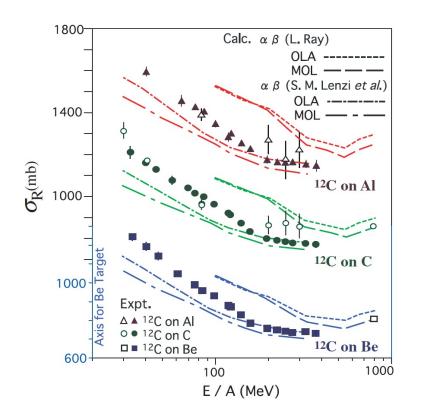
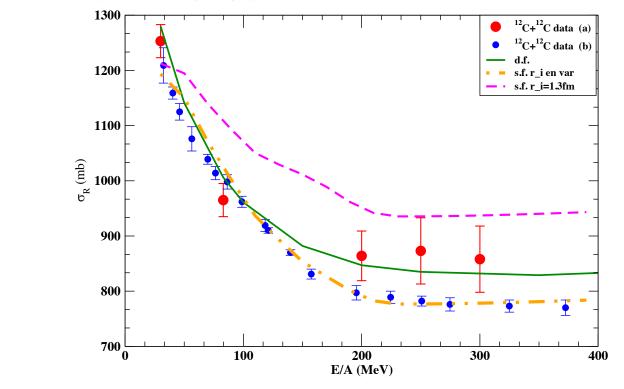
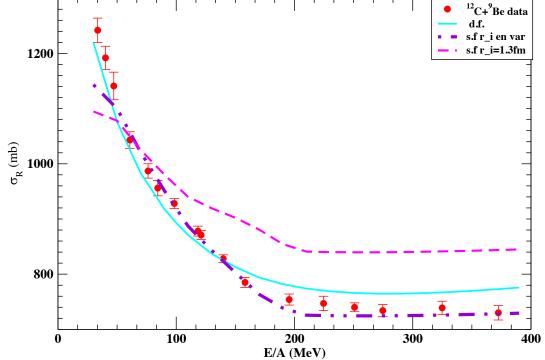


FIG. 1. (Color online) The σ_R data for ¹²C as a function of beam energy. The closed symbols denote the present data and open symbols denote data from Refs. [8,25–27]. The OLA and MOL calculations were performed using the *NN* parameters from Ref. [22] (short and long dashed curves) and Ref. [23] (short and long dash-dotted curves).




FIG. 2. (Color online) (a) Modified σ_{NN} as effective *NN* cross section (σ_{NN}^{eff}), which is compared with the raw σ_{NN} . (b) MOL calculations with $\beta(E)$ from Eq. (4) (dashed curve) and MOL[FM] calculations (solid curve) are compared with experimental data. We also show the MOL and MOL[FM] calculations using a Gaussian-type density for the C target (thin solid and dot-dashed curves).

Data from Takechi et al. cf previus slide, Kox In d.f. $\sigma_{np,pp}$ from De Conti&Bertulani PRC81.064603 (2010).

E_{lab}	$r_i(^9Be)$	$r_i(^{12}C)$				
$({ m MeV})$	(fm)	(fm)				
$30 \le E_{lab} \le 160$	$1.4 - 0.0015 E_{lab}$	$1.32 - 0.0013 E_{lab}$				
$E_{lab} > 160$	1.15	1.118				

TABLE III: Energy-dependent optical-model parameter r_i for the (AB) potential for $n+{}^9Be$ and $n+{}^{12}C$

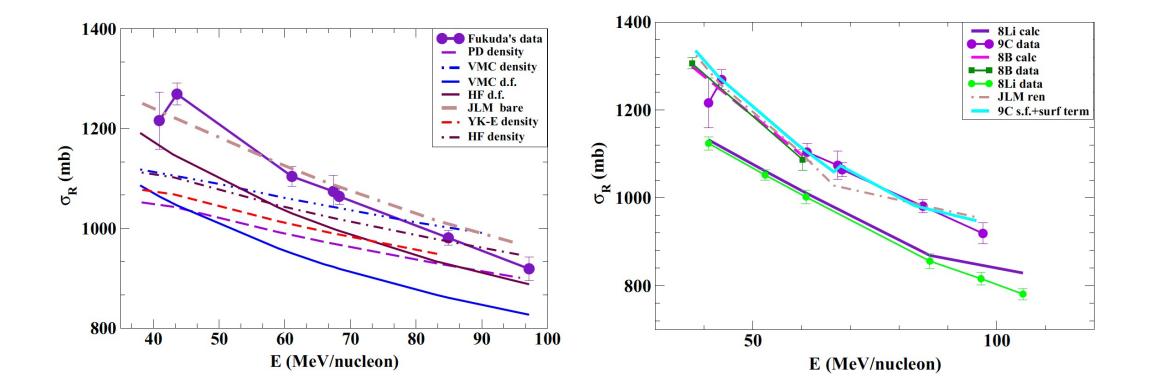
¹²C+¹²C

E_{inc}	model	r_s	J_W/A_PA_T	r.m.s	σ_{NCSM}	r.m.s	σ_{HF}	r.m.s	σ_{HFB}
(MeV)		(fm)	$({ m MeV fm}^3)$	(fm)	(mb)	(mb)	(mb)		
83	S.F.	1.2	184	3.72	994	3.75	1008	3.78	1025
	D.F.	1.22	279	3.29	957	3.36	995	3.43	1027
300	S.F.	1.18	151	3.57	760	3.60	768	3.64	780
	D.F.	1.11	241	3.29	791	3.36	815	3.43	842

280A.MeV

¹² Ne+¹²C

					Nucleus	model	$r_s({ m fm}]$	$\sigma_{theo} \ ({ m mb})$	σ_{exp} (mb)	$r.m.s.({ m fm})$
$E_{inc}(MeV)$	model	$r_s({ m fm})$	$\sigma_{theo} \ ({\rm mb})$	b) σ_{exp} (mb) ϵ		model	$T_s(\mathbf{m})$	otheo (IIID)	U_{exp} (IIID)	1.111.S.(III
	model	<i>'s</i> (1111)	otneo (IIIO)		^{42}Ca	S.F.	(1.23)1.14	(1598) 1388	1463(13)(6)	3.38
30	S.F.	$(1.35) \ 1.33$	$(1478) \ 1456$	$1550\ \pm 75$	1	D.F.	1.16	1460		
	D.F.	1.37	1560		$]$ ^{43}Ca	S.F.	(1.22)1.14	(1614)1402	1476(11)(6)	3.40
100	S.F.	$(1.27) \ 1.23$	(1327)1211	1161 ± 80	-	D.F.	1.17	1476		
	D.F.	1.21	1206		44Ca	S.F.	(1.23)1.15	(1630) 1417	1503(12)(6)	3.42
200	S.F.	(1.21)1.11	(1193) 1012	1123 ± 80		D.F.	1.16	1490		
200				1120 ± 00	^{-46}Ca	S.F.	(1.24)1.15	(1683)1466	1505(8)(6)	3.50
	D.F.	1.15	1079			D.F.	1.17	1543		
300	S.F.	(1.21)1.12	(1181)1001	1168 ± 100	$-\frac{48}{Ca}$				1409(17)(6)	2 50
			. ,			S.F.	(1.23)1.16	(1714)1495	1498(17)(6)	3.50
	D.F.	1.13	1062			D.F.	1.18	1573		


Conclusions

- We have derived excellent n+⁹Be, n+¹²C phenomenological optical potentials up to 500MeV, cross checked vs DOM.
- Excellent single folding P (Core)-T OP validated for ¹²C + ¹²C, ¹²C+⁹Be. Small volume integrals, large rms radii.
- Dominance of surface absorption (r_i decreases with energy).
- S.F. less ambigous than D.F. (needs to fix a smaller n of parameters)...
- In particular $\sigma_{el}(E_{inc})$ for n+¹²C *not known* and α_{nn} =Re f_{nn}(0)/Im f_{nn}(0) for free nn collisions and in medium *not well determined*.
- Evolution of D.F. via nN *ab-initio?*

M. Fukuda et al., private communication; D. Nishimura et al.,Osaka University Laboratory of Nuclear Studies (OULNS) Annual Report 2006, p. 37.

E_{lab} (MeV/nucleon)	σ_{exp} (mb)	$\sigma_{\rm d.fold}^{ m VMC}$ (mb)	$\sigma^{ m HF}_{ m d.fold}$ (mb)	$\sigma_{ m s.fold}$ (mb)	$\sigma^{+\mathrm{surf}}_{\mathrm{s.fold}}$ (mb)	$\sigma_{ m JLM}^{ m bare}$ (mb)	σ_{JLM}^{ren} (mb)	$N_{ m JLM}$	W _{surf} (MeV)	R _s (fm)	R_s^{fit} (fm)	a ^{fit} (fm)	r _s (fm)
20		1267	1409	1078	1565	1338	1538	1.65	0.8	6.12	6.25	1.01	1.47
38		1086	1191	1112	1341	1250	1324	1.20	0.5	5.95	5.99	0.97	1.44
40.9	1216 ± 57	1064	1166	1117	1291	1235	1215	0.95	0.4	5.95	5.99	0.98	1.44
43		1050	1148	1103	1275	1221	1260	1.10	0.4	5.95	5.99	0.99	1.44
43.6	1269 ± 22	1046	1144	1106	1235	1219	1257	1.10	0.3	5.82	5.70	0.80	1.40
59		960	1042	1047	1124	1130	1111	0.95	0.2	5.70	5.64	0.82	1.36
61.1	1104 ± 20	950	1030	1045	1122	1119	1119	1.00	0.2	5.68	5.63	0.83	1.36
66		928	1006	1028	1066	1091	1028	0.85	0.1	5.60	5.55	0.80	1.35
67.4	1074 ± 32	923	999	1026	1056	1087	1087	1.00	0.08	5.60	5.53	0.80	1.35
68.3	1064 ± 16	919	995	1024	1052	1082	1063	0.95	0.075	5.55	5.49	0.80	1.33
83		867	934	948	979	1015	987	0.93	0.015	5.40	5.38	0.78	1.29
84.9	981 ± 15	861	928	979	983	1008	989	0.95	0.01	5.40	5.36	0.80	1.29
95		833	895	949	952	968	956	0.97	0.01	5.40	5.28	0.79	1.29
97.2	919 ± 24	827	888	949	951	963	923	0.90	0.005	5.35	5.28	0.80	1.28

Comparison with data, at low energy suggests the need to include the ⁹C breakup channel explicitly

• The above definition of the profile function is equivalent to define a 3d imaginary potential of gaussian shape normalized to 1 whose depth is $-\frac{1}{2}\hbar v \sigma_{nn}$