

The special case of $\boldsymbol{\Lambda}$ form factors

The meaning of the phase determination

The ratio $G_{E}^{\Lambda} / G_{M}^{\Lambda}$

Data and parametrization
Besults and discussion

Beryom-phom Vertex

The electromagnetic four-current of the baryon \mathscr{B}
$\gamma\left(q^{=} P_{\mathbf{f}}-P_{i}\right)\left\langle P_{f}\right| J_{E M}^{\mu}(0)\left|P_{i}\right\rangle=e \bar{u}\left(p_{f}\right)\left[\gamma^{\mu} F_{1}^{\mathscr{B}}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 M_{\mathscr{B}}} F_{2}^{\mathscr{B}}\left(q^{2}\right)\right] u\left(p_{i}\right)$
(p.)
$F_{1}^{\mathscr{B}}\left(q^{2}\right)$ and $F_{2}^{\mathscr{B}}\left(q^{2}\right)$ are the Dirac and Pauli form factors

$$
F_{1}^{\mathscr{B}}(0)=Q_{\mathscr{B}}
$$

$Q_{\mathscr{B}}$ is the electric charge

$$
F_{2}^{\mathscr{E}}(0)=\kappa_{\mathscr{B}}
$$

$\kappa_{\mathscr{B}}$ is the anomalous magnetic moment

$$
\begin{aligned}
& \left\langle P_{f}\right| J_{\mathrm{EM}}^{\mu}(0)\left|P_{i}\right\rangle=J_{\mathrm{EM}}^{\mu}=\left(J_{\mathrm{EM}}^{0} \cdot \vec{J}_{\mathrm{EM}}\right) \\
& J_{\mathrm{EM}}^{0}=e\left(F_{1}^{\mathscr{G}}\left(q^{2}\right)+\frac{q^{2}}{4 M_{\mathscr{B}}^{2}} F_{2}^{\mathscr{G}}\left(q^{2}\right)\right) \\
& \vec{J}_{\mathrm{EM}}=e \bar{u}\left(p_{f}\right) \vec{\gamma} u\left(p_{i}\right)\left(F_{1}^{\mathscr{B}}\left(q^{2}\right)+F_{2}^{\mathscr{G}}\left(q^{2}\right)\right)
\end{aligned}
$$

Sachs form factors

$$
\begin{array}{rlr}
G_{E}^{\mathscr{B}}\left(q^{2}\right)=F_{1}^{\mathscr{B}}\left(q^{2}\right)+\frac{q^{2}}{4 M_{\mathscr{B}}^{2}} F_{2}^{\mathscr{B}}\left(q^{2}\right) & G_{E}^{\mathscr{B}}(0)=Q_{\mathscr{B}} & G_{M}^{\mathscr{B}}(0)=Q_{\mathscr{B}}+\kappa_{\mathscr{B}}=\mu_{\mathscr{B}} \\
G_{M}^{\mathscr{B}}\left(q^{2}\right)=F_{1}^{\mathscr{B}}\left(q^{2}\right)+F_{2}^{\mathscr{B}}\left(q^{2}\right) & \mu_{\mathscr{B}} \text { is the total magnetic moment }
\end{array}
$$

Crose section and Confomb conrection

Elastic scattering cross section [Rosenbluth]

Coulomb correction

$$
\mathscr{C}=\frac{\pi \alpha / \beta}{1-e^{-\pi \alpha / \beta}}
$$

Only S-wave $\mathscr{B} \overline{\mathscr{B}}$ Coulomb final state interaction

Asimptitic behzovior in PSCD

In pQCD Dirac, Pauli and Sachs form factors as $q^{2} \rightarrow-\infty$ follow power laws driven by counting rules.

Valence quarks exchange gluons to distribute the photon momentum transfer q.

Helicity conservation
The current: $J^{\lambda, \lambda}\left(q^{2}\right) \propto G_{M}^{\mathscr{B}}\left(q^{2}\right)$
2 gluon propagators
$G_{M}^{\mathscr{B}}\left(q^{2}\right) \sim\left(q^{2}\right)^{-2}$

Dirac and Pauli form factors

$$
\begin{aligned}
& F_{1}^{\mathscr{B}}\left(q^{2}\right) \underset{q^{2} \rightarrow-\infty}{\sim}\left(q^{2}\right)^{-2} \\
& F_{2}^{\mathscr{B}}\left(q^{2}\right) \underset{q^{2} \rightarrow-\infty}{\sim}\left(q^{2}\right)^{-3}
\end{aligned}
$$

Helicity flip

- The current: $J^{\lambda,-\lambda}\left(q^{2}\right) \propto G_{E}^{\mathscr{B}}\left(q^{2}\right) / \sqrt{-q^{2}}$

OO [2 gluon propagators] $\sqrt{-q^{2}}$
$000 G_{E}^{Q}\left(q^{2}\right) \sim\left(q^{2}\right)^{-2}$

Ratio of Sachs form factors
$\bigcirc \frac{G_{E}^{\mathscr{F}}\left(q^{2}\right)}{G_{M}^{\mathscr{B}}\left(q^{2}\right)} \underset{q^{2} \rightarrow-\infty}{\sim}$ [constant]

Iorm faders in the time fike ugien $\left(q^{2}>0\right)$

Crossing symmetry

$$
\left\langle P\left(p^{\prime}\right)\right| j^{\mu}|P(p)\rangle \longrightarrow\left\langle\bar{P}\left(p^{\prime}\right) P(p)\right| j^{\mu}|0\rangle
$$

Form factors are complex functions of q^{2}

Optical theorem

$$
\operatorname{Im}\left(\left\langle\bar{P}\left(p^{\prime}\right) P(p)\right| j^{\mu}|0\rangle\right) \sim \sum_{n}\left\langle\bar{P}\left(p^{\prime}\right) P(p)\right| j^{\mu}|n\rangle\langle n| j^{\mu}|0\rangle \Longrightarrow\left\{\begin{array}{c}
\operatorname{Im}\left(F_{1,2}^{\mathscr{B}}\left(q^{2}\right)\right) \neq 0 \\
\text { for } q^{2}>4 M_{\pi}^{2}
\end{array}\right.
$$

$|n\rangle$ is an on-shell intermediate state, i.e., $|n\rangle=2 \pi, 3 \pi, 4 \pi, \ldots$

Phragmén Lindelöf theorem
If $f(z) \rightarrow f_{1}$ as $z \rightarrow \infty$ along the straight line L_{1}, and $f(z) \rightarrow f_{2}$ as $z \rightarrow \infty$ along the straight line L_{2}, and $f(z)$ is regular and bounded in the angle between, then $f_{1}=f_{2} \equiv f_{12}$ and $f(z) \rightarrow f_{12}$ uniformly in the region between L_{1} and L_{2}.

Behavior in the time-like region

$$
\underbrace{q^{2} \rightarrow-\infty}_{\text {space-like }\left(L_{1}\right)} G_{E, M}^{\mathscr{B}}\left(q^{2}\right)=\underbrace{\lim _{q^{2} \rightarrow+\infty} G_{E, M}^{\mathscr{B}}\left(q^{2}\right)}_{\text {time-like }\left(L_{2}\right)}
$$

$$
G_{E, M}^{\mathscr{B}}\left(q^{2}\right) \underset{q^{2} \rightarrow+\infty}{\sim}\left(q^{2}\right)^{-2} \in \mathbb{R}
$$

Space-like region
Space-like region

Time-like region Complex form factors

Only the real axis of the q^{2}-complex plane is experimentally accessible

Space-like region

$$
\begin{gathered}
q^{2}<0 \\
e \mathscr{B} \rightarrow e \mathscr{F} \\
G_{E}^{\mathscr{B}}, G_{M}^{\mathscr{B}}
\end{gathered}
$$

Time-like region*

$$
\begin{gathered}
q_{\mathrm{th}}^{2}<q^{2} \leq q_{\mathrm{phy}}^{2} \\
\mathscr{B} \overline{\mathscr{B}} \rightarrow e^{+} e^{-\mathscr{M}_{0}}
\end{gathered}
$$

$$
\left|G_{E}^{\mathscr{B}}\right|,\left|G_{M}^{\mathscr{B}}\right| \quad\left|G_{E}^{\mathscr{B}}\right|,\left|G_{M}^{\mathscr{B}}\right|
$$

$$
e^{+} e^{-} \leftrightarrow \mathscr{B} \overline{\mathscr{B}}
$$

Time-like region

$$
q^{2}>q_{\mathrm{phy}}^{2}
$$

$$
e^{+} e^{-} \leftrightarrow \mathscr{B} \overline{\mathscr{B}} \text { [pol.] }
$$

$$
\left|G_{E}^{\mathscr{B}}\right|,\left|G_{M}^{\mathscr{B}}\right|, \arg \left(G_{E}^{\mathscr{B}} / G_{M}^{\mathscr{B}}\right)
$$

${ }^{*}$ In case of $\mathscr{B}=p$: C. Adamuscin, E. A. Kuraev, E. Tomasi-Gustafsson, F. Maas PRC 75, 045205
E. A. Kuraev et al., JETP 115, 93
G. I. Gakh, E. Tomasi-Gustafsson, A. Dbeyssi, A. G. Gakh PRC 86, 025204

$$
\begin{aligned}
& \mathscr{C}=1 \\
& \frac{d \sigma}{d \Omega}=\frac{\alpha^{2} \beta}{16 E^{2}}\left[\left(1+\cos ^{2}(\theta)\right)\left|G_{M}^{\mathscr{B}}\right|^{2}+\frac{1}{\tau} \sin ^{2}(\theta)\left|G_{E}^{\mathscr{S}}\right|^{2}\right]
\end{aligned} \begin{aligned}
& \beta=\sqrt{1-\frac{1}{\tau}} \\
& \tau=\frac{E^{2}}{4 M_{\mathscr{B}}^{2}}
\end{aligned}
$$

Theoretical threshold $q_{\text {th }}^{2}=\left(2 M_{\pi}+M_{\pi^{0}}\right)^{2}$.
No data in space-like and unphysical regions.

Relative phase from the weak decay.

Space-like region
Real form factors

Unitarity: only isoscalar intermediate states do contribute.
Form factors have imaginary parts for $q^{2} \geq q_{\mathrm{th}}^{2}$.
The electric form factor $G_{E}^{\Lambda}\left(q^{2}\right)$ vanishes at $q^{2}=0$

Dispersion relatioms
The form factors are analytic on the q^{2}-complex plane with a multiple cut $\left(q_{\mathrm{th}}^{2}, \infty\right)$.
persion relation for the imaginary part $\left(q^{2}<0\right)$

$$
G\left(q^{2}\right)=\lim _{\mathscr{R} \rightarrow \infty} \frac{1}{2 i \pi} \oint_{\mathscr{G}} \frac{G(z)}{z-q^{2}} d z=\frac{1}{\pi} \int_{q_{\hbar}^{2}}^{\infty} \frac{\operatorname{Im}(G(s))}{s-q^{2}} d s
$$

persion relation for the logarithm $\left(q^{2}<0\right)$
B. V. Geshkenbein, Yad. Fiz. 9 (1969) 1232.

$$
\ln \left(G\left(q^{2}\right)\right)=\frac{\sqrt{q_{\mathrm{th}}^{2}-q^{2}}}{\pi} \int_{q_{\mathrm{Th}}^{2}}^{\infty} \frac{\ln \left|G\left(s-q^{2}\right)\right|}{\left(s-q_{\mathrm{W}}^{2}\right.} d s
$$

Experimental inputs

Space-like data on real values of form factors from: $e \mathscr{B} \rightarrow e \mathscr{B}$ and $e^{-\uparrow \mathscr{B}} \rightarrow e^{-\mathscr{B}^{\uparrow}}$, with polarization.
Time-like data on moduli of form factors from: $e^{+} e^{-} \leftrightarrow \mathscr{B} \overline{\mathscr{B}}$.

Time-like data on the phase of $G_{E}^{\mathscr{B}} / G_{M}^{\mathscr{B}}$ from: $e^{+} e^{-} \leftrightarrow \mathscr{B}^{\uparrow} \overline{\mathscr{B}}$, with polarization.

Theoretical ingredients
Analyticity \Longrightarrow convergence relations
Normalization and threshold values
Asymptotic \qquad super-convergence relations

The ratio $G_{E}^{\mathscr{B}}\left(q^{2}\right) / G_{M}^{\mathscr{B}}\left(q^{2}\right)$ in complex for $q^{2}>q_{\mathrm{th}}^{2}$
 $$
\frac{G_{E}^{\mathscr{B}}\left(q^{2}\right)}{G_{M}^{\mathscr{B}}\left(q^{2}\right)}=\frac{\left|G_{E}^{\mathscr{B}}\left(q^{2}\right)\right|}{\left|G_{M}^{\mathscr{B}}\left(q^{2}\right)\right|} e^{i \rho\left(q^{2}\right)}
$$

The polarization depends on the relative phase $\rho\left(q^{2}\right)$.
[A. Z. Dubnickova, S. Dubnicka, M. P. Rekalo, NC A109 [1996] 241]

$$
\left.\begin{array}{l}
\mathscr{P}_{y}=-\frac{\sin (2 \theta) \sin (\rho)}{D \sqrt{\tau}} \frac{\left|G_{E}^{\mathscr{B}}\right|}{\left|G_{M}^{\mathscr{B}}\right|}=\frac{d \sigma^{\uparrow}-d \sigma^{\downarrow}}{d \sigma^{\uparrow}+d \sigma^{\downarrow}} \equiv \mathscr{A}_{y}
\end{array}\right\} \text { Does not depend on } P_{e} .
$$

$$
D=1+\cos ^{2}(\theta)+\frac{\left|G_{E}^{\mathscr{B}}\right|^{2}}{\left|G_{M}^{\mathscr{B}}\right|^{2}} \frac{\sin ^{2}(\theta)}{\tau}
$$

$$
P_{e} \text { is the electron polarization. }
$$

$$
\tau=\frac{q^{2}}{4 M_{\mathscr{G B}}^{2}}
$$

θ is the scattering angle.

Data on modulus and phare of G_{E}^{\prime} / G_{m}

Polarization \longrightarrow sine of the relative phase.
Spin correlation \longrightarrow cosine of the relative phase.

$$
\mathscr{P}_{y}=-\frac{2 M_{\Lambda} \sqrt{q^{2}} \sin (2 \theta)\left|G_{E}^{\Lambda} / G_{M}^{\lambda}\right| \sin \left(\arg \left(G_{E}^{\Lambda} / G_{M}^{\Lambda}\right)\right)}{q^{2}\left(1+\cos ^{2}(\theta)\right)+4 M_{\Lambda}^{2}\left|G_{E}^{\Lambda} / G_{M}^{\Lambda}\right|^{2} \sin ^{2}(\theta)}
$$

No indication on the determination of the relative phase.
Is the determination of the phase meaningful?

The meaming of the detamination of the phare

C. Given the function $R(z)$ with N poles $\left\{p_{j}\right\}_{j=1}^{N}$ and M zeros $\left\{z_{k}\right\}_{k=1}^{M}$ and the positive real cut $\left(x_{0}, \infty\right)$.
The residue theorem over the Γ_{r} contour

$$
\lim _{r \rightarrow \infty} \frac{1}{2 i \pi} \oint_{\Gamma_{r}} \frac{d \ln (R(z))}{d z} d z=M-N
$$

(9) Considering single contributions

$$
\lim _{r \rightarrow \infty} \frac{1}{2 i \pi} \oint_{\Gamma_{r}} \frac{d \ln (R(z))}{d z} d z=\frac{\arg (R(\infty))-\arg \left(R\left(x_{0}\right)\right)}{\pi}
$$

$$
\arg (R(\infty))-\arg \left(R\left(x_{0}\right)\right)=\pi(M-N)
$$

Levinson's theorem
Form factors are analytic in the q^{2} complex plane with the real positive cut $\left(q_{\mathrm{th}}^{2}, \infty\right)$.
Assuming no zeros for G_{M}^{Λ}, the ratio $G_{E}^{\Lambda} / G_{M}^{\Lambda}$ has the same analyticity domain.
Form factors and hence the ratio $G_{E}^{\Lambda} / G_{M}^{\Lambda}$ are real for $q^{2} \in\left(-\infty, q_{\mathrm{th}}^{2}\right)$.

$$
\lim _{q^{2} \rightarrow q_{\mathrm{th}}^{2-}} \arg \left(\frac{G_{E}^{\Lambda}\left(q^{2}\right)}{G_{M}^{\Lambda}\left(q^{2}\right)}\right)=\left\{\begin{array}{cl}
0 & G_{E}^{\Lambda}\left(q_{\mathrm{th}}^{2-}\right) / G_{M}^{\Lambda}\left(q_{\mathrm{th}}^{2-}\right)>0 \\
\pm \pi & G_{E}^{\Lambda}\left(q_{\mathrm{th}}^{2-}\right) / G_{M}^{\Lambda}\left(q_{\mathrm{th}}^{2-}\right)<0
\end{array}\right.
$$

Dispensice

procedure

The ratio $R\left(q^{2}\right)=\frac{G_{E}^{\Lambda}\left(q^{2}\right)}{G_{M}^{A}\left(q^{2}\right)} \Longrightarrow\left\{\begin{array}{c}G_{E}^{\Lambda}(0)=0 \\ G_{E}^{\Lambda}\left(q_{\text {phy }}^{2}\right)=G_{M}^{\Lambda}\left(q_{\text {phy }}^{2}\right)\end{array}\right\} \Longrightarrow\left\{\begin{array}{c}R(0)=0 \\ R\left(q_{\text {phy }}^{2}\right)=1\end{array}\right\}$

The asymptotic behavior

$$
R\left(q^{2}\right)=\frac{G_{E}^{\Lambda}\left(q^{2}\right)}{G_{M}^{\wedge}\left(q^{2}\right)}=\mathcal{O}(1) \text { as } q^{2} \rightarrow \pm \infty
$$

Dispersion relations for the imaginary and real part with subtraction at $q^{2}=0$:

$$
\begin{aligned}
& R\left(q^{2}\right)=R(0)+\frac{q^{2}}{\pi} \int_{q_{\mathrm{th}}^{2}}^{\infty} \frac{\operatorname{Im}(R(s))}{s\left(s-q^{2}\right)} d s=\frac{q^{2}}{\pi} \int_{q_{\mathrm{th}}^{2}}^{\infty} \frac{\operatorname{Im}(R(s))}{s\left(s-q^{2}\right)} d s, \forall q^{2} \notin\left[q_{\mathrm{th}}^{2}, \infty\right) ; \\
& \operatorname{Re}\left(R\left(q^{2}\right)\right)=\frac{q^{2}}{\pi} \operatorname{Pr} \int_{q_{\mathrm{th}}^{2}}^{\infty} \frac{\operatorname{Im}(R(s))}{s\left(s-q^{2}\right)} d s, \forall q^{2} \in\left[q_{\mathrm{th}}^{2}, \infty\right)^{+} ;
\end{aligned}
$$

The subtraction ensures the null normalization at $q^{2}=0$.

The parametrization for $R\left(y^{2}\right)$

The ratio $R\left(q^{2}\right)$ is parametrized through the set of Chebyshev polynomials $\left\{T_{j}(x)\right\}_{j=0}^{P}$.
$\operatorname{Im}\left(R\left(q^{2}\right)\right) \equiv Y\left(q^{2} ; \vec{C}, q_{\text {asy }}^{2}\right)=\left\{\begin{array}{lll}\sum_{j=0}^{P} C_{j} T_{j}\left(x\left(q^{2}\right)\right) & q_{\mathrm{th}}^{2}<q^{2}<q_{\text {asy }}^{2} & x\left(q^{2}\right)=2 \frac{q^{2}-q_{\mathrm{th}}^{2}}{q_{\text {asy }}^{2}-q_{\mathrm{th}}^{2}}-1 \\ 0 & q^{2} \geq q_{\text {asy }}^{2} & q^{2} \in\left[q_{\mathrm{th}}^{2}, q_{\text {asy }}^{2}\right] \Rightarrow x \in[-1,1]\end{array}\right.$

Theoretical constraints on $Y\left(q^{2} ; \vec{C}, q_{\text {asy }}^{2}\right)$ Theoretical constraints on $\operatorname{Re}\left(R\left(q^{2}\right)\right)$
$R\left(q_{\mathrm{th}}^{2}\right)$ is real $\Longrightarrow Y\left(q_{\mathrm{th}}^{2} ; \vec{C}, q_{\text {asy }}^{2}\right)=0$

$$
R\left(q_{\text {phy }}^{2}\right) \text { is real } \Longrightarrow Y\left(q_{\text {phy }}^{2} ; \vec{C}, q_{\text {asy }}^{2}\right)=0
$$

$$
R\left(q^{2} \geq q_{\text {asy }}^{2}\right) \text { is real } \Longrightarrow Y\left(q^{2} \geq q_{\text {ass }}^{2} ; \vec{C}, q_{\text {asy }}^{2}\right)=0
$$

$$
\begin{aligned}
& \operatorname{Re}\left(R\left(q_{\text {phy }}^{2}\right)\right)=\frac{q_{\text {phy }}^{2}}{\pi} \operatorname{Pr} \int_{q_{\text {en }}^{2}}^{q_{\text {asy }}^{2}} \frac{Y\left(s ; \vec{C} ; q_{\text {asy }}^{2}\right)}{s\left(s-q_{\text {asy }}^{2}\right)} d s=1 \\
& \left|\operatorname{Re}\left(R\left(q_{\text {asy }}^{2}\right)\right)\right|=\frac{q^{2}}{\pi}\left|\operatorname{Pr} \int_{q_{\text {कh }}^{2}}^{q_{\text {ss }}^{2}} \frac{Y\left(s ; \vec{C} ; q_{\text {ass }}^{2}\right)}{s\left(s-q_{\text {asy }}^{2}\right)} d s\right|=1
\end{aligned}
$$

Experimental constraints in the time-like region $\left(q^{2}>q_{\text {phy }}^{2}\right)$
$\sin \left(\arg \left(R\left(q^{2}\right)\right)\right)$: one data point from BaBar and one data point from BESIII.
$R\left(q^{2}\right) \mid:$ two data points from BaBar and one data point from BESIII.

The
 defina
 $$
\chi^{2}\left(\vec{C}, q_{\text {asy }}^{2}\right)=\chi_{|R|}^{2}+\chi_{\phi}^{2}+\tau_{\text {phy }} \chi_{\text {phy }}^{2}+\tau_{\text {asy }} \chi_{\text {asy }}^{2}+\tau_{\text {curv }} \chi_{\text {curv }}^{2}
$$

Data $\left\{q_{j}^{2},\left|R_{j}\right|, \delta\left|R_{j}\right|\right\}_{j=1}^{3} \rightarrow x_{|R|}^{2}=\sum_{j=1}^{3}\left(\frac{\sqrt{X\left(q_{j}^{2}\right)^{2}+Y\left(q_{j}^{2}\right)^{2}}-\left|R_{j}\right|}{\delta\left|R_{j}\right|}\right)^{2}$

$$
X\left(q^{2}\right) \equiv \operatorname{Re}\left(R\left(q^{2}\right)\right)
$$

Data $\left\{q_{k}^{2}, \sin \left(\phi_{k}\right), \delta \sin \left(\phi_{k}\right)\right\}_{k=1}^{2} \longrightarrow \chi_{\phi}^{2}=\sum_{k=1}^{2}\left(\frac{\sin \left(\arctan \left(Y\left(q_{k}^{2}\right) / X\left(q_{k}^{2}\right)\right)-\sin \left(\phi_{k}\right)\right.}{\delta \sin \left(\phi_{k}\right)}\right)^{2}$
Constraint at $q^{2}=q_{\text {phy }}^{2} \longrightarrow \chi_{\text {phy }}^{2}=\left(1-X\left(q_{\text {phy }}^{2}\right)\right)^{2}$
Constraint at $q^{2}=q_{\text {asy }}^{2} \longrightarrow \chi_{\text {asy }}^{2}=\left(1-X\left(q_{\text {asy }}^{2}\right)^{2}\right)^{2}$
The values of multipliers $\tau_{\text {phy }}$ and $\tau_{\text {asy }}$ are chosen larger enough to nullify the corresponding $\chi^{2{ }^{2}}$ s so that the conditions are exactly verified.

Oscillation damping $\longrightarrow \chi_{\text {curv }}^{2}=\int_{q_{\text {2 }}^{2}}^{q_{\text {R2v }}^{2}}\left(\frac{d^{2} Y(s)}{d s^{2}}\right)^{2} d s$
The integral equation obtained by the dispersion relations is an ill-posed problem whose solution has to be regularized.

The value of the regularization parameter $\tau_{\text {curv }}$ is selected in order to attenuate spurious oscillations.
Too large values of $\tau_{\text {curv }}$ would cancel physical information.
Too small values $\tau_{\text {curv }}$ would leave an unreliable level of noise.

Out perametrization

The theoretical constraints $Y\left(q_{\mathrm{th}}^{2} ; \vec{C}, q_{\text {asy }}^{2}\right)=Y\left(q_{\text {phy }}^{2} ; \vec{C}, q_{\text {asy }}^{2}\right)=Y\left(q_{\text {asy }}^{2} ; \vec{C}, q_{\text {asy }}^{2}\right)=0$ determine the three coefficients: C_{0}, C_{1}, C_{2}.

The asymptotic threshold $q_{\text {asy }}^{2}$ is left as a free parameter.
By considering $(P+1)$ Chebyshev polynomials there are $(P-2)$ free coefficients.

We have used $P=5$ and hence there are four free parameters: C_{3}, C_{4}, C_{5} and $q_{\text {asy }}^{2}$.

(C) $\tau_{\text {phy }}=10^{2}$

The real part of $R\left(q^{2}\right)$ is forced to the unity at $q^{2}=q_{\text {phy }}^{2}$.
$\tau_{\text {asy }}=0$
No constraint for the real part of $R\left(q^{2}\right)$ at $q^{2}=q_{\text {asy }}^{2}$.
$\tau_{\text {curv }}=0.05$
Low-degree polynomials do not need strong damping.

Ids $q_{\text {th }}^{2}$ and $q_{\text {asy }}^{2}$ the values of the ratio are real hence

 the phases are integer multiples of π radiants$$
N_{\mathrm{th}, \mathrm{ssy}}=\frac{1}{\pi} \arg \left(\frac{G_{E}^{A}\left(q_{\mathrm{th}, \text { asy }}^{2}\right)}{G_{M}^{A}\left(q_{\mathrm{th}, \text { asy }}^{2}\right)}\right) \in \mathbb{N}
$$

(0) The lack of data prevents obtaining unique pairs $\left(N_{\text {th }}, N_{\text {asy }}\right)$.
(0) The strong theoretical constraints reduce to 8 the number of possible pairs ($N_{\text {th }}, N_{\text {asy }}$) compatible with the few data points.
(0) A Monte Carlo procedure, defined to make a statistical study of the results, gives the probability of occurrence of each pair ($N_{\text {th }}, N_{\text {asy }}$).

$N_{\text {th }}$	$N_{\text {asy }}$	$\%$	
-1	0	4.0	
-1	1	16.0	
-1	2	50.5	
-1	3	0.7	-
0	1	0.3	\square
0	3	26.8	
1	2	0.1	
1	3	1.6	

I)
 (0) At the thresholds $q_{\text {th }}^{2}$ and $q_{\text {asy }}^{2}$ the values of the ratio are real hence

 the phases are integer multiples of π radiants$$
N_{\text {th, asy }}=\frac{1}{\pi} \arg \left(\frac{G_{E}^{\Lambda}\left(q_{\mathrm{th}, \text { asy }}^{2}\right)}{G_{\hat{M}}\left(q_{\mathrm{th}, \text { asy }}^{2}\right)}\right) \in \mathbb{N}
$$

(0) The lack of data prevents obtaining unique pairs $\left(N_{\text {th }}, N_{\text {asy }}\right)$.
(0) The strong theoretical constraints reduce to 8 the number of possible pairs ($N_{\text {th }}, N_{\text {asy }}$) compatible with the few data points.
(0) A Monte Carlo procedure, defined to make a statistical study of the results, gives the probability of occurrence of each pair ($N_{\text {th }}, N_{\text {asy }}$).

$N_{\text {th }}$	$N_{\text {asy }}$	$\%$	
-1	0	4.0	-
-1	1	16.0	-
-1	2	50.5	
-1	3	0.7	
0	1	0.2	-
0	3	26.8	-
1	2	0.1	
1	3	1.6	

Cases with a probability of occurrence lower than
0.5% are discarded.

Maveli and phases

Levinson's theorem with no poles [no zeros for $G_{M}^{\Lambda}\left(q^{2}\right)$]

$$
\begin{aligned}
N_{\text {asy }}-N_{\text {th }} & =\left\{\begin{array}{l}
\text { number of zeros of } R\left(q^{2}\right) \\
\text { and } G_{E}^{\Lambda}\left(q^{2}\right) \text { in } \mathbb{C} \backslash\left(q_{\text {th }}^{2}, \infty\right) .
\end{array}\right. \\
G_{E}^{\Lambda}(0) & =0 \Longrightarrow N_{\text {asy }} \geq N_{\text {th }}+1
\end{aligned}
$$

The bands represent the one-sigma-error computed by the standard statistical analysis of the set of results obtained with a Monte Carlo procedure.

The dispersive procedure, connecting experimental information on the modulus of the ratio $R\left(q^{2}\right)$ and on the sine of its phase under the aegis of strong theoretical constraints, assigns different determinations to the phase.

The determination of the measured values of the phase is also established by the dispersive procedure. In the case $\left(N_{\text {th }}, N_{\text {asy }}\right)=(-1,3)$ the BESIII and BaBar phase data have different determinations.

The change

Dynamical and static features of the baryon Λ can be inferred from the complete knowledge of its form factors as functions of q^{2}.

The charge radius squared $\left\langle r_{E}\right\rangle^{2}$
of an extended particle, as a baryon, is proportional to the first derivative of the electric form factor $G_{E}\left(q^{2}\right)$ at $q^{2}=0$.

$$
\left\langle r_{E}\right\rangle^{2}=\left.6 \frac{d G_{E}\left(q^{2}\right)}{d q^{2}}\right|_{q^{2}=0}
$$

In the Breit frame, where $q=(0, \vec{q})$ is purely space-like, the electric form factor is the Fourier transform of the spacial charge distribution.

For a neutral baryon, like the Λ, the Sachs form factors at $q^{2}=0$ are normalized as: $G_{E}(0)=0$ and $G_{M}(0)=\mu \neq 0$, then, the charge radius squared is also proportional to the first derivative at $q^{2}=0$ of the ratio $R\left(q^{2}\right)=G_{E}\left(q^{2}\right) / G_{M}\left(q^{2}\right)$

The first derivative at $q^{2}=0$ of the ratio $R\left(q^{2}\right)$ is computed by means of the dispersione relation for the imaginary part

$$
\left\langle r_{E}\right\rangle^{2}=\left.6 \mu \frac{d R\left(q^{2}\right)}{d q^{2}}\right|_{q^{2}=0}=\frac{6 \mu}{\pi} \int_{q_{\mathrm{\hbar}}^{2}}^{\infty} \frac{\operatorname{Im}(R(s))}{s^{2}} d s=\frac{6 \mu}{\pi \Delta q^{2}} \sum_{j=0}^{N} C_{j} \int_{-1}^{1} \frac{T_{j}(x) d x}{\left(x+1+q_{\mathrm{th}}^{2} / \Delta q^{2}\right)^{2}}
$$

with $\Delta q^{2}=\left(q_{\mathrm{asy}}^{2}-q_{\mathrm{th}}^{2}\right) / 2$.
radio of Λ
The neutron has a negative squared charge radius: $\left\langle r_{E}^{n}\right\rangle^{2}=-0.1161 \pm 0.0022 \mathrm{fm}^{2}$

$$
\bar{r}_{E} \equiv \operatorname{Sign}\left(\left\langle r_{E}\right\rangle^{2}\right) \sqrt{\left|\left\langle r_{E}\right\rangle^{2}\right|}
$$

To have a better understanding of the linear extension of the baryon.

Those values of \bar{r}_{E}^{Λ} compatible with $-\bar{r}_{E}^{n}$ can be heuristically interpreted in terms of the different time periods that the valence quarks of the same charge spend at a certain distance from the center of the baryon.

A dispersive procedure based on data and first principles such as analyticity and unitarity has been defined to study the ratio of electric and magnetic form factors of the Λ baryon.

By taking advantage of the measured values of the modulus and the phase of the ratio in the time-like region, as well as on theoretical constraints, the procedure allows us to gain crucial information on the space-like behavior of the ratio, which is not experimentally accessible.

Assuming no zeros for the magnetic form factor, the asymptotic value of the phase counts the number of the zeros of the electric form factor, which, being the Λ a neutral baryon, is at least one:

$$
\Delta \phi=\phi(\infty)-\phi\left(q_{\mathrm{th}}^{2}\right)=\pi\left(N_{\text {asy }}-N_{\text {th }}\right) \geq \pi
$$

The most probable values give $\Delta \phi=3 \pi$, hence, two additional zeros for $G_{E}^{\Lambda}\left(q^{2}\right)$.
New data, especially for the sine of the phase, would be crucial to at least identify its trend and then have hints of the phase determination.

