## Semi-microscopic approach to nucleonnucleus scattering

#### Aaina Thapa

Collaborators: Jutta Escher (LLNL) Emanuel Chimanski (BNL) Walid Younes (LLNL) Eunjin In (LLNL) Sophie Péru (CEA, France)

June 13, 2023 @16th Varenna conference on Nuclear Reaction Mechanisms

#### LLNL-PRES-850139

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC



#### Nucleon-nucleus scattering



Use nuclear structure of the target nucleus for predictive modelling of nucleon-nucleus scattering

# Need for predictive modelling of nucleon-nucleus scattering



1. Phenomenological optical potentials, like Koning-Delaroche, are fitted to nuclei near stability (LHS).

2. Scattering data is limited as we move to neutron-rich nuclei, neutron-nucleus scattering data is even more scarce (RHS).

Theoretical predictions for nucleon-nucleus scattering cross sections is needed

947r

96Zr

### Microscopic structure of the target nucleus

Calculations done by E. Chimanski ,W. Younes, E. In, J. Escher, S. Peru

Microscopic structure of target



Quasi-random phase approximation (QRPA) method used for vibrational spectrum - two or more nucleons in the nucleus collectively gain energy and excite the nucleus.

+

Hartree-Fock-Bogliubov (HFB) mean-field method for the many-body ground state energy.

Structure properties of <sup>98-122</sup> Zr using HFB+QRPA (Chimanski, In, Escher, Peru, Younes (to be submitted))

HFB+QRPA many body methods used to calculate ground state and excited states of the nucleus by treating it as an A-body quantum many-body system

### Integrating structure and reactions



#### Effective nucleon-nucleon interaction : JLM approach

J.P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rev. C 15, 10 (1977).

Effective nucleonnucleon(NN) interaction V(r,E)

Hard core Reid's NN interaction Fock

Brueckner-Hartree-Fock Medium effects : Parametrized NN interaction in nuclear matter

Improved local density Approximation (ILDA) + single-folding (i.e. integrate over all **r**') Nucleon- nucleus potential at positive energies: Nuclei are finite with density varying spatial density

1. The parameters are fitted to reproduce the on-shell g-matrix in infinite nuclear matter (under Bruekner-Hartree-Fock approximation), with bare nucleon-nucleon interaction as hard-core Reid's interaction.

$$\operatorname{Re}(V_{nn}^{NM}(\rho, E)) = \sum_{ij} a_{ij} \rho^{i} E^{j-1} + \alpha \sum_{ij} b_{ij} \rho^{i} E^{j-1}$$
$$\operatorname{m}(V_{nn}^{NM}(\rho, E)) = \left[1 + \frac{D}{(E - \epsilon_{F})^{2}}\right]^{-1} \sum_{ij} d_{ij} \rho^{i} E^{j-1} + \alpha \left[1 + \frac{F}{E - \epsilon_{F}}\right]^{-1} \sum_{ij} f_{ij} \rho^{i} E^{j-1} - (1)$$

2. The parameterized in-medium **nucleon-nucleon** interaction has the form  $V_{nn}^{JLM}(\rho, E) = V_0(\rho, E) + iW_0(\rho, E) + \alpha[V_1(\rho, E) + W_1(\rho, E)], \ \alpha = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}$ 

3. Finite-range effects : Finite nucleus has non-uniform density over the range of interaction.

JLM model parametrizes the in-medium NN interaction at positive energies in infinite nuclear matter.

### JLM approach : 1977 to present

| JLM version                                                    | Energy                      | Nuclei                                                                                                                                                                                                                                                                                                   | Quantity reproduced                                                                                           | Variations studied                                                                                                        | LImitations                                                                           |
|----------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Original JLM<br>– 1977<br>(jeukenne,<br>Lejeune and<br>Mahaux) | 1 MeV <= E<br><= 160<br>MeV | <b>tested for</b> : <sup>12</sup> C, <sup>16</sup> O,<br><sup>27</sup> Al, <sup>40</sup> Ca, <sup>58</sup> Ni, <sup>120</sup> Sn,<br><sup>208</sup> Pb                                                                                                                                                   | <ul><li>a. Volume Integrals</li><li>b. mean-square<br/>radius of OMPs.</li></ul>                              | <ul> <li>a. LDA (gave smaller OMP mean square radii)</li> <li>b. ILDA</li> </ul>                                          | a. Limited to E<=160<br>b. separate<br>parameters below 10<br>MeV<br>c. no spin-orbit |
| Semi-<br>microscopic -<br>1998<br>(Eric Bauge et<br>al.)       | 1 MeV <= E<br><= 200<br>MeV | fit to : <sup>40</sup> Ca, <sup>54,56</sup> Fe,<br><sup>58,60</sup> Ni, <sup>63,65</sup> Cu, <sup>90</sup> Zr, <sup>93</sup><br>Nb, <sup>116,120</sup> Sn, <sup>208</sup> Pb,<br><sup>209</sup> Bi                                                                                                       | <ul> <li>a. +Differential<br/>elastic cross<br/>section</li> <li>b. + Analyzing<br/>power</li> </ul>          | <ul> <li>a. Several ILDA b.<br/>different</li> <li>b. spin-orbit<br/>prescriptions</li> <li>c. HFB density+D1M</li> </ul> | a. Weak iso vector components.                                                        |
| Lane<br>consistent -<br>2001<br>(JLM-B) (Eric<br>Bauge et al.) | 1 keV <= E<br><= 200<br>MeV | fit to: + <sup>48</sup> Ca, <sup>70</sup> Zn,<br><sup>96</sup> Ru, <sup>61,62,64</sup> Ni, <sup>96</sup> Zr,<br><sup>96,92</sup> Mo, <sup>115</sup> In, <sup>93</sup> Nb <sup>112,</sup><br><sup>116,117-119,124</sup> Sn, <sup>104</sup> Pd,<br><sup>138</sup> Ba, <sup>142</sup> Nd, <sup>144</sup> Sm | <ul> <li>a. + Quasi elastic<br/>(p,n) differential<br/>cross section</li> <li>b. + analyzing power</li> </ul> |                                                                                                                           |                                                                                       |

 $JLM-B: V_{nn}^{JLM}(\rho, E) = \lambda_{\nu_0}[V_0(\rho, E) \pm \alpha \lambda_{V_1}V_1(\rho, E)] + i\lambda_{W_0}[W_0(\rho, E) \pm \alpha \lambda_{W_1}W_1(\rho, E)] + S.O(\lambda_{V_{SO}}, \lambda_{W_{SO}}).$ 

, + for incident neutron, - for incident proton

JLM model as we use today is semi-microscopic, the renormalization factors or the  $\lambda$  's are fit to scattering data.

### Optical potential : JLM-B v.s. Koning Delaroche



n – 208Pb case, the central imaginary term includes surface term as well

Semi-microscopic JLM-B. vs phenomenological Koning-Delaroche model for 208Pb(n,n)

#### JLM for inelastic scattering (Lagrange et al. 1983, Cheon et al. 1985, Dupuis et al. 2015)

$$\left\{\frac{d^2}{dr^2} - \frac{l_c(l_c+1)}{r^2} - \frac{2\mu_c}{\hbar^2} V_{cc}^{\mathcal{J}}(r) + k_c^2\right\} u_c(r) = \sum_{c' \neq c} \frac{2\mu_c}{\hbar^2} V_{cc'}^{\mathcal{J}}(r) \ u_{c'}(r),$$

The goal is to calculate need to calculate coupling potentials



- Effective JLM interaction : density-dependent interaction -> During inelastic scattering when target get excited, target density changes.
- 2. The transition densities gives us information about the change in target density after the target is excited.
- **3.** Contribution from the variation of effective interaction as the transition happens : Rearrangement term.

So, Full coupling potential calculated using,  $\rho_{tr} V_{nn}^{JLM}(\rho, E) + \rho_{tr} \rho_0 \frac{dV_{nn}^{JLM}(\rho, E)}{d\rho}$ 

### Results : Elastic scattering using JLM method



- 1. Good agreement with measured cross sections (dots) for 90,94 and 96Zr.
- 2. Compares well to much used phenomenological Koning-Delaroche nucleon-nucleus potential.

For elastic scattering method works well, next we use the same in-medium NN interaction for inelastic scattering.

### Neutron inelastic scattering : 90Zr(n, n')



Proof-of-principle inelastic scattering calculations for 90Zr(n,n') are encouraging

#### Inelastic scattering : 90Zr(p,p') at 25 MeV



Using distorted Bonn-wave approximation (DWBA) ie., only including transitions from ground state to excited states.

Preliminary differential cross section results for 90Z(p,p') to first three 2+ and first two 3- excited states for 90Zr.

#### Effect of Coulomb contribution to coupling potentials?



Dashed curve : No Coulomb added to transition potential from Collective model

Solid curve : Collective model with Coulomb contribution to transition potentials

Dots : Experimental results

Coulomb contribution in transition potential causes the uptick in differential cross section in Collective Model -> We need to Implement Coulomb contribution to the transition potential

# Charged-particle nucleus scattering: Neutron capture cross section using surrogate



Will be calculated using this work Angle integrated cross sections as a function of energy for a given spin J and parity  $\pi$ . A Surrogate experiment gives  $P_{(p,p'\gamma)}(E) = \sum_{J,\pi} F_{(p,p')}{}^{CN}(E,J,\pi) \cdot G^{CN}{}_{\gamma}(E,J,\pi)$ <sup>90</sup>Zr(n, $\gamma$ ) cross section:  $\sigma_{(n,\gamma)} = \sum_{J,\pi} \sigma_{n+target}{}^{CN}(E,J,\pi) \cdot G^{CN}{}_{\gamma}(E,J,\pi)$ 

> Concept: Escher *et al*, RMP 84 (2012) 353; EPJConf 122 (2016) 12001

> > Fig. from J. Escher

Inelastic scattering can be used as a surrogate reaction to predict neutron capture cross sections for unstable nuclei

## Outlook

- 1. Inelastic scattering cross section calculations for 94Zr, 96Zr and 96Mo.
- 2. Study the impact of structure and NN interaction modelling individually on scattering cross sections and investigate ways to improve the JLM method.
- Near-term surrogate applications to calculate neutron capture cross section for 95Zr and 95Mo : Generate spin-distributions for 96Zr(p,p'), and 96Mo(p,p').
- 4. Implement JLM approach for deformed nuclei.

#### Integrating structure and reactions



#### A thank you to my collaborators:

LLNL: J. Escher, E. In, W. Younes, BNL/NNDC: E. Chimanski CEA/France: S. Péru And admin support: LLNL: L. Frazier



- 1. Developing capability to connect nuclear structure with nucleon-nucleus scattering cross sections.
- 2. We implemented JLM approach to this end.
- 3. For elastic scattering, we get good agreement with phenomenological models
- 4. Preliminary results for inelastic scattering were presented, checks are underway.
- 5. The applications of interest : use inelastic scattering as surrogate reaction for predicting neutron-capture cross sections

#### A thank you to my collaborators:

LLNL: J. Escher, E. In, W. Younes, BNL/NNDC: E. Chimanski CEA/France: S. Péru And admin support: LLNL: L. Frazier

#### Extras – Structure Results

#### 90Zr : Structure methods vs Experiments



### 94Zr and 96Zr spectrum from QRPA



#### Structure predictions from HFB: ground state properties of the Zr isotopes

Chimanski, In, Escher, Peru, Younes (to be submitted)



Gogny D1M interaction Axially-symmetric deformed basis 11 oscillator shells

Binding energies/two-neutron separation energies



Shape Evolution of ground state Zr isotopes:







Slide from J. Escher

Predicted systematics agree well with experiment - with some exceptions

#### Structure predictions from HFB: ground state properties of the Zr isotopes

0-25

0

0 -

01

25-

<sup>102</sup>7r

1107r



Chimanski, In, Escher, Peru, Younes (to be submitted)

Discrepancies reveal shortcomings in method or implementation: approximations, interaction,...

#### Extras – About Scattering

### At higher incident energy of E = 185 MeV



### Inelastic scattering : 90Zr(p,p')

#### Work in progress



#### Bauge JLM vs Original JLM [with ti=tr = 1.2] (elastic scattering)

