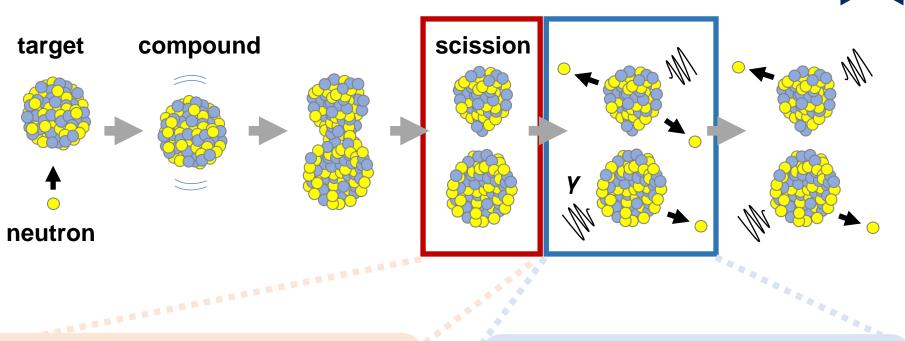
16th Varenna Conference on Nuclear Reaction Mechanisms

Prompt-fission observable and fission yield calculations for actinides by TALYS

Tokyo Tech.¹, Uppsala University², CEA³, IAEA⁴

Kazuki Fujio¹, Ali Al-Adili², Fredrik Nordström², Jean-François Lemaître³, Shin Okumura⁴, Satoshi Chiba¹, Arjan Koning⁴


This presentation is supported by Grant-in-Aid for Scientific Research (B), MEXT, Japan, and by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 21H01856.

Outline

- Hauser-Feshbach statistical decay calculation implemented in TALYS
- Sensitivity study of fission observables based on
 ²³⁵U + thermal neutron reaction
- Application to neutron-induced fission of ²³⁵U from thermal up to 5 MeV
- Global study on actinides at 1 MeV incident neutron reaction
- Conclusions

New approach implemented in TALYS

Fission fragment information

- Fission fragment yield $Y_{\rm ff}(Z,A)$
- · Total Kinetic Energy TKE
- Mean excitation energy \bar{E}_x
- \cdot Width of the excitation energy distribution σ_{E_x}

Hauser-Feshbach statistical decay

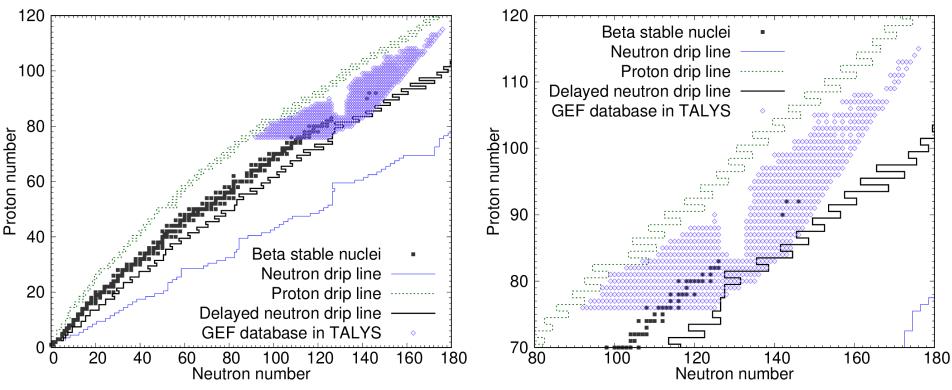
- Independent fission product yield
- · Isomeric yield ratio
- · Neutron / γ-ray multiplicity
- Prompt Fission Neutron Spectrum / Prompt Fission γ-ray Spectrum

TALYS contains fission fragment information from several theoretical codes.

穴

Tokyo Tech

Fission fragment database in TALYS

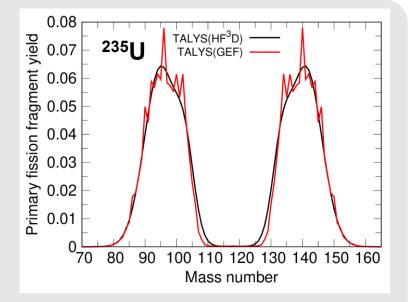


- GEF Mo
 - Monte Carlo-based phenomenological fission model gives fission observables data not only after decays but also pre-neutron data.

K. -H. Schmidt, B. Jurado, C. Amouroux, C. Schimitt, Nuclear Data Sheets, 131, 107-221 (2016).

• TALYS contains 737 fissioning nuclei ranging from ₇₆Os to ₁₁₅Mc

Fission fragment database in TALYS



- Designed with a fully deterministic technique with fitting functions S. Okumura, T. Kawano, P. Jaffke, P. Talou, and S. Chiba, JNST, 55(9), 1009-1023 (2018).
 - For neutron-induced fission of ²³⁵U, ²³⁸U, and ²³⁹Pu
- Mass distribution of primary fragments

$$Y(A) = \sum_{i=1}^{5} \frac{Y_i}{\sqrt{2\pi\sigma_i}} \exp\left\{-\frac{\left(A - A_m + \Delta_i\right)^2}{2\sigma_i^2}\right\}$$

- $A_m = A_c/2$ A_c : mass number of compound nucleus
 - σ_i, Δ_i : Gaussian parameters

$$Y_{1,5}$$
 : yield (i = 1~5)

TKE distribution of primary fragments

$$\text{TKE}(A_h) = (p_1 - p_2 A_h) \left\{ 1 - p_3 \exp\left(-\frac{(A_h - A_m)^2}{p_4}\right) \right\} + \varepsilon_{\text{TKE}}$$

 p_i : fitting parameters $~arepsilon_{\mathrm{TKE}}$: correction term to ensure the average TKE

- \cdot Charge distribution is obtained from Wahl's $Z_{\rm p}$ model
- R_T model is used for the excitation energy partition $R_T = 1.29$ at thermal energy and $R_T = 1.00$ as R_T approaches 5 MeV.

Fission fragment table

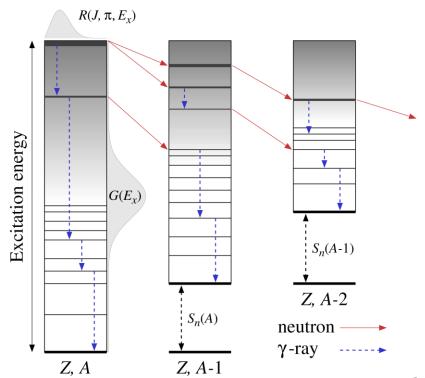
Tokyo Tech	

# Z		= 92	2			$\bar{\mathbf{n}}$	~		
# A		= 236	5			E_x	σ_{E_x}		
# Ex	(MeV) = 6.55	5e+00						
# Nto	tal	= 207	7			1			
# Zl	Al	Zh Ah	Yield	TKE[MeV]	TXE[MeV]	El[MeV]	Wl[MeV]	Eh[MeV]	Wh[MeV]
28	72	64 164	1.7222e-06	1.4140e+02	2.1593e+01	9.0083e+00	3.3421e+00	1.2584e+01	4.6688e+00
29	73	63 163	3.3249e-06	1.4256e+02	2.2054e+01	9.1763e+00	3.3591e+00	1.2877e+01	4.7139e+00
30	73	62 163	1.5739e-06	1.4514e+02	2.0166e+01	8.7278e+00	3.5748e+00	1.1438e+01	4.6847e+00
29	74	63 162	1.6362e-06	1.4375e+02	1.9948e+01	7.9037e+00	3.2017e+00	1.2044e+01	4.8788e+00
30	74	62 162	1.0661e-05	1.4634e+02	2.2937e+01	1.0050e+01	3.6535e+00	1.2887e+01	4.6847e+00

Excitation energy distribution

$$G(E_x) = \frac{1}{\sqrt{2\pi\sigma_{E_x}}} \exp\left\{-\frac{(E_x - \bar{E}_x)^2}{2\sigma_{E_x}^2}\right\}$$

 \bar{E}_x : mean excitation energy


 σ_{E_x} : width of the excitation energy distribution

Spin-parity distribution

$$R(J,\pi,E_x) = \frac{1}{2} \cdot \frac{2J+1}{2f^2\sigma^2(E_x)} \exp\left\{-\frac{(J+1/2)^2}{2f^2\sigma^2(E_x)}\right\}$$

 $\sigma^2(E_x)$: spin-cut off parameter

 f^2 : scaling factor

Sensitivity study of fission observables

Spin-parity distribution

$$R(J, \pi, E_x) = \frac{1}{2} \cdot \frac{2J+1}{2X\sigma^2(E_x)} \exp\left\{-\frac{(J+1/2)^2}{2X\sigma^2(E_x)}\right\}$$

X : scaling factorFor primary fission fragments $\rightarrow X = f^2$ For fission products $\rightarrow X = f_s$

to assure a reasonable agreement with experimental data.

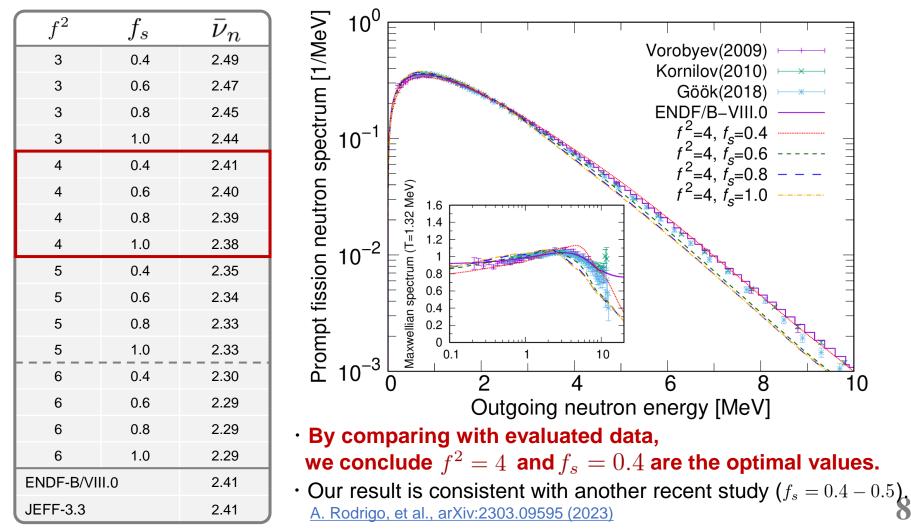
The number of continuum states N

$$\Delta_{\rm bins}(Z,A) = (E_x^{\rm max} - E_x^{\rm level})/N$$

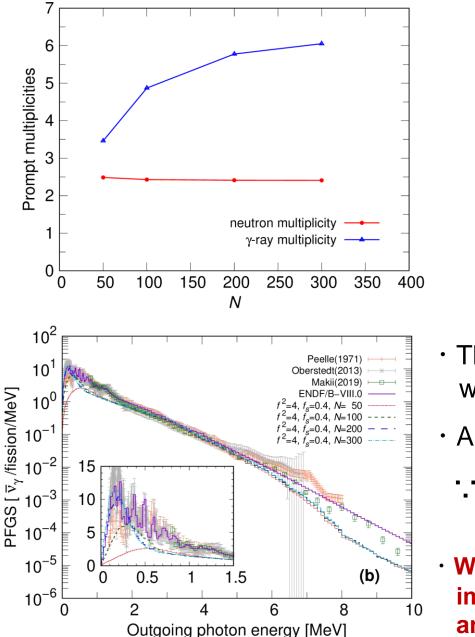
 $\Delta_{\rm bins}(Z,A)\,$: energy width of discretized continuum state

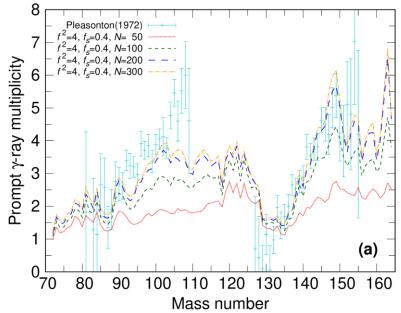
 E_x^{\max} : maximum excitation energy

 $E_x^{
m level}$: excitation energy at the last discrete level


Sensitivity on scaling parameters

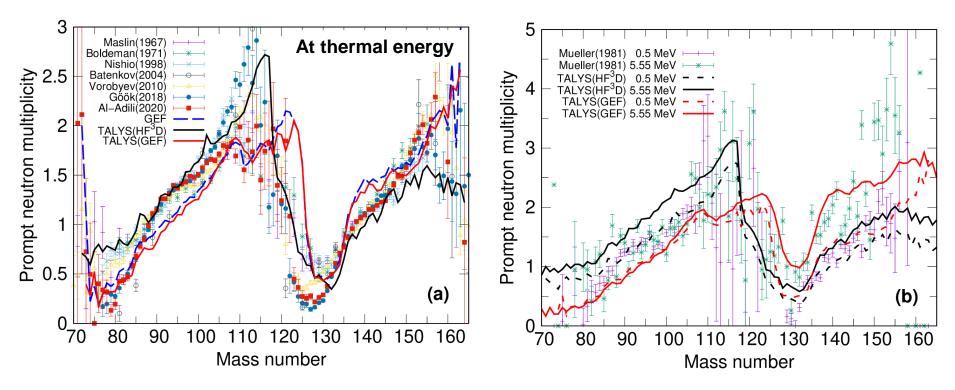
- Sensitivity study using $(Y_{\rm ff}(Z, A), {\rm TKE}, \bar{E}_x, \sigma_{E_x})$ obtained from HF³D
- · Prioritize to reproduce the neutron multiplicity $\bar{\nu}_n$ and the shape of PFNS


穴


Tokyo Tech

• Run parameter sensitivity analysis $3 < f^2 < 6$ and $0.4 < f_s < 1.0$

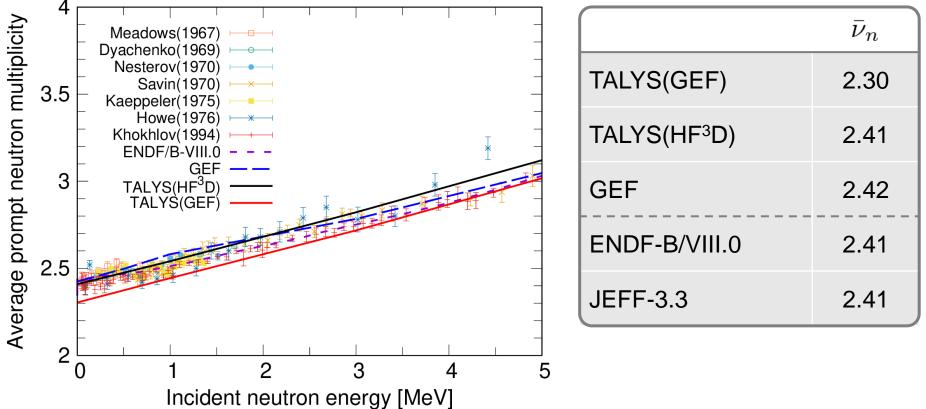
Sensitivity on the number of continuum states



- The γ -ray multiplicity $\bar{\nu}_{\gamma}$ increases with increasing *N*.
- · A prominent peak appears in PFGS.
 - Transitions between small energy levels increase as *N* increases.
- We chose N = 300 as the optimal value for improved consistency with experimental and evaluated data.

Application to ²³⁵U(n,f)

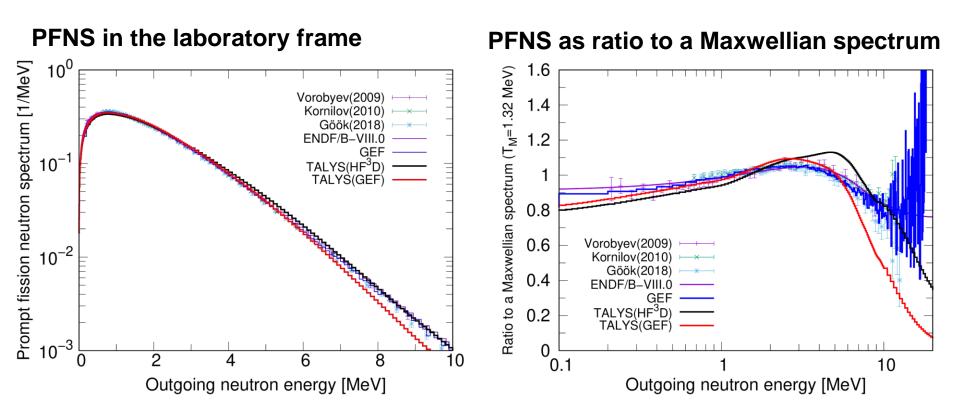
- \cdot The optimal values: $f^2=4$, $f_s=0.4$, and N=300
- · Comparison between TALYS(GEF), TALYS(HF³D), experimental, and evaluated data



- \cdot TALYS results show the saw-tooth shape that is consistent with experimental data.
- TALYS(GEF) reproduces that the $\bar{\nu}_n$ increases from heavy fragments.

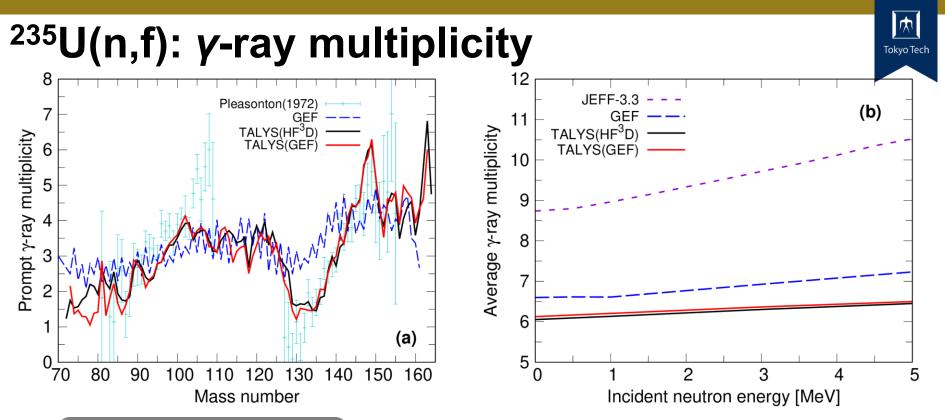
• TALYS(HF³D) does not exhibit the trend. \rightarrow TALYS reflects the difference in the energy-sorting mechanism from GEF and HF³D0

²³⁵U(n,f): neutron multiplicity


 TALYS(HF³D) successfully reproduces the evaluated value at thermal energy as original HF³D model.

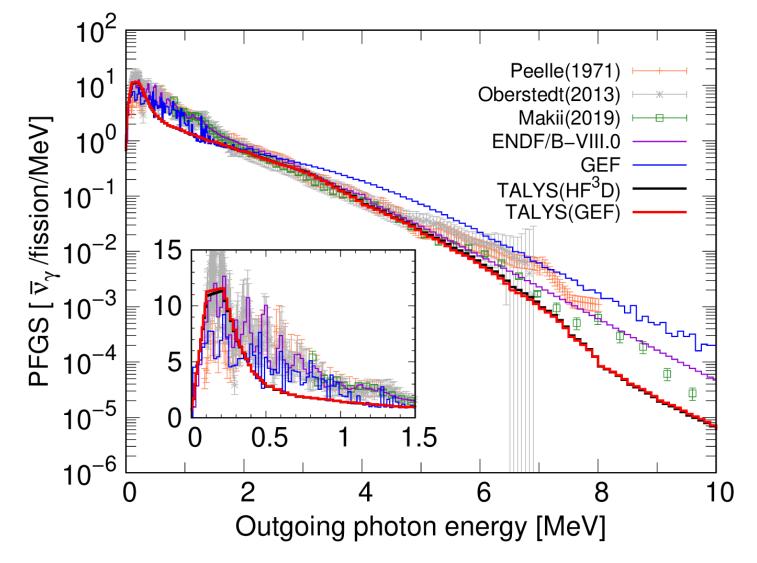
S. Okumura, T. Kawano, P. Jaffke, P. Talou, and S. Chiba, JNST, 55(9), 1009-1023 (2018).

• TALYS(GEF) underestimates the evaluated data at thermal energy by about 0.1, but it agrees with the data as the incident energy increases.


²³⁵U(n,f): PFNS

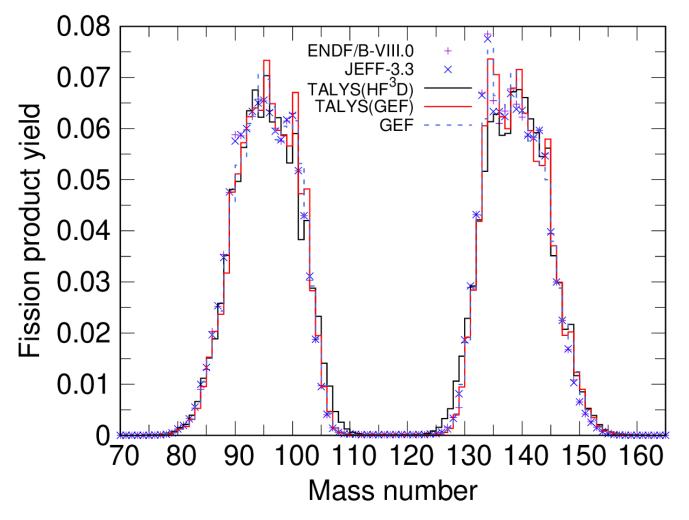
• TALYS(GEF) is underestimated at higher energies.

 The pronounced peak in the TALYS(HF³D) around 6 – 7 MeV is well above the experimental data.



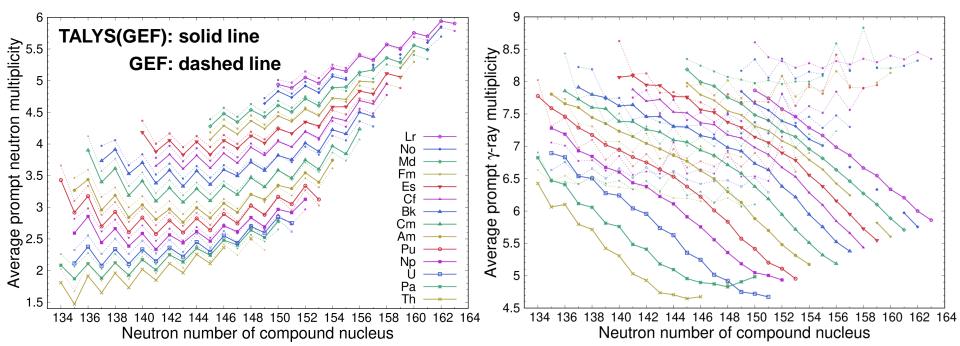
	$ar{ u}_\gamma$
TALYS(GEF)	6.13
TALYS(HF ³ D)	6.05
GEF	6.61
Oberstedt (2013)	8.19±0.11
Verbinski (1973)	6.70 ± 0.30
Pleasonton (1972)	6.51 ± 0.30
Peelle (1971)	7.45 ± 0.35
ENDF-B/VIII.0	8.58
JEFF-3.3	8.74

- While stand-alone GEF has a flatter $\bar{\nu}_{\gamma}$, TALYS results exhibit the saw-tooth shape.
- TALYS' $\bar{\nu}_{\gamma}$ are smaller around fragment mass number A=100 to 110.
- TALYS underestimates $\bar{\nu}_{\gamma}$ compared to experimental and evaluated data.


²³⁵U(n,f): PFGS

 A pronounced peak is observed around 0.2 MeV in both TALYS(GEF) and TALYS(HF³D).

²³⁵U(n,f): fission product yield



- Both TALYS results reproduce the prominent peak at A = 138 for heavy fragments and at A = 94, 100 for light ones.
- The prominent peak at A = 134 appears only in TALYS(GEF).

Global study on actinides

We examined 243 selected actinide isotopes with 1 MeV incident neutron energy using: $f^2 = 4$, $f_s = 0.4$, and N = 150.

TALYS is now able to perform this kind of global calculation of statistical decay of primary fission fragments, ranging from very neutron deficient to neutron-rich nuclei.

- $\bar{\nu}_n$ calculated by stand-alone GEF and TALYS(GEF) coincides with each other quite well including the zigzag pattern caused by the pairing effects.
- $\bar{\nu}_{\gamma}$ for the neutron-rich nuclei differs much between TALYS(GEF) and GEF, which reflect difference of the statistical decay calculation in these codes.

穴

Tokyo Tech

Conclusions

- TALYS recently has been extended to perform Hauser-Feshbach statistical decay calculation with fission fragment distribution database generated by GEF, HF³D, SPY, and user's own data.
- TALYS has a limitation within the energy range up to first-chance fission.
 In the future, TALYS will be responsible for multi-chance fission.
- The optimal parameters are decided to prioritize to reproduce $\bar{\nu}_n$ and the shape of PFNS.
- TALYS shows a decent agreement with the experimental and evaluated data of prompt neutron observables and independent fission product yield, especially.
- TALYS is now able to perform this kind of global calculation of statistical decay of primary fission fragments, ranging from very neutron deficient to neutron-rich nuclei.

Acknowledgements

- Authors thank T. Kawano (Los Alamos National Laboratory) and K.-H. Schmidt for valuable discussions.
- The IAEA-NDS acknowledges the internship program "The nuclear Regulation Human Resource Development Program (ANSET: Advanced Nuclear 3S Education and Training)" entrusted to Tokyo Institute of Technology, Tokyo, Japan by the Nuclear Regulation Agency of Japan, for supporting this work.
- A. Al-Adili would like to acknowledge Liljewalch travel scholarships and Ingegerd Berghs stiftelse for their research grants.
- K. Fujio thanks C. Ishizuka and acknowledges her Grant-in-Aid for Scientific Research (B), MEXT, Japan, and by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 21H01856.

Thank you for your kind attention!

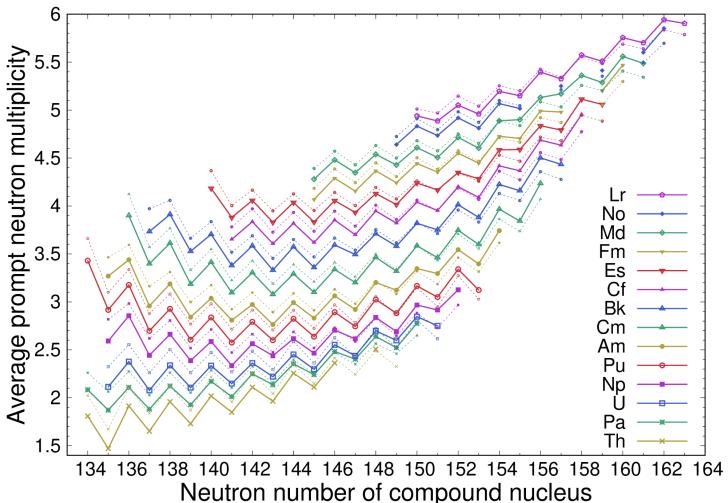
Other important parameters

Tokyo Tech

Optical model potentials

Koning-Delaroche global optical model

Level density parameters

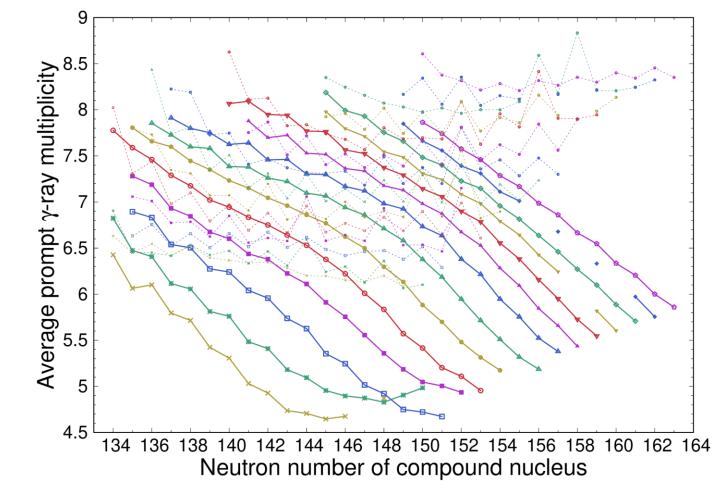

Constant temperature model using the level density parameters and systematics from:

<u>A. J. Koning, S. Hilaire, S. Goriely, Nucl. Phys. A810, 13-76 (2008).</u>

- E1 and M1 y-ray strength function IAEA-CRP SMLO 2019 tables and IAEA GSF CRP 2018
- Discrete level properties

RIPL-3

Global study on actinides


- The zigzag pattern is attributed to the difference in neutron separation energy of the compound nucleus.
- The even *N* compound nucleus gains more excitation energy due to the pairing of the captured incident neutron compared to an odd *N* compound nucleus.

 \mathbf{x}

Tokyo Tech

Global study on actinides

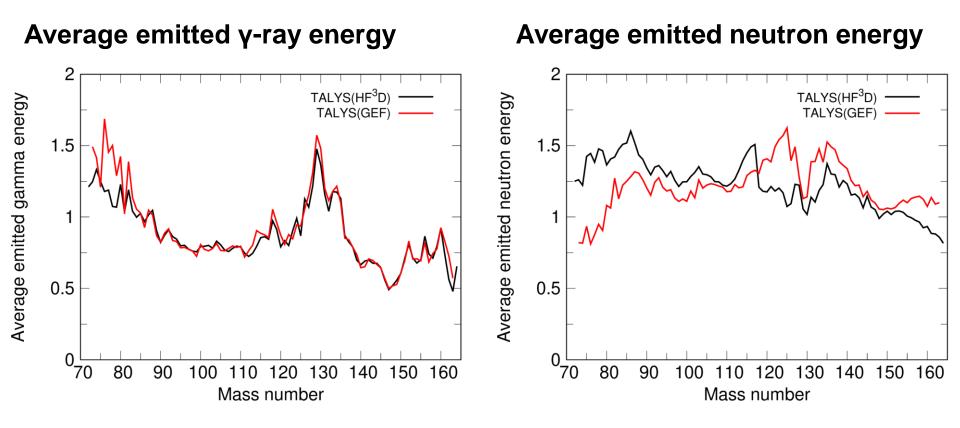
- $\bar{\nu}_{\gamma}$ is known to be sensitive to the angular momentum population in the fragments.
 - → Different treatments of the fragment angular momenta in GEF and TALYS could be one reason for such discrepancies.

Sensitivity on scaling parameters

$TALYS(HF^{3}D)$							
# of N	f^2	f_s	$\overline{ u}_{\gamma}$	$\overline{ u}_n$	$\langle \epsilon_{\gamma} \rangle [\mathrm{MeV}]$	$\langle \epsilon_n \rangle [\text{MeV}]$	
300	3	0.4	5.06	2.49	0.869	2.049	
	3	0.6	5.76	2.47	0.818	1.945	
	3	0.8	6.21	2.45	0.786	1.915	
	3	1.0	6.50	2.44	0.764	1.907	
	4	0.4	6.05	2.41	0.772	2.079	
	4	0.6	6.92	2.40	0.728	1.941	
	4	0.8	7.48	2.39	0.699	1.899	
	4	1.0	7.85	2.38	0.677	1.887	
	5	0.4	6.85	2.35	0.714	2.107	
	5	0.6	7.90	2.34	0.675	1.938	
	5	0.8	8.55	2.33	0.646	1.886	
	5	1.0	8.96	2.33	0.625	1.869	
	6	0.4	7.45	2.30	0.681	2.132	
	6	0.6	8.66	2.29	0.646	1.935	
	6	0.8	9.36	2.29	0.617	1.876	
	6	1.0	9.85	2.29	0.593	1.855	
ENDF-B	/VII	I.0	8.58	2.41	0.85	2.00	
JEFF-3.3	3		8.74	2.41	0.81		

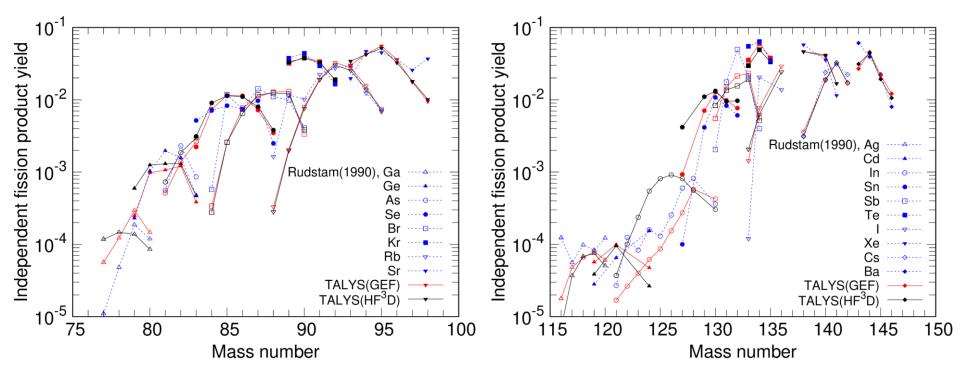
$TALYS(HF^{3}D)$							
# of N	f^2	f_s	$\overline{ u}_\gamma$	$\overline{ u}_n$	$\langle \epsilon_{\gamma} \rangle [\text{MeV}]$	$\langle \epsilon_n \rangle [\text{MeV}]$	
50	4	0.4	3.46	2.49	1.192	1.990	
100	4	0.4	4.87	2.43	0.923	2.045	
200	4	0.4	5.78	2.41	0.804	2.072	
300	4	0.4	6.05	2.41	0.772	2.079	
ENDF-B	/VII	I.0	8.58	2.41	0.85	2.00	
JEFF-3.3	3		8.74	2.41	0.81		

²³⁵U(n,f): multiplicities and average energy



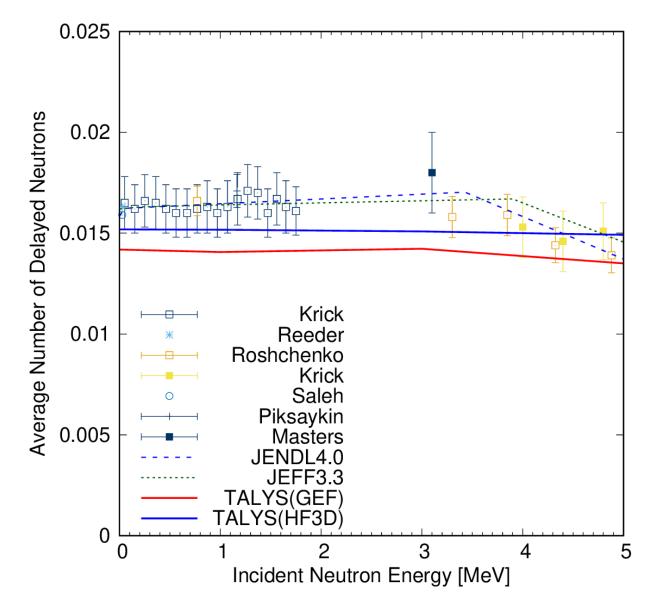
 \cdot The optimal values: $f^2 = 4$, $f_s = 0.4$, and N = 300

	$\overline{ u}_\gamma$	$\overline{ u}_n$	$\langle \epsilon_{\gamma} \rangle [\mathrm{MeV}]$	$\langle \epsilon_n \rangle [\text{MeV}]$
TALYS(GEF)	6.13	2.30	0.761	1.991
$TALYS(HF^{3}D)$	6.05	2.41	0.772	2.079
GEF	6.61	2.42	0.962	1.997
Oberstedt et al. (2013)	$8.19{\pm}0.11$		$0.85{\pm}0.02$	
Verbinski et al. (1973)	$6.70{\pm}0.30$		$0.97{\pm}0.05$	
Pleasonton et al. (1972)	$6.51{\pm}0.30$		$0.99{\pm}0.07$	
Peelle et al. (1971)	$7.45 {\pm} 0.35$		$0.96{\pm}0.05$	
ENDF-B/VIII.0	8.58	2.41	0.85	2.00
JEFF-3.3	8.74	2.41	0.81	

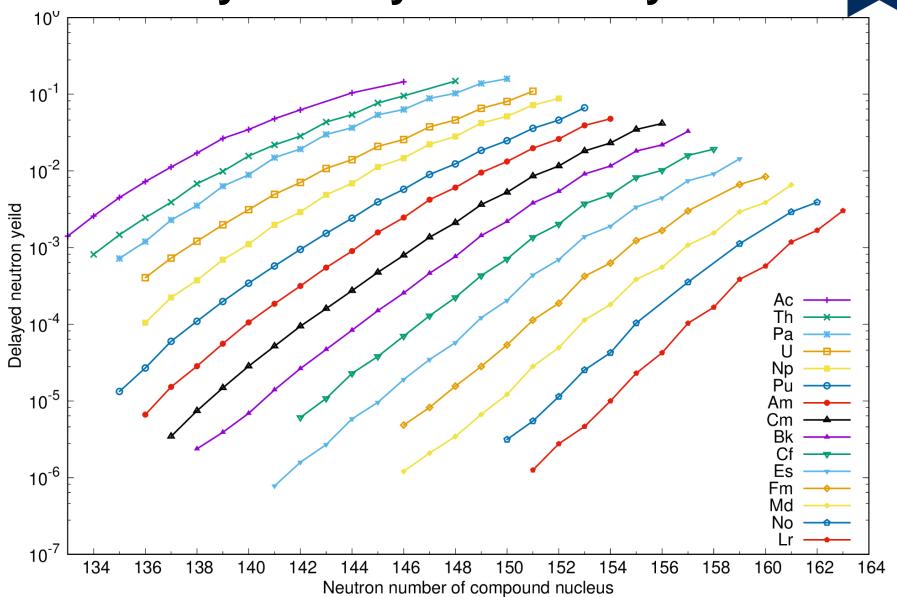

²³⁵U(n,f): average energies

26

²³⁵U(n,f): fission product yield



• TALYS results are roughly consistent with the tendency shown in the experimental data.

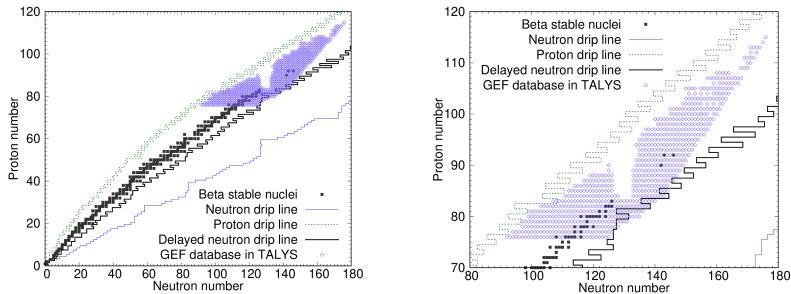

☆

Tokyo Tech

²³⁵U(n,f): average number of delayed neutron

Global study of delayed neutron yield

Fission fragment database in TALYS



GEF

Monte Carlo-based phenomenological fission model

K. –H. Schmidt, B. Jurado, C. Amouroux, C. Schimitt, Nuclear Data Sheets, 131, 107-221 (2016).

• For 737 fissioning nuclei ranging from $_{76}$ Os to $_{115}$ Mc

- **HF³D** Designed with a fully deterministic technique with fitting functions S. Okumura, T. Kawano, P. Jaffke, P. Talou, and S. Chiba, JNST, 55(9), 1009-1023 (2018).
 - For neutron-induced fission of ²³⁵U, ²³⁸U, and ²³⁹Pu
- **SPY** Obtained from a statistical scission point model using microscopic calculation

J. -F. Lemaître, S. Goriely, S. Hilaire, and J.-L. Sida, Phys. Rev. C99, 034612 (2019).

Arbitrary fission fragment data provided by users