The Role of Angular Momentum in Fission

GlobalSecurity
Anticipate • Innovate • Deliver

Ramona Vogt (LLNL \& UC Davis) Jorgen Randrup (LBNL)

Fission is a complicated process involving multiple scales

Specialized physics models required to study fission: phenomenology required to model complete events

We have been developing FREYA (Fission Reaction Event Yield Algorithm) since 2009 to study fission event-by-event

- First such fission model ever published and made generally available
- Showed the importance of energy and momentum conservation for understanding fission data
- FREYA is fast enough for users to study fission of different isotopes and energies in real time with a laptop - a big advantage (focus on FREYA here for simplicity) Other codes similar in concept to FREYA have also appeared, differ in details:

- CGMF; FIFRELIN; GEF

Older codes deterministic, based on average events, tuned to subsets of average data

Event-by-event modeling is efficient framework for studying fission

Event-by-event (Monte Carlo) modeling has been used in high energy nuclear and particle physics when there are multiple outcomes - useful for studying detector response and predicting outcomes of experiment

Calculational framework easily adoptable for studying fission
Goal(s): Fast generation of (large) samples of complete fission events
Complete fission event: Full kinematic information on all final particles

Two product nuclei: $Z_{H}, A_{H}, \boldsymbol{P}_{H}$ and $Z_{L}, A_{L}, \boldsymbol{P}_{L}$
v neutrons: $\left\{\boldsymbol{p}_{n}\right\}, n=1, \ldots, v$
N_{γ} photons: $\left\{\boldsymbol{p}_{m}\right\}, m=1, \ldots, N_{\gamma}$
Advantage of having samples of complete events:
Straightforward to extract any observable, including fluctuations and correlations, and to take account of cuts \& acceptances
Advantage of fast event generation:
Can be incorporated into transport codes

Every part of a fission event is correlated

An average fission model

- no n-n, n- γ or $\gamma-\gamma$ correlations
- no kinematic correlations

A discrete fission model

- $\mathrm{n}-\mathrm{n}, \mathrm{n}-\gamma$ and $\gamma-\gamma$ correlations
- kinematic correlations
- In 'average' models, fission is a black box, neutron and gamma energies sampled from same average distribution, regardless of multiplicity and energy carried away by each emitted particle; fluctuations and correlations cannot be addressed
- Detailed models generate complete fission events: energy \& momentum of neutrons, photons, and products in each individual fission event; correlations are automatically included

- Traditionally, neutron multiplicity sampled between nearest values to get correct average value
- All neutrons sampled from same spectral shape, independent of multiplicity - no conservation of energy or momentum!

Brief synopsis of how FREYA works

- For a given Z, A and energy ($E_{\mathrm{n}}=0$ for spontaneous fission), FREYA selects mass and charge of fragment from either data or a model (5 gaussian) parameterization
- Second fragment mass and charge obtained assuming binary fission, mass and charge conservation
- From fragment identities, fission Q value is obtained
- $\operatorname{TKE}\left(A_{H}\right)$ sampled from distribution; TXE obtained by energy conservation
- 'Spin temperature' sets level of rotational energy, remaining TXE given to intrinsic excitation energy
- Intrinsic excitation divided between fragments, based on level densities, then thermal fluctuations introduced to obtain final excitation energy sharing
- Thermal fluctuations remove energy from TKE to maintain energy conservation, equivalent to width of TKE distribution
- Spin fluctuations (conserving angular momentum), introduced for wriggling and bending modes
- Pre-equilibrium emission and n-th chance fission included for $E_{n} \leq 20 \mathrm{MeV}$
- After scission, fragments are de-excited first by emitting neutrons (Weisskopf-Ewing spectra) until the remaining energy is less than the neutron separation energy
- Photon emission follows until fragment no longer excited (statistical, then discrete emission)
Lawrence Livermore National Laboratory

FREYA has five physics-based parameters

- The fissioning nucleus, with A_{0} nucleons, has an initial excitation energy E_{sc} including statistical and rotational excitation of the fragments
- The level density parameter, $\mathrm{a} \sim \mathrm{A}_{0} / \mathrm{e}_{0}$, relates the temperature to the excitation energy, as in $E_{s c}=\left(A_{0} / e_{0}\right) T_{s c}{ }_{s c}-e_{0}$ is the first parameter
- The fragment 'spin temperature' fluctuates around the scission temperature T_{sc} according to second parameter $\mathrm{c}_{\mathrm{s}}, \mathrm{T}_{\mathrm{s}} \sim \mathrm{c}_{\mathrm{s}} \mathrm{T}_{\mathrm{sc}}$, affecting rotational energy $E_{\text {rot }}$ and photon observables
- Total excitation energy, $\mathrm{E}_{\text {sc }}=\mathrm{E}_{\text {rot }}+\mathrm{E}_{\text {stat }}, \mathrm{E}_{\text {stat }}$ is dissipated through neutron emission
- Statistical energy is partitioned between light and heavy fragments according to level density parameters, $\mathrm{E}_{\text {stat }}=\mathrm{E}_{\mathrm{L}}^{*}+\mathrm{E}_{\mathrm{H}}^{*}$
- The light fragment energy is enhanced by third parameter, $x>1$, by $\mathrm{E}^{\prime *} \mathrm{~L}=x \mathrm{E}^{*} \mathrm{~L}$ so that $\mathrm{E}^{\prime *}{ }_{\mathrm{H}}=\mathrm{E}_{\text {stat }}-\mathrm{E}^{\prime *} \mathrm{~L}$, affecting neutron multiplicity vs fragment mass
- Fragments get thermal variance, fourth parameter, c, controlling maximum available excitation and affecting neutron multiplicity distribution and moments
- Fifth parameter dTKE adjusts average TKE to fix average neutron multiplicity

Angular Momentum Generation in FREYA: based on nucleon exchange

Start from the rotating compound nucleus generated by the incoming neutron

The plane of rotation is determined by the impact parameter of incident neutron; the plane may change due to pre-fission neutron evaporation (which is treated the same as the post-fission neutron evaporation from the rotating fragments)

Introduced (half) integer spin and can now specify fragments more precisely

$$
\begin{aligned}
& \text { RV \& JR, PRC } 103 \text { (2021) } 014610 \\
& \text { JR \& RV, PRL } 127 \text { (2021) } 062502 \\
& \text { JR, T. Dossing \& RV, PRC } 106 \text { (2022) } 014609 \\
& \text { JR, PRC } 106 \text { (2022) L051601 }
\end{aligned}
$$

FREYA mechanism of fragment spin generation: nucleon exchange

Relevant theory of nucleon exchange
Damped heavy-ion collisions, W.U. Schröder and J.R. Huizenga, Ann. Rev. Nucl. Sci. (1977) 465

Intimate relationship between nucleon exchange and energy dissipation
Theory of transfer-induced transport in nuclear collisions, J. Randrup, Nucl. Phys. A327 (1979) 490:
Each transfer changes the nucleon numbers and the excitation energies of the fragments, as well as their linear \& angular momenta

Transport of angular momentum in damped nuclear reactions, J. Randrup, Nucl. Phys. A383 (1982) 468:
Mobility (friction) tensor: anisotropic
Dynamical evolution of angular momentum in damped nuclear reactions, T. Døssing and J. Randrup, Nucl. Phys. A433 (1985) 215:

Relaxation times $\quad t_{\text {wriggling }} \ll t_{\text {bending }} \& t_{\text {twisting }} \lll t_{\text {tilting }}$ fast slow
$Z_{H}, N_{H}, P_{H}, S_{H}, T_{H}$, $Z_{\mathrm{L}}, N_{\mathrm{L}}, P_{\mathrm{L}}, S_{\mathrm{L}}, T_{\mathrm{L}}$

J. Randrup, Nucl. Phys. A 327, 490 (1979)
J. Randrup, Nucl. Phys. A 383, 468 (1983)
T. Døssing \& J. Randrup, NPA 433, 215 (1985)

Multiple nucleon transfers produce a dissipative force that affects the linear and angular momenta of the binary partners

Time scale:

The mobility coefficients for the rotational modes: $\left\{\begin{array}{l}M_{\text {wrig }}=m \mathcal{N} R^{2} \\ M_{\text {bend }}=m \mathcal{N}\left[\left(\frac{\mathcal{I}_{H} R_{L}-\mathcal{I}_{L} R_{H}}{\mathcal{I}_{L}+\mathcal{I}_{H}}\right)^{2}+c_{\text {ave }}^{2}\right] \\ M_{\text {twst }}=m \mathcal{N} c_{\text {ave }}^{2}\end{array}\right.$
One-way nucleon current: $\quad \mathcal{N} \approx \frac{1}{4} \rho \bar{v} \pi c^{2} \quad\left(\bar{v}=\frac{3}{4} v_{F}\right)$
Center separation:
$R=R_{L}+R_{H}+d$
Neck radius: c $\left(c^{2} \ll R^{2}\right)$

Basic Kinematic Setup

Two moving particles

$$
\begin{gathered}
\boldsymbol{p}_{1}=m_{1} \boldsymbol{v}_{1} \quad \boldsymbol{P}=\boldsymbol{p}_{1}+\boldsymbol{p}_{2}=M \boldsymbol{V}=\boldsymbol{p}_{+} \quad m_{+}=M=m_{1}+m_{2} \text { TOTAL } \\
\boldsymbol{p}_{2}=m_{2} \boldsymbol{v}_{\mathbf{2}} \quad \boldsymbol{p}=\mu\left(\boldsymbol{v}_{1}-\boldsymbol{v}_{2}\right)=\mu \boldsymbol{v}=\boldsymbol{p}_{-} \quad \frac{1}{m_{-}}=\frac{1}{\mu}=\frac{1}{m_{1}}+\frac{1}{m_{2}} \quad \text { RELATIVE } \\
E_{\text {kin }}=\frac{p_{1}^{2}}{2 m_{1}}+\frac{p_{2}^{2}}{2 m_{2}}=\frac{P^{2}}{2 M}+\frac{p^{2}}{2 \mu}=\frac{p_{+}^{2}}{2 m_{+}}+\frac{p_{-}^{2}}{2 m_{-}}
\end{gathered}
$$

Two rotating spheres

$$
\begin{array}{rll}
\boldsymbol{S}_{1}=I_{1} \omega_{1} & \boldsymbol{s}=\boldsymbol{S}_{1}+\boldsymbol{S}_{2}=\boldsymbol{s}_{+} & I_{+}=I_{\text {tot }}=I_{1}+I_{2} \text { TOTAL } \\
\boldsymbol{S}_{2}=I_{2} \omega_{2} \quad \boldsymbol{s}=I_{\text {rel }}\left(\omega_{1}-\omega_{2}\right)=\boldsymbol{s} & \frac{1}{I_{-}}=\frac{1}{I_{\text {rel }}}=\frac{1}{I_{1}}+\frac{1}{I_{2}} \quad \text { RELATI } \\
E_{\text {rot }}=\frac{S_{1}^{2}}{2 \mathcal{I}_{1}}+\frac{S_{2}^{2}}{2 \mathcal{I}_{2}}=\frac{s_{+}^{2}}{2 \mathcal{I}_{+}}+\frac{s_{-}^{2}}{2 \mathcal{I}_{-}} &
\end{array}
$$

Angular momentum after scission

The total angular momentum is conserved:

$$
\begin{gathered}
S_{L}+S_{H}+L=S_{0}(\approx 0 \text { for spontaneous fission }) \\
=>\text { Six independent internal rotational modes }
\end{gathered}
$$

Rotational modes of the two-fragment system

mutually parallel, parallel to axis
mutually anti-parallel, parallel to axis

Added to FREYA in 2014

Rotational modes in dinuclear complex: damped nuclear reactions

$$
\begin{aligned}
E_{0}^{\mathrm{rot}} & =\frac{S_{L}^{2}}{2 \mathcal{I}_{L}}+\frac{S_{H}^{2}}{2 \mathcal{I}_{H}}+\frac{\left(\boldsymbol{S}_{0}-\boldsymbol{S}_{L}-\boldsymbol{S}_{H}\right)^{2}}{2 \mathcal{I}_{R}} \\
& =\frac{S_{0}^{2}}{2 \mathcal{I}_{0}}+\frac{s_{\text {wrig }}^{2}}{2 \mathcal{I}_{\text {wrig }}}+\frac{s_{\text {bend }}^{2}}{2 \mathcal{I}_{\text {bend }}}+\frac{s_{\text {twst }}^{2}}{2 \mathcal{I}_{\text {twst }}}+\frac{s_{\text {tilt }}^{2}}{2 \mathcal{I}_{\text {tilt }}}
\end{aligned}
$$

2 Wriggling:- $-\rightarrow \rightarrow \delta S_{L, H}^{\text {wrig }}=\frac{\mathcal{I}_{L, H}}{\mathcal{I}_{L}+\mathcal{I}_{H}} s_{\text {wrig }}, \delta L^{\text {wrig }}=-s_{\text {wrig }}$
2 Bending: - $\rightarrow-\sim \boldsymbol{S}_{L}^{\text {bend }}=\boldsymbol{s}_{\text {bend }}, \delta \boldsymbol{S}_{H}^{\text {bend }}=-\boldsymbol{s}_{\text {bend }}, \delta \boldsymbol{L}^{\text {bend }}=\mathbf{0}$ 1 Twisting: - $-\boldsymbol{D} \rightarrow \delta \boldsymbol{S}_{L}^{\mathrm{twst}}=s_{\mathrm{twst}}, \quad \delta \boldsymbol{S}_{H}^{\mathrm{twst}}=-\boldsymbol{s}_{\mathrm{twst}}, \delta \boldsymbol{L}^{\mathrm{twst}}=\mathbf{0}$

FREYA can be used to explore different scenarios:

In order to explore a variety of rotational scenarios, we the introduce the mode temperatures $T_{m}=c_{m} T_{\mathrm{sc}}$

The mode amplitudes $\left\{s_{m}\right\}$ are thus sampled from

Mode spins:

$$
P_{\mathrm{wrig}}\left(s_{\mathrm{wrig}}\right) \sim \exp \left(-s_{\mathrm{wrig}}^{2} / 2 \mathcal{I}_{\mathrm{wrig}} T_{\mathrm{wrig}}\right), \quad T_{\mathrm{wrig}}=c_{\mathrm{wrig}} T_{\mathrm{sc}}
$$

$$
P_{\text {bend }}\left(s_{\text {bend }}\right) \sim \exp \left(-s_{\text {bend }}^{2} / 2 \mathcal{I}_{\text {bend }} T_{\text {bend }}\right), T_{\text {bend }}=c_{\text {bend }} T_{\text {sc }}
$$

$$
P_{\mathrm{twst}}\left(s_{\mathrm{twst}}\right) \sim \exp \left(-s_{\mathrm{twst}}^{2} / 2 \mathcal{I}_{\mathrm{twst}} T_{\mathrm{twst}}\right), \quad T_{\mathrm{twst}}=c_{\mathrm{twst}} T_{\mathrm{sc}}
$$

Fragment spins:

$$
=>\left\{\begin{array}{l}
\boldsymbol{S}_{L}=\left(\mathscr{I}_{L} / \mathscr{I}_{+}\right) \boldsymbol{s}_{\text {wrig }}+\boldsymbol{s}_{\text {bend }}+\boldsymbol{s}_{\mathrm{twst}} \\
\boldsymbol{S}_{H}=\left(\mathscr{I}_{H} / \mathscr{I}_{+}\right) \boldsymbol{s}_{\text {wrig }}-\boldsymbol{s}_{\text {bend }}-\boldsymbol{s}_{\mathrm{twst}}
\end{array}\right.
$$

The relative presence of the different modes m can then be tuned by the coefficients ($c_{\text {wrig }}, c_{\text {bend }}, c_{\text {twst }}$)

Example: Standard FREYA $\rightarrow(1,1,0)$:
full wriggling \& bending, no twisting

Relaxation times of dinuclear rotational modes

$t_{\text {fiss }}:$ fission time $\approx 1-410^{-21} \mathrm{~s}$

Expectations from nucleon exchange:

Wriggling is probably fully agitated
Twisting is unlikely to play a major role; it grows more prominent with excitation

Bending probably has some presence; it increases with the mass asymmetry

Neutron evaporation from rotating fragments

$$
\begin{aligned}
& M_{i}^{*}=M_{i}^{\mathrm{gs}}+\varepsilon_{i} \quad M_{f}^{*}=M_{f}^{\mathrm{gs}}+\varepsilon_{f} \quad M_{i}^{*}=M_{f}^{*}+m_{\mathrm{n}}+\epsilon \\
& Q_{\mathrm{n}} \equiv Q_{\mathrm{n}}^{*}\left(\varepsilon_{i}=0\right)=M_{i}^{\mathrm{gs}}-M_{f}^{\mathrm{gs}}-m_{\mathrm{n}}=-S_{\mathrm{n}} \\
& Q_{\mathrm{n}}^{*}=\varepsilon_{i}+Q_{\mathrm{n}}=\varepsilon_{i}-S_{\mathrm{n}} \\
& \epsilon+\varepsilon_{f}=M_{i}^{*}-M_{f}^{\mathrm{gs}}-m_{\mathrm{n}}=Q_{\mathrm{n}}^{*}=\left\{\begin{array}{l}
\varepsilon_{f}^{\max } \\
\epsilon^{\max }
\end{array}\right. \\
& T_{f}^{\max }=\sqrt{\varepsilon_{f}^{\max } / a_{f}}=\sqrt{Q_{\mathrm{n}}^{*} / a_{f}}
\end{aligned}
$$

Weisskopf-Ewing neutron energy spectrum: \quad (non-relativistic)

$$
\frac{d^{3} N}{d^{3} \boldsymbol{p}} d^{3} \boldsymbol{p} \sim \sqrt{\epsilon} \mathrm{e}^{-\epsilon / T_{f}^{\max }} \sqrt{\epsilon} d \epsilon d \Omega=\mathrm{e}^{-\epsilon / T_{f}^{\max }} \epsilon d \epsilon d \Omega
$$

When fragment is rotating, emission from moving surface, v_{0}, is boosted by local rotational velocity $\omega \boldsymbol{x} \boldsymbol{r}$ and daughter nucleus absorbs recoil linear and angular momentum
Neutron and daughter nucleus Lorentz boosted from emitter frame to laboratory frame

Neutron emission conserves energy and linear \& angular momentum

Photon emission follows neutron emission

Neutron evaporation ceases when $E^{*}<S_{\mathrm{n}}$ (neutron separation energy); the remaining excitation energy is disposed of by sequential photon emission ...
... first by statistical photon cascades down to the yrast line ...

$$
\begin{aligned}
& \frac{d^{3} N}{d^{3} \mathbf{p}_{\gamma}} d^{3} \mathbf{p}_{\gamma} \sim\left[\frac{\Gamma_{\mathrm{GDR}}^{2} \epsilon^{2}}{\left(\epsilon^{2}-\epsilon_{\mathrm{GDR} 2^{2}}\right)^{2}+\Gamma_{\mathrm{GDR}}^{2} \epsilon^{2}}\right] \epsilon^{2} e^{-\epsilon / T_{i}}<=\begin{array}{l}
d^{3} \boldsymbol{p}_{\gamma} \sim \epsilon^{2} d \epsilon d \Omega \\
\text { (ultrarelativistic) }
\end{array} \\
& S_{f}=S_{i}-1 \quad E_{f}^{*}=E_{i}^{*}-\epsilon_{\gamma} \quad \epsilon_{\mathrm{GDR}}=\left(31.2 A^{-1 / 3}+20.6 A^{-1 / 6}\right) \mathrm{MeV} \quad \Gamma_{\mathrm{GDR}}=5 \mathrm{MeV}
\end{aligned}
$$

How can we learn about angular momentum based on measurements?

Recent experimental information on spin correlations

Angular momentum generation in nuclear fission, J. N. Wilson et al., Nature 590 (2021) 566

Minimum spin demanded for fragment 2

OBSERVATION:
"There is no significant correlation between the spins of the fragments"

INTERPRETATION:

Therefore "the fragment spins are generated after the nucleus splits", i.e. "after the fragments have become two separate, independent systems"

Dominance of fluctuations results in very weak fragment spin correlation

- The fragment spins $\boldsymbol{S}_{\llcorner } \& \boldsymbol{S}_{H}$ are dominated by wriggling \& bending fluctuations and are only very weakly correlated (both mutually and w.r.t \boldsymbol{S}_{0})
- Recoil from wriggling creates some orbital motion and the subsequent Coulomb trajectory reorients the direction of the relative fragment motion by about 2°
- The remaining weak directional correlation is effectively independent of the initial energy, the compound nuclear spin, and the fragment mass division
- There is a slight preference for opposite spin directions: $P\left(180^{\circ}\right) / P\left(0^{\circ}\right)=1.18$

R.V. and J. Randrup, PRC 103 (2021) 014610

Moment of inertia for orbital motion is large: $I_{R} \gg I_{H}, I_{L} \rightarrow$ very weak fragment spin correlations

We can calculate the direction and magnitude of spin correlations

$$
\begin{aligned}
& \text { spin-spin } \\
& \text { correlation } \\
& \text { coefficient: }
\end{aligned} \quad c\left(\boldsymbol{S}_{L}, \boldsymbol{S}_{H}\right) \equiv \frac{\left\langle\boldsymbol{\delta} \boldsymbol{S}_{L} \cdot \boldsymbol{\delta} \boldsymbol{S}_{H}\right\rangle}{\left[\left\langle\delta S_{L}^{2}\right\rangle\left\langle\delta S_{H}^{2}\right\rangle\right]^{1 / 2}}=-\left[\frac{\left.\mathcal{I}_{L} \frac{\mathcal{I}_{H}}{\left(\mathcal{I}_{R}+\mathcal{I}_{L}\right)\left(\mathcal{I}_{R}+\mathcal{I}_{H}\right)}\right]^{\frac{1}{2}} \ll 1}{\ll 1}\right.
$$

Correlation between the spin directions:

Correlation between the spin magnitudes:

Case:	${ }^{235} \mathrm{U}(n, \mathrm{f})$	${ }^{238} \mathrm{U}(n, \mathrm{f})$	${ }^{239} \mathrm{Pu}(n, \mathrm{f})$	${ }^{252} \mathrm{Cf}(\mathrm{sf})$
$\bar{S}_{L}=\left\langle S_{L}\right\rangle$	4.27	4.43	4,58	5.08
$\bar{S}_{H}=\left\langle S_{H}\right\rangle$	5.66	5.80	5.93	6.33
$c\left(S_{L}, S_{H}\right)(\%)$	0.2	0.2	0.1	0.1
$f_{1}(\%)$	-8.2	-8.3	-8.3	-8.4
magnitude of correlation coefficient:	$c\left(S_{L}, S_{H}\right) \equiv \frac{\left\langle\delta S_{L} \delta S_{H}\right\rangle}{\left[\left\langle\delta S_{L}^{2}\right\rangle\left\langle\delta S_{H}^{2}\right\rangle\right]^{1 / 2}}$			

JR \& RV, PRL 127 (2021) 062502, RV \& JR, PRC 103 (2021) 014610

Neutron emission from rotating fragments causes angular anisotropy

- Neutron emission from a rotating fragment results in an equatorial bulge in the angular distribution due to centrifugal force
- The bulge is practically independent of the initial compound spin
- The resulting dynamical anisotropy can be expressed by
$A=d N_{n} / d \Omega_{n s}\left(90^{\circ}\right) / d N_{n} / d \Omega_{n s}(0)-1=0.093$ (consistent with observations Vorobyev)
- The evaporation chains reorient the fragment spins by 13° on average but change the spin magnitudes only slightly, by $0.06 \hbar$
R.V. and J. Randrup, PRC 103 (2021) 014610

Wilson et al. also measured fragment spins:

Measured $S(A)$ is sawtooth-like, similar to $v(A)$, and, possibly, $v_{\gamma}(\mathrm{A})$ although new measurements should be made to confirm this behavior

We can model $S(A)$ of the fragments \& compare to data

Default moments of Inertia in FREYA have a simple dependence on mass:

$$
I_{L} \alpha(1 / 2) M_{L} R_{L}^{2} \quad I_{H} \alpha(1 / 2) M_{H} R_{H}{ }^{2}
$$

This simple dependence means that $S(A)$ has a weak dependence on A
If the default moments of inertia are replaced by moments of inertia that schematically depend on the ground state deformation of the fragments,

$$
l_{f}^{\prime}\left(\mathrm{A}_{f}\right)=0.2\left[I_{\mathrm{rig}}\left(\mathrm{~A}_{f} ; 0\right)+10\left(I_{\mathrm{rig}}\left(\mathrm{~A}_{f} ; \varepsilon\left(\mathrm{A}_{f}\right)\right)-l_{\mathrm{rig}}\left(\mathrm{~A}_{f} ; 0\right)\right)\right],
$$

where ε is obtained from a fit to the ground state deformations

How can we differentiate between different levels of spin fluctuations?

Probing fragment spin directions and thus spin modes using photon measurements

Orientation of the fragment spins relative to the fragment motion?

Relative orientation of the fragment spins?

JR, T Dossing \& RV, PRC 106 (2022) 014609

Angular distribution relative to fragment direction $d N / d \cos \left(\theta_{\gamma, f}\right)$

Look only at E2 emissions in even-even product nuclei Pioneering J.B. Wilhelmy et al., Phys. Rev. C 5, 2041 (1972)
experiments: A. Wolf \& E. Cheifetz, Phys. Rev. C 13, 1952 (1976)

Two reference scenarios:

The fragment spin is parallel to the direction of motion:

$$
W_{\|}\left(\theta_{\gamma f}\right) \sim 1-\frac{5}{7} P_{2}\left(\cos \theta_{\gamma f}\right)-\frac{2}{7} P_{4}\left(\cos \theta_{\gamma f}\right)
$$

Fragment spin is perpendicula to the direction of motion:

$$
W_{\perp}\left(\theta_{\gamma f}\right) \sim 1+\frac{5}{14} P_{2}\left(\cos \theta_{\gamma f}\right)-\frac{3}{28} P_{4}\left(\cos \theta_{\gamma f}\right)
$$

Testing different contributions from twisting mode

Lawrence Livermore National Laboratory

Yields at 0° relative to yield at 90° adding more twisting

Correlation between the two fragment spin directions?

A photon having positive helicity tends to emerge in the upper hemisphere

Distribution of the opening angle between two E2 photons having the same helicity

Wriggling: same hemisphere, small angle Bending: opposite hemisphere,large angle

Summary

- Angular momentum has been a hot topic in fission for more than 60 years
- Experiment suggests that fission fragments typically carry $S=5-7 \hbar$, approximately directed perpendicular to the fission axis
- Because FREYA conserves energy, linear \& angular momentum, it can straightforwardly elucidate the influence of angular momentum
- We have studied the influence of the overall angular momentum and showed that the two fragment spins are nearly uncorrelated even though they are built up in highly correlated increments (by nucleon exchange)
- Fragment rotation has numerous consequences, it:
- causes neutron emission to be anisotropic;
- influences photon emission;
- affects searches for novel effects like scission neutrons
- Spin-spin correlations can provide information on the scission geometry

FREYA is ideal for studying spin effects in fission

FREYA references

- FREYA developed in collaboration with J. Randrup (LBNL); neutron-transport code integration by J. Verbeke (LLNL); available in MCNP6.2
- FREYA journal publications: Phys. Rev. C 80 (2009) 024601, 044611; 84 (2011) 044621; 85 (2012) 024608; 87 (2013) 044602; 89 (2014) 044601; 90 (2014) 064623; 96 (2017) 064620; 99 (2019) 054619; 103 (2021) 014610; Phys. Rev. Lett. 127 (2021) 062502;
- Parameter optimization for spontaneous fission: NIM A 922 (2019) 36
- FREYA published in Comp. Phys. Comm. 191 (2015) 178; 222 (2018) 263.
- "Nuclear Fission", Chapter 5 of '100 Years of Subatomic Physics', World Scientific, 2013
- Review in Eur. Phys. J. A 54 (2018) 9
- Papers with experimentalists: neutron polarization in photofission: Mueller et al, Phys. Rev. C 89 (2014) 034615; photon production: Gjerstvang et al., Phys. Rev. C 103 (2021) 034609; neutron-gamma correlations: Wang et al, Phys. Rev. C 93 (2016) 014606, Marcath et al, Phys. Rev. C 97 (2018) 044622, Marin et al, NIM A 968 (2020) 163907, PRC 104 (2021) 024602; neutron-neutron correlations, Schuster et al, Phys. Rev. C 100 (2019) 014605; Verbeke et al, Phys. Rev. C 97 (2018) 044601; Pozzi et al, Nucl. Sci. Eng. 178 (2014) 250.
- Fission in Astrophysics: Vassh et al., J. Phys. G 46 (2019) 065202; Wang et al., Ap. J. Lett. 903 (2020) L3
- Isotopes currently included: spontaneous fission of ${ }^{252} \mathrm{Cf},{ }^{244} \mathrm{Cm},{ }^{238,240,242 \mathrm{Pu},{ }^{238} \mathrm{U} \text { and neutron- }{ }^{2} \text { - }{ }^{2} \text {. }}$ induced fission of ${ }^{233,235,238} \mathrm{U}(\mathrm{n}, \mathrm{f}),{ }^{239,241} \mathrm{Pu}(\mathrm{n}, \mathrm{f})$ for $E_{\mathrm{n}} \leq 20 \mathrm{MeV}$

