Contribution ID: 48

Two-nucleon transfer studies relevant for 136Xe neutrinoless double beta decay

There is significant worldwide interest to establish the Majorana nature of neutrinos, by observing leptonnumber-violating neutrinoless double beta decays ($0\nu\beta\beta$). In this regard, ¹³⁶Xe is one of the most promising candidates to search for $0\nu\beta\beta$. Recently, the KamLAND-Zen experiment used this isotope to place the most stringent limits on the effective Majorana neutrino mass, and demonstrated for the first time, a sensitivity within the inverted neutrino mass ordering region. Future experiments aim to build on this work, both at the tonne-scale and beyond.

A critical aspect in $0\nu\beta\beta$ studies is the nuclear matrix element (NME) for the decay, which is highly modeldependent, and evaluated using a variety of many-body techniques. This theoretical limitation translates into a spread in the upper-limit placed on the Majorana neutrino mass.

In light of the above, we performed high-resolution transfer reaction studies in the A = 136 region to guide 136 Xe $0\nu\beta\beta$ NME calculations. This presentation will discuss recent results from a part of this work that focuses on 138,136 Ba(p,t) and 138 Ba (d,α) studies. Implications related to 136 Xe $0\nu\beta\beta$ decay and other rare physics searches with xenon detectors will be briefly discussed.

Author: TRIAMBAK, Smarajit

Presenter: TRIAMBAK, Smarajit

Session Classification: Photons and leptons

Track Classification: Nuclear reactions: Photons and leptons