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Abstract. We provide a global density-dependent α-nucleon (DD-αN) inter-
action to construct the α-nucleus optical potential in a wide range of incident
energies. The α-nucleus potential based on the folding model with the present
DD-αN interaction reproduces the experimental data up to backward angles us-
ing the point-nucleon density obtained by the mean-field model. The present
DD-αN interaction is based on the phenomenological optical potential to re-
produce the p + 4He elastic scattering at the incident energies at 12.04–1000
MeV. Namely, the α-nucleon system is considered an elementary process. The
density dependence (medium effect) of the DD-αN interaction is phenomeno-
logically added to reproduce the α elastic scatterings by the 16O, 40Ca, 58Ni,
90Zr and 208Pb targets at E/A = 10–342.5 MeV. The total reaction cross sections
are also compared with the experimental data.

1 Introduction

A global description of the optical potential has been attempted from the microscopic view-
point. The nucleus-nucleus potential has often been constructed from the nucleon-nucleon
interaction using the densities of the interacting nuclei in the double-folding model. Such
efforts are presented in Refs. [1–8]. The α-nucleus potential has also been constructed in
the double-folding model. Plenty of the microscopic α-nucleus potentials are proposed in the
folding model approach [9–15]. However, these prescriptions are inconsistent in constructing
the α-nucleus folding potential. In addition, α-nucleus potential is heterogeneous in compari-
son with the nucleus-nucleus potential for heavy-ion scattering. Here, we clarify the problem
for the α scattering with results by the CDM3Y6 [11] and JLM [16] interactions.

The folding potentials with the CDM3Y6 and JLM interactions have the same problem
for the α-nucleus system. The double-folding model potentials with the CDM3Y6 and JLM
interactions need to introduce renormalization factors in reproducing the data, which are often
defined as

U = NRVCDM3Y6 + iWphenome. (1)
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and
U = NRVJLM + iNIWJLM, (2)

for the CDM3Y6 and JLM interactions, respectively. Here, VCDM3Y6 is the folding model
potential with the CDM3Y6 interaction. VJLM and WJLM are the real and imaginary parts
of the folding model potential with the JLM interaction, respectively. Wphenome. is the phe-
nomenological imaginary potential. The NR and NI are the real and imaginary parts of the
renormalization factor, respectively. We compare the real part of the renormalization factor
(NR) for the α-nucleus system with that for the nucleus-nucleus ones. Here, the nucleus-
nucleus system means heavy-ion scattering. Figure 1 shows the renormalization factors of
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Figure 1. NR with (a) the CDM3Y6 interaction and (b) the JLM interaction. E/A is the incident energy
per nucleon. The values are taken from [2, 3, 9, 11–13, 17–19]. (c) Density distribution of point nucleon
matter for 4He, 16O, 40Ca, 58Ni, 90Zr and 208Pb. The density distributions are taken from Refs. [13, 20–
22].

the real part with (a) the CDM3Y6 interaction and (b) the JLM interaction. The filled circles
are NR of the α-nucleus system. The open squares are NR of the nucleus-nucleus system. We
see that the behavior of the renormalization factors for the α-nucleus system is different from
that for the nucleus-nucleus system. This problem occurs when prescriptions in the α-nucleus
and the nucleus-nucleus systems are treated in the same manner.

We construct a density-dependent α-nucleon (DD-αN) interaction to address this prob-
lem. In general, the effective nucleon-nucleon interaction for the nuclear reaction is not op-
timized to the 4He nucleus. Almost all effective nucleon-nucleon interactions for the nuclear
reaction take into account the property in the infinite nuclear matter. However, it should be
noted that the α particle is far from the condition of the infinite nuclear matter. As shown
in Fig. 1 (c), the inner part of the density for the α particle is well known to be higher than
the saturation density which is adopted as the saturation point in the nuclear matter. In ad-
dition, the binding energy of the α particle is not obtained by the mass formula which leads
to the saturation energy in the nuclear matter. Therefore, rather than the nucleon-nucleon in-
teraction, it is reasonable to consider the alpha-nucleon interaction as the elementary process
underlying the α-nucleus scattering. The density dependence of the α-nucleon interaction is
phenomenologically fixed to reproduce the experimental data. This density dependence is
considered to express the medium effect. Here, we remark on some pioneering works for
the DD-αN interactions [10, 23, 24]. The DD-αN interactions have adjustable parameters
to reproduce the α-nucleus scattering. However, they are not designed to describe the p +
4He system. This paper proposes a new DD-αN interaction that reproduces also the p + 4He
elastic scattering to construct the α-nucleus potential.

In this paper, we first explain the theoretical framework in Sec. 2. The p + 4He optical
potential and the functional form of the DD-αN interaction are explained. In Sec. 3, first, the



results of the p + 4He elastic scattering are presented. Then, we show the results of the present
folding model calculation for the α-nucleus elastic scattering for 16O, 40Ca, 58Ni, 90Zr and
208Pb. The total reaction cross sections are also calculated and compared with experimental
data. Lastly, we summarize this work in Sec. 4.

2 Formalism

We construct the α-nucleus potential with the DD-αN interaction and point-nucleon density
obtained by the Hartree Fock +BCS (HF+BCS) calculation [22] in the folding procedure.

2.1 p + 4He potential

We first construct the p + 4He potential in the phenomenological optical model. The optical
model potential (U) is designed as

U(s, E/A) = f (s; V0, r0, a0) + f (s; V1, r1, a1) + i f (s; W, rW , aW )

+
λ2
π

rSOA1/3
α

d
ds

f (s; VSO, rSO, aSO) ` · σ (3)

with
f (s; V, r, a) = −

V

1 + exp
(

s−rA1/3
α

a

) , (4)

where s is the distance between the proton and the 4He nucleus. Aα = 4. E/A is the in-
cident energy per nucleon. The real part of the potential is designed by double Woods-
Saxon (WS) type potential to express the wine-bottle shape and repulsive potential at high
energy [25–27]. The imaginary part is a standard WS type. The spin-orbit potential has
a standard form called the derivative WS type. Here, λ2

π = 2.0 fm2. The parameters
(V0, r0, a0,V1, r1, a1,W, rW , aW ,VSO, rSO and aSO) are fixed to reproduce the experimental data
for each incident energy. We note that the notation of E/A in parameters is omitted for sim-
plicity. Their specific functions and parameters will be presented later.

2.2 Global density-dependent α-nucleon interaction

Next, we introduce the present DD-αN interaction. The present DD-αN interaction (UDD−αN)
has a form

UDD−αN(s, ρ, E/A) = f (s; V0, r0, a0)g0(ρ, E/A) + f (s; V1, r1, a1)g1(ρ)
+i f (s; W, rW , aW )gW (ρ), (5)

where ρ is the input density, which determines a medium effect. In addition, g0, g1 and gW

are the density-dependent functions for the real and imaginary parts, respectively, which are
explicitly written as

g0(ρ, E/A) = exp (−β0ρ), (6)
g1(ρ) = 1 + β1ρ, (7)
gW (ρ) = exp (−βWρ), (8)

where β0, β1 and βW are globally fixed to reproduce the α-nucleus scattering data. Here,
we note that β0 = β0(E/A). The energy dependence of β0 will be introduced later. These
parameters are fixed to reproduce the α-nucleus scattering. The core part (Eq. (7)) is taken



from Ref. [10]. Their specific values (β0, β1 and βW ) will be presented in the following
section.

With this DD-α interaction, we construct the α-nucleus potential in the same manner
as Refs. [10, 23, 24, 28]. We apply the point-nucleon density of 16O, 40Ca, 58Ni, 90Zr and
208Pb obtained from the mean-field model (HF+BCS). The detail of the derivation is given in
Refs. [22, 29].

3 Results and Discussion

We show the calculated results in this section. We first construct the bare αN interaction
which is the p + 4He optical potential. After that, we compute the α elastic scattering cross
sections by applying the DD-αN interaction. The total reaction cross sections are also evalu-
ated. Here, we apply the standard Coulomb potential of a uniform charge. We use the radius
of uniform charge, RC = 1.3 · 41/3 fm for p + 4He system and RC = 1.3

(
41/3 + A1/3

)
fm for

α + nucleus system, respectively. A is the mass number of the target nucleus. Relativistic
kinematics is used to compute the cross sections.

We note that the imaginary part of the folding potential is based on the p + 4He reaction
even if the density dependence is introduced. However, the imaginary part of the α-nucleus
potential also includes the contribution from the target nucleus. Thus, the imaginary part
of the resulting α-nucleus potential with the present DD-αN interaction can be different.
Therefore, we introduce the renormalization factor to the imaginary part as

UαA(R; E/A) = VαA(R; E/A) + iWαA(R; E/A) (9)
→ VαA(R; E/A) + iNIWαA(R; E/A), (10)

where VαA(R; E/A) and WαA(R; E/A) are the real and imaginary parts of the constructed α-
nucleus potential with the present DD-αN interaction.

3.1 p + 4He elastic scattering

With the form of the optical potential of Eq. (3), we calculate the p + 4He elastic cross section.
The incident energy (E/A) dependent parameters are fixed to reproduce the p + 4He elastic
scattering, which are listed in Table 1.

Table 1. Parameters of the p + 4He optical potential.

V0 (MeV) r0 (fm) a0 (fm)
−2.31(E/A)1/2 + 78.5 0.00153(E/A) − 0.0798(E/A)1/2 + 1.5 0.0269(E/A)1/2 + 0.262

V1 (MeV) r1 (fm) a1 (fm)
−3.71(E/A)1/2 + 14.6 0.8 0.0044(E/A)1/2 + 0.19

W (MeV) rw (fm) aw (fm)
1.6(E/A)1/2 − 0.51 −0.0116(E/A)1/2 + 1.18 0.5

VSO (MeV) rSO (fm) aSO (fm)
−0.423(E/A)1/2 + 12 0.7 0.3

Figure 2 shows the elastic cross sections of the p + 4He system at 12.04–1000 MeV. The
solid curves are the results obtained by the present work. It is known that the cross sections
at the backward angles for the p + 4He system cannot be fully described by the normal one-
body potential. Other reaction mechanisms such as knock-on type exchange scattering are
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Figure 2. Elastic cross sections of the p + 4He system at (a) E/A = 12.04–156 MeV and (b) E/A =

200–1000 MeV. The solid curves are the results obtained by the present work. The experimental data
are taken from [30–39].

needed to describe these backward cross sections. We confirm that the p + 4He elastic cross
sections are well reproduced by the present DD-αN interaction. Next, we apply this p + 4He
potential to the folding model to describe the α elastic scattering.

3.2 α-nucleus elastic scattering

In this subsection, we show the results of the α-nucleus elastic scattering. We choose the 16O,
40Ca, 58Ni, 90Zr and 208Pb nuclei as a target, in which plenty of experimental data for the
α-nucleus elastic scattering exist.

First, we show the parameters fixed in the present paper. The parameters introduced in
Eqs. (6), (7) and (8) are shown in Table 2. They are fixed to reproduce the experimental data.
In the fitting procedure, we find that β0 has an energy dependence, which implies the medium
effect is not unique for all incident energies.

Table 2. Parameters of the density-dependent part of the present DD-αN interaction.

β0 (fm3) β1 (fm3) βW (fm3)
6.56 exp

(
−

(E/A)2

652

)
+ 2.3 4.3 9.8

Figure 3 shows the results of (a) the α + 16O elastic scattering at E/A = 12–100 MeV,
(b) the α + 40Ca elastic scattering at E/A = 10.5–342.5 MeV and (c) the α + 58Ni elastic
scattering at E/A = 13.1–174.8 MeV, (d) the α + 90Zr elastic scattering at E/A = 10–96.5
MeV and (e) the α + 208Pb elastic scattering at E/A = 26–174.8 MeV. The present DD-αN
interaction reproduces the data up to backward angles well with the appropriate NI value.
The NI values are shown in Fig. 4 (a).

Figure 4 (b) shows the results of the total reaction cross section for the incident α particle
for the 16O, 40Ca, 58Ni, 90Zr, and 208Pb targets. The total reaction cross sections are well
reproduced, even though they are not used in the fitting procedure. The density-dependent
parameters obtained in the present work are considered to be global. Namely, the present
DD-αN interaction can be applied to other systems only with one free parameter, the renor-
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Figure 3. Elastic cross sections of (a) α + 16O system at E/A = 12–100 MeV, (b) α + 40Ca system at
E/A = 10.5–342.5 MeV, (c) α + 58Ni system at E/A = 13.1–174.8 MeV, (d) α + 90Zr system at E/A =

10–96.5 MeV and (e) α + 208Pb system at E/A = 26–174.8 MeV. The solid curves denote the present
results. The experimental data are taken from [30, 40–57].

malization factor of the imaginary part of the α-nucleus potential, which can be fixed if the
total reaction cross section exists.

4 Summary

We have developed a global DD-αN interaction to describe the α-nucleus elastic scattering.
The present DD-αN interaction is constructed based on a reliable p + 4He potential, which
reproduces the p + 4He elastic scattering cross section data. The density-dependent part
of the DD-αN interaction is phenomenologically fixed to reproduce the α-nucleus elastic
scattering. We show the α-nucleus elastic scattering cross sections with 16O, 40Ca, 58Ni, 90Zr
and 208Pb targets and confirm that the present DD-αN interaction well reproduces the data
up to backward angles in a wide range of incident energies E/A = 10–342.5 MeV only with
one free parameter. We see that the total reaction cross section can be used to fix it. All the
details will be reported elsewhere soon [28].
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