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Abstract. Transport model comparisons under controlled conditions are per-
formed in order to evaluate the robustness of their predictions in heavy-ion colli-
sions (HICs). Including many of the currently used transport codes comparisons
are done in periodic boxes and for typical HICs at intermediate energies in the
hadronc regime. In this way we succeed to understand the different results be-
tween codes and evaluate different simulation strategies. Ways to arrive at an
uncertainty quantification of transport model studies are discussed.

1 Introduction

An important issue in nuclear physics and astrophysics is the determination of the nuclear
equation-of-state (EOS), i.e. the energy density of infinite nuclear matter as a function of the
macroscopic observables density, temperature, and neutron-proton asymmetry. It connects
the fields of nuclear structure and direct reactions, the main topics of this conference, with
the nature of astrophysical objects and processes, like neutrons stars (NSs), NS mergers, and
core-collapse supernovae. Since astrophysical objects have large asymmetries at densities up
to several times the saturation density ρ0, the asymmetry-dependence of the EOS, called the
nuclear symmetry enery (SE), and, particularly, its density dependence, are of great impor-
tance.

In the laboratory the high-density behaviour of the EOS can be studied with heavy-ion
collisions (HICs) in which short-lived states of high density can be produced. An extensive
review of the status and the prospects of this field as a White Paper has very recently been
published in Ref. [1]. Here, we are concerned with densities where a description in terms
of hadrons, their excited states, and mesons is appropriate, which corresponds to bombard-
ing energies up to several GeV/A, to the so-called intermediate energy domain. The density
behaviour of the EOS is studied in nuclear structure and direct reactions at and below sat-
uration density. On the other hand, increasingly accurate constraints on high-density n-rich
matter in the range 2- 5 ρ0 are obtained from observations of NS radii and masses, partic-
ularly in simultaneous constraints on these from gravitational wave and NS mergers. HICs
give information on the EOS from low densities in Fermi-energy collisions to about 3-5 ρ0
at intermediate energies [1, 2]. They can bridge the gap in density between nuclear structure
information and astrophysical observations. Thus, the study and interpretation of HICs is of
great importance in the larger picture of the search for the nuclear EOS.

However, HICs create states of high density for very short time spans of the order of 10−22

to 10−21 s, in which not all parts of the colliding system reach thermal equilibrium. Thus the
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interpretation of HICs requires a non-equlibrium approach, which is usually approximated
by semi-classical transport theories. Their equations are of high complexity, as discussed in
more detail below, and cannot be solved analytically nor by direct numerical methods, like
lattice methods, which are computationally very demanding and have only been done in low-
dimensional toy models. The usual method are simulations of the equations, which involve
strategic decisions, which are not fixed by the equations themselves. This then raises the
question of the robustness of inferences from transport studies of HICs on the EOS.

A recent example is given in Ref. [3], where pion production was studied in Sn+Sn col-
lisions at 270 MeV/A. Several transport codes were asked to predict pion production in this
reaction using their best physics model without prior knowledge of the data. In particular,
the ratio of the yield of negative to positive pions, Y(π−)/Y(π+), is considered to be a good
probe of the SE at densities above saturation, since it should reflect the n/p asymmetry of
the matter, where the pions are produced, and is easier to measure than the n/p ratio. It was
seen in Ref. [3] that the different codes differed considerable between each other and from
the experimental values, revealed afterwards, such that a determination of the high-density
SE was hardly possible.

From these and similar previous experiences the question arises on the model-dependence
of transport analyses of HICs, referring to different implementations, i.e. different codes, of
transport equations. A way to obtain information on this, is to compare results of simula-
tions by different codes for the same colliding system, as was already done very early in the
development of transport descriptions of HICs, e.g. in Ref. [4]. Such comparisons were put
on a more systematic basis by the Transport Model Evaluation Project (TMEP), starting in
2009 (though this name was attached later), where comparisons were made under controlled
conditions, i.e., making the physics input and certain simulation parameters as identical as
possible, and by comparing the time evolution of the collisions, as well as the final observ-
ables. A detailed review of these comparisons and their results, as well as a description of the
participating codes, was given recently in Ref. [5]. The comparison was first done for HICs
in the intermediate energy range of 100 - 400 MeV/A, and difference in observables were
found of about 15-30 %, depending on the incident energy. To obtain a better understanding
of these differences , simulations were compared in a box with periodic boundary conditions,
which approximates infinite matter, and for which analytical or exact numerical results are
often available.

This conference report is a brief review of these efforts and of their results so far. It will be
seen, that we do not achieve to make the results of the different codes completely convergent,
but, on the other hand, can understand the differences in detail as due to different strategies
and procedures of the simulations. In many cases we can recommend best procedures, but
cannot, of course, enforce implementation in all codes. In the last section we will dicuss
possible avenues how to quantify the uncertainty of transport model analyses of HIC as a
whole.

2 Transport Approaches

Transport equations are derived from a general non-equilibrium quantum formalism in the
framework of the real-time Martin-Schwinger Greeen function formalism [6], and after a
truncation of the Bogoliubov-Green-Kirkwood-Yvon (BBGKY) hierarchy are formulated in
the Kadanoff-Baym equations for the generalized 1-body Green function [7]. With a semi-
classical approximation and a quasi-particle approximation, which neglects the finte width of
the spectral functions of all particles, one arrives at a transport equation of the Boltzmann-
Vlasov type, which describes the temporal evolution of the 1-body phase-space distribution
of a particle species a, fa (⃗r, p⃗; t), under the action of a mean field and a dissipation process,



due to the average action of 2-body collisions [8, 9]. In non-relativistic form one obtains the
equation ( ∂

∂t
+ ∇⃗pϵ · ∇⃗r − ∇⃗rϵ · ∇⃗p

)
fa (⃗r, p⃗; t) = Icoll[ fa (⃗r, p⃗; t)], (1)

where ϵ[ f ] is the single-particle energy, non-relativistically given as ϵ = p⃗ 2/2M +U(ρ)+M,
where the mean-field potential in general is momentum-dependent and is often derived from
a density functional, and Icoll is the collision integral due to the two-body scattering p+ pb →

p′ + p′b,

Icoll[ fa] =
∑

b

gb

(2πℏ)3

∫
d3 pb dΩ′ vab

dσ med
ab

dΩ′

[(1 − fa)(1 − fb) f ′a f ′b − fa fb(1 − f ′a)(1 − f ′b)] δ(p + pb − p′ + p′b). (2)

The distribution functions in Eq.(2) are all taken at the same position r⃗ and time t, and the
momenta p⃗ ′ and p⃗b

′ are determined by energy-momentum conservation and the scattering
angleΩ′. The summation b in the simplest case is over neutrons and protons and gb is the spin
degeneracy, but it may be extended to include other particle species with evolution equations
of their own phase-space densities of the type of Eq.(1). In the above, dσmed

ab /dΩ are the
in-medium nucleon-nucleon elastic differential scattering cross sections, or, for the case of
other particle species, the corresponding inelastic cross sections, and the vab are the relative
velocities. In the collision term one can see gain and loss terms, and the Pauli blocking factors
(1− f ), which are included to preserve the fermionic character of the system. Corresponding
equations for relativistic kinematics as well as for covariant Relativistic-Mean-Field models
exist and are used [10]. In this form the equations are known by several names, but most
often referred to as Boltzmann-Uehling-Uhlenbeck (BUU) equations.

The integro-differential non-linear BUU equations are solved numerically by simulations.
To this end, the distribution functions fa are represented in terms of a sum of finite elements,
called test particles (TP), as

fa (⃗r, p⃗; t) =
1

gaNT P

(2π
ℏ

)3 NaNTP∑
i=1

G(⃗r − R⃗i(t)) G̃( p⃗ − P⃗i(t)) (3)

where Na is the number of particles of type a, NT P the number of TP per particle, R⃗i and
P⃗i are the time-dependent coordinates and momenta of the TPs, and G and G̃ are the profile
functions in coordinate and momentum space, respectively, e.g. δ functions or normalized
Gaussians. When δ functions are adopted for the profile functions the left-hand of the BUU
equation, the Vlasov part, results in Hamiltonian equations of motion for the TP propagation.
For finite-size profile functions the lattice-Hamiltonian methods of Ref. [11] have to be used.

The collision term is commonly evaluated by performing stochastic TP collisions with
a criterion to decide when two TP collide and a random choice of the final directions, and
by evaluating the final state blocking factors [12]. In principle, in the limit NT P → ∞ one
obtains an exact deterministic solution of the equations; in practice, with a finite number of
TPs, numerical fluctuations are introduced and their magnitude is controlled by the number
and shape of the TPs (and can be chosen to simulate physical instabilities). A theoretically
better founded treatment of fluctuations in the BUU formalism is provided by adding a fluc-
tuation term on the rhs of Eq.(1) in the Boltzmann-Langevin formalism [13], which is done
approximately in some codes.

A second family of transport approaches has been developed, known as Quantum Molecu-
lar Dynamics (QMD) [14], in which the many-body state is assumed as a simple product wave



function of single-particle states, in some cases generalized to include anti-symmetrization
in the Antisymmetrized Molecular Dynamics (AMD) approach [15]. Although this ansatz
corresponds to a single-particle mean-field approach, the description in terms of localized
wave packets (wp) introduces classical many-body correlations. The propagation of the wps
is similar to BUU with NT P = 1 and the collision term is treated by similar methods, how-
ever, for collisions of nucleons and not of TPs. The shape of the wps is usually assumed as a
Gaussian with fixed width ∆x in coordinate space and a δ-function in momentum space. Due
to this representation of the phase space QMD simulations show large fluctuations, which are
regulated by the width parameter of the wp, which is only roughly constrained by the range
of the interaction and by the requirement of a reasonable representation of the surface thick-
ness of the initial state. QMD acts as an event generator with much larger fluctuations than
in BUU in each event, and the events are averaged over finally. From a more general point
of view BUU and QMD models follow different philosopies of describing the fluctuations,
which have to be present in a HIC, and which are important for the outcome. In BUU they
are not present in the formulation of Eq.(1), but have to be introduced by a fluctuation term,
while in QMD they are introduced classically in the ansatz of the wave function. Thus one
cannot expect that the two approaches will give identical results. Which of these approaches
is more successful in describing the physical system is a matter of current debate.

In the controlled TMEP comparisons, which will be reviewed in the next sections, we
prescribe the physics model, i.e., the mean-field potential and the elastic (and, depending
on the case, inelastic) cross sections. We use relatively simple models, e.g. constant elastic
cross sections and a momentum-independent mean field, since the object is not a detailed
description of data, but the evaluation of the convergence of the codes. We provide a common
initialization, since previous studies showed an influence of different inital states. Otherwise
the strategies of the simulations are left to the codes as in their normal use, and we try to
analyze and understand the differences. The participating codes of BUU- and QMD-type are
identified in the figures in the following sections by the names given by their authors. They
cannot be discussed in detail here, but a list of their names with references and a detailed
description of their properties is given in Ref. [5].

One should realize that HICs are open systems, such that the different aspects of a sim-
ulation interact and small effects can lead to large differences in the final observables. To
disentangle such effects, box calculations with periodic boundary conditions are useful, since
these can be considered as closed systems with fixed average density, energy densitiy and
isospin asymmetry, and they necessarily reach an equilibrium corresponding to the proper-
ties of the respective code. Thus individual aspects of a simulation, such as the mean-field
propagation or the Pauli blocking in the collision term, can be investigated and compared
separately. Also, analytical or exact numerical results exist in many cases and serve as a
baseline for the comparisons. In the following, we first discuss a selection of results of box
calculations and then the results of a recent comparison of pion production in a HIC.

3 Box Calculations

In a first example we study the mean-field evolution of the phase space distribution, given
by the rhs of Eq.(1), also known as the Vlasov equation, in a box, see also Ref. [16] where
many more details are given. One would think that this is rather unproblematic, but, in fact,
we observe sizable differences in the simulations due to effects of the fluctuations. In this
comparison we turn off the collision term and imprint on the box initially a sinusoidal oscil-
lation in z-direction and compare the evolution in a mean field, which is assumed to have a
non-linear component proportional to ργ with γ > 2, which is often introduced to effectively
include the action of many-body forces. By Fourier transforming the evolving density with



Figure 1. Response function ρk(ω), i.e., the Fourier transform with respect to space and time of the
averaged density distribution in the box, from the different participating codes [16]. The results for the
BUU codes are grouped according to their treatment of the dynamics (and are distinguished by the color
of the lines): non-relativistic kinematics (blue), relativistic (green), covariant (red). The vertical lines
indicate the analytical results from Fermi-liquid theory for the different code types, see text.

respect to space and time one obtains the response function or power spectrum. The results
comparing many codes of BUU- and QMD-type with various tratments of relativity is shown
in figure 1. One can see a broad peak around the imprinted mode with a broadening due
to damping (by fluctuatons) and mode-mixing (by the non-linar term). BUU codes show a
stronger, less damped, narrower response. The curves are color-coded with respect to the
treatment of relativity (green - non-relativistic, blue - relativistic kinematics, and red - covari-
ant formulation). In the small amplitude limit exact results can be obtained from Fermi-liquid
theory for the zero-sound modes [16]. These results in the same color-coding are given by
the short vertical lines, and one observes a good agreement for the BUU codes. QMD results
are given by the black lines with dots (for one code, since in this case with common initial
coditions and without collisions all QMD codes give the same result). The QMD response is
broader, due to the stronger fluctuations. The peak position is influenced by an approxima-
tion used by many QMD codes of evaluating the non-linear force term, which is more critical
for larger fluctuations. With more numerical effort this approximation can be avoided (in the
IMQMD-L code, black dashed line with dots), which exhibits a stronger response and a shift
of the peak position.

In another example of box analyses we study the Pauli blocking in the collision term in a
cascade calculation with the mean field turned off [17]. The box is initialized at normal den-
sity and temperature T=5 MeV. The resulting collision rates after equilibration are shown in
figure 2 for BUU (left) and QMD codes (right) with square symbols (disregard the star sym-
bols here). Exact numerical results are a represented by the solid lines. If the Pauli blocking
is turned off all codes agree well with each other and with the anylytical results (not shown,
see [17]). The differences seen in figure 2 are thus due to the Pauli blocking of the final
states in each 2-body collision, which exhibit fluctuations due to the numerical evaluation of
the final state phase space occupation. Fluctuations make the blocking less effective and in-
crease the collision rates. BUU codes with a finite number of TPs show moderate deviations



Figure 2. Collision rates
from the different models in
cascade simulations with
Pauli blocking for T = 5
MeV initializations (square
symbols, disregard star
symbols). The black line
represents the reference
value calculated
numerically [17].

from the exact result, while QMD codes with their larger fluctuations deviate considerably
more. (The code pBUU uses a stochastic method for the Pauli blocking, which enforces the
exact result, while the code CoMD enforces rather strictly fi < 1, which however has other
effects which cannot be discussed here, see [17]). In another box calculation, which also can-
not be shown here, we investigated inelastic collisions with pion production, which showed
non-Markovian effects in the collision sequence of elastic, inelastic and decay processes [18].

Generally it is seen that box calculations allow to study different aspects of simulations
in detail and allow to understand the differences between the codes. We especially see how
fluctuations sensitively affect many results of calculations, and, in particular, explain the syst-
matic differences between BUU and QMD codes, due to their different theoretical ansatz to
treat fluctuations, as discussed in the theory section.

4 Heavy-Ion Collisions

Historically, the first TMEP comparisons were performed for HICs, but for the reasons dis-
cussed above it was difficult to disentangle and understand the differences between codes
[19]. After studying these differences in box calculatons we then returned to HICs and also
include pion production via the excitation of the ∆ resonance which is of high interest for the
determination of the symmetry energy as discussed in the introduction. We compare calcula-
tion for a 132Sn+ 124Sn collision at 270 MeV/A [20], as also motivated there. Since HICs are
open systems we monitor the evolution of the behaviour of the collision, i.e., the density and
asymmetry evolution and the final nucleon observables. We observe also differences here,
e.g., of the density evolution, due to effects discussed above in the box-Vlasov comparison.
The hope is, that in the charged pion ratios Y(π−)/Y(π+) such differences may partly cancel.

Some results for the pion observables are given in figure 3 as calculated by the different
participating codes identified at the bottom. Full symbols represent calculations with Pauli
blocking in the usual way and open symbols calculations without it. Some codes (IQMD
and TuQMD) apply a correction of the Pauli blocking for the inhomogeneity of phase space
at the surface, which is only important in QMD codes. For TuQMD the effect is explicitely
shown in the hatched symbol, where this correction is turned off. Panel (a) shows the total
pion yields, and demonstrates that Pauli blocking suppresses pion production. We see large
differences between the codes, which are mainly due to the different densities reached in the
evulution.

Panel (b) shows the corresponding results for the charged pion ratios. The smaller pion
yield with Pauli blocking implies a larger ratio, i.e., a larger effect of the symmetry energy.
Inspite of forming the pion ratio the differences between the codes are still large, of the order
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Figure 3. Total pion yield, panel (a), and charged pion ratios, panels (b,c), in 132Sn+124Sn collisions
at 270 MeV/A as calculated from various codes identified at the bottom. Full symbols are with Pauli
blocking; open symbols without. The hatched symbols in panels (a,b) are TuQMD calculations without
a surface correction to Pauli blocking, and the blue arrows show the effect of this. In panel (c) estimated
corrections to the results shown in panel (b) are applied, see text.

of 15%. (The results for the code pBUU should be disregarded in this comparison, since
here the treatment of the pion and Delta potentials is not exactly the same as in the other
codes). However, we can essentially explain these differences, which is sketched in panel (c)
(where pBUU is already left out). By comparing calculations of TuQMD with and without
Pauli surface corrections (blue arrows) one sees a substantially increased pion ratio. One
can then approximately correct the calculations without surface correction (IQMD-BNU and
IQMD-IMP) for this effect, which is done in panel (c). Then one observes that the BUU-
type codes IBUU, RVUU and TuQMD-L (the last should also be considered BUU-like, see
section 2) agree rather well as indicated by the blue dashed horizontal line, within an error
of ±0.05 or about ±2%. Also, the QMD-like codes (IQMD,IQMD-BNU, IQMD-IMP, and
TuQMD) agree rather well between each other (dashed red line) with about the same error.
The difference between the two families is about 0.18, which is seen to agree rather well with
the difference between the results of TuQMD and TuQMD-L, which is representative for the
systematic difference between BUU- and QMD-type codes due to their different amounts of
fluctuations (and here also the evaluation of the non-linar force term). Considering these
explainable differences one can state that the codes agree overall to within about ±2%, which
is probably within the achievable accuracy of simulations.

5 Discussion and Outlook

The aim of the TMEP code comparisons is to establish quantitatively the robustness of in-
ferences from transport model studies of HICs, which is important to extract information on
the EOS and other medium quantities for densities above saturation. For this purpose it is
sufficient that the calculations are only semi-realistic, and that important ingredients, like the
momentum-dependence of the mean fields, are omitted. Due to extensive studies of box cal-
culations we can largely explain the differences in the different simulations. In particular, we
clearly see and understand the systematic differences between the BUU and QMD families
of transport descriptions. In some cases we can also recommend optimal strategies, which,
however, have not been implemented in all codes at this stage. When approximately taking
into acount these understood differences, the codes agree to within approximately 4%.



However, such a code comparison does not say, which simulation codes are most reliable
to extract in formation from HICs. In the absence of exact solutions we propose to also con-
sider the comparison to experiment. One should require that a code can realistically describe
the global evolution of the phase space, as given by the bulk nucleon observables, like stop-
ping, flow, or nucleon and cluster multiplicities. Only then conclusions from secondary or
rare probes, like pions at these energies, can be considered reliable.The uncertainty of trans-
port model analyses as a whole could then be quantified by averaging the distributions of the
physics model parameters (e.g., determined by a Bayesian analysis for each code) over the
codes weighted by the agreement to bulk observables (and exact results in box calculations).
In the multi-messenger era of studies of the equation-of-state of nuclear and stellar matter, an
uncertainty quantification of transport model studies is needed.
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