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Abstract. We modeled an unprecedentedly large dataset of complete fusion
cross section data using a novel artificial intelligence approach. Our analy-
sis aims especially to unveil, in a data-driven way, nuclear structure effects on
the fusion between heavy ions and to suggest a universal formula capable to
describe all previously available data. The study focused on light-to-medium-
mass nuclei, where incomplete fusion phenomena are more difficult to occur
and less likely to contaminate the data. The method used to derive the models
exploits a state-of-the-art hybridization of genetic programming and artificial
neural networks and is capable to derive an analytical expression that serves to
predict integrated cross section values. For the first time, we analyzed a com-
prehensive set of nuclear variables, including quantities related to the nuclear
structure of projectile and target. In this manuscript, we describe the derivation
of two computationally simple models that can satisfactorily describe, with a
reduced number of variables and only a few parameters, a large variety of light-
to-intermediate-mass collision systems in an energy domain ranging approxi-
mately from the Coulomb barrier to the oncet of multi-fragmentation phenom-
ena. The underlying methods are particularly innovative and are of potential
use for a broad domain of applications in the nuclear field.

1 Introduction

Nuclear fusion is a key reaction mechanisms when one wants to investigate heavy-ion col-
lisions at energies around the Coulomb barrier [1–5]. In the literature, there are numerous
attempts to fully understand the corresponding cross section, its variation with the collision
energy, and the possible link with nuclear structure variables.

In the literature, there are numerous models, mainly semi-classical, attempting to describe
the fusion cross section between heavy ions. They benefited from large systematics of data
[6]. If one focuses on light-to-medium-mass systems, i.e. systems in which the mass of the
compound nucleus is not too large, Atot ' 20 − 140, the fusion cross section above barrier
has a peculiar trend with the center-of-mass energy 1/Ecm. Such a trend can be schematically
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described subdividing data into three main regions [2, 7]. The so-called Region I, which starts
approximately at the Coulomb barrier, i.e. the lowest energy region, exhibits a quasi linear
increase of the cross section for decreasing 1/Ecm values [1, 2, 7–9]. In this region, multi-
nucleon-transfer processes compete with the fusion reaction mechanisms [10–12], and also
quasi-fission processes can occur (especially for heavy systems) [13–15]. In the successive
energy, i.e. in Region II, at higher energies, the fusion cross section is usually characterized
by a smooth fall, due to the competition with deep inelastic phenomena [16, 17] and quasi-
fission. It is often quite complex to define sharp boundaries between Region I and Region
II. In addition, due to the complicated reaction mechanisms, experimental data are often
affected by relatively large uncertainties. In the higher energy region, called Region III,
there is a sharp fall of the cross section, as fusion-evaporation is supplanted by incomplete
fusion mechanisms [18–20], multi-fragmentation [21–23], and, in general, to much more
complicated reaction scenarios [5]. For very high Ecm values, the fusion cross section is
expected to reach negligibly small values, as a result of mechanical and thermodynamical
instabilities of the transient system formed in the collisions [22–28].

The present theoretical and experimental knowledge of the fusion cross section between
heavy ions leaves a number of yet open questions. For example, those related to the existence
of a limiting angular momentum at high energies, which was explicitly investigated only for
a few systems [29]. There are two main families of macroscopic models that attempt to de-
scribe this energy region: critical distance models [7, 30] and models based on limitations to
compound nucleus [31]. Besides macroscopic models, also microscopical (Time-Dependent
Hartree-Fock, TDHF, see e.g. [32, 33]), molecular dynamics (see e.g. [34, 35]), and phe-
nomenological models (see, e.g., [1, 27, 28, 36–38]) have been proposed. The latter, in
particular, reached a good level of accuracy in describing experimental function cross section
excitation functions, see e.g. Refs. [28, 36–39]. However, present phenomenological models
have been focused especially to the portion of the excitation function close to the optimal
value of Ecm, i.e. close to the maximum of the fusion cross section. Only a few phenomeno-
logical models, such as Ref. [27], have directly explored the highest energy region (III), and
there is very limited literature for energies close to the Coulomb barrier. Furthermore, previ-
ous phenomenological models often lack of physical boundaries, i.e. they predict divergent
or even negative value of the fusion cross section outside of the range constrained by exper-
imental data. There are also a number of unanswered questions regarding possible effects of
nuclear structure parameters (i.e. characteristics of projectiles, targets and compound nuclei)
on the fusion cross section.

In this work, we analyze an unprecedentedly large dataset of complete fusion cross section
data [48, 49], aiming to derive a data-driven model capable to describe the entire dataset. In
our approach, we inspect simultaneously the correlation of the fusion cross section with a
large number of variables, also linked to the structure of projectile, target, and the compound
nucleus. To this end, we use a novel artificial intelligence tool named Brain Project [40, 41],
which is based on a state-of-the-art hybridization of genetic programming and artificial neural
networks.

2 Methods

2.1 The Brain Project

The present data-driven models are derived using the Brain Project (BP) [40, 41], a machine
learning tool for the formal modeling of data. BP is based on a novel hybridization of genetic
programming and neural networks, and was previously successfully exploited in a number
of investigations involving many research fields (see, for example, Refs. [42–46]). In the
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Figure 1. The tree-like representation of the expression sin3[(x1 + x2)2].

scheme implemented by BP, the genetic part and the neural part cooperate to derive formal
mathematical expressions to describe some input data.

The genetic part of BP follows a well-known approach in evolutionary computation that
foresees the evolution of tree-like structures representing mathematical expressions [47]. A
tree-like structure is composed by nodes, which are suitably interconnected. A node can
contain a mathematical function, a variable, or a constant. For example, Fig. 1 shows the
representation of the expression sin3[(x1 + x2)2], where x1 and x2 are two given variables, this
expression comprises 8 nodes. In the framework of BP, the number of nodes in an expression
is used to quantify its mathematical complexity. A number of mathematical expressions, often
generated randomly, are initially created and subdivided into populations. They are treated
as individuals. Within each population, a computer implementation of the natural selection
in biological systems is then used to maximize the fitness of the individuals. The fitness is a
measure of the quality of an individual. In the present approach, it contains a combination of
the prediction error (i.e. the amplitude of the deviations between the model predictions and
the experimental data), and the mathematical complexity (i.e. the number of nodes exploited
by the model). More details about the choice of the fitness function can be found in Ref. [46].

2.2 Dataset and Data Splitting

The models derived in the present work are obtained exploiting data from 124 light-to-
medium-mass collision systems (Z1 · Z2 ≤ 250) extracted from the dataset described in
Refs. [48, 49]. In turn, we used about 4500 experimental points, which is a much larger body
of data compared to previous phenomenological studies on the fusion cross section between
heavy ions. Data associated with 63 heavier systems (with Z1 ·Z2 > 250) were excluded from
the fit data, but were used to check the extrapolation of the models towards heavier collision
systems. In addition, experimental points randomly extracted from the Z1 · Z2 ≤ 250 where
excluded from the fit data and used to test the generalization capabilities of the models as
described in Ref. [46].

A interesting point of the method adopted in this study is the advanced feature selection,
i.e. the capability of a modeling tool to automatically select the input variables with the
largest importance to predict the output (i.e. the cross section of the fusion between heavy



ions, in the present case), neglecting other poorly important variables. This is natively done
by BP [43]. In the present study, we exploited the advanced feature selection operated by BP
to probe the dependence of the fusion cross section on several variables, including nuclear
structure variables that identify projectile, target, and compound systems, of the fusion cross
section between heavy ions (see Ref. [46] for a detailed list of such variables).

3 Results

We derived models with different complexity choosing different numbers of target nodes ntgt,
ranging between 10 and 20, as discussed in details in Ref. [46]. In other words, given a
certain ntgt, BP will try to identify mathematical expressions with a number of nodes as close
as possible to ntgt, while minimizing their error. We thus obtain gradually more complex
models, up to a maximum of ntgt = 20. The prediction accuracy is found to increase up to
about ntgt ≈ 15, and then we observe a saturation, even if additionally increasing ntgt. Driven
by these preliminary checks, we derived two different models, using ntgt = 10 and ntgt = 15,
which have the following mathematical expressions:

σ
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where both formulas are expressed in units of mb. The first formula is outstandingly simple,
and can be easily used for a fast evaluation of the fusion cross section. This model exploits
only 3 variables: Ecm, Z1, and Z2. We identify the product Z1·Z2, which is clearly related to the
Coulomb term. Several other phenomenological models show a clear dependence on Z1 · Z2
(e.g., [28, 37–39]). The complex model, derived using ntgt = 15, exploits 4 variables: Ecm,
A1, A2, and S 2n. In this case, one has the production A1 · A2, which has a similar dependence
than Z1 · Z2 found in the simplest equation. In the complex model, due to the dependence
on the two-neutron separation energy of the compound S 2n, one finds a slight increase of the
complete fusion cross section at energies larger than the optimal fusion energy, for neutron-
rich systems. This finding is in qualitative agreement with both the phenomenological model
of Ref. [39] and with experiments at the onset of multi-fragmentation [24, 50]. With this
approach, we do not find any significant correlation on other variables related to nuclear
structure properties. This fact suggests that the informative content of present nuclear fusion
datasets might be essentially contained in the set of variables Ecm and Z1Z2 (or A1A2 and S 2n).

The results of our models are shown in Fig. 2 (ntgt = 10, red dashed line; ntgt = 20, red
solid line) for some typical collision systems in our dataset. For comparison, we report also
the results of Ref. [39] (blue dashed line). In the figure, open circles represent experimental
points of light-to-medium-mass systems not used for the fit, while open triangles are used to
indicate data from heavy systems used to test the extrapolation capabilities of our models.
By carefully inspecting the figure, it is seen that the accuracy of the new models is improved
compared to previous state-of-the-art phenomenological models, especially in the regions
close to the Coulomb barrier, where, for example, the model of Ref. [39] falls to rapidly
to zero and even to negative values of the cross section. The cross section at low energy
predicted by the newly derived models falls nearly exponentially in the proximity of the
Coulomb barrier, closely following the typical fall caused by the penetrability through the
Coulomb barrier. At higher energies, especially in Region III, there are discrepancies between
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Figure 2. Results of the newly derived models (ntgt = 15, red solid line; ntgt = 10, red dashed line)
for some collision systems in the dataset, compared to the results of the phenomenological model of
Ref. [39]. Open circles indicate data from light systems excluded from the fit data, while open triangles
are from heavier systems not included in the fit data.

experimental data and model prediction. Unfortunately, understanding this region is made
complex by the poor statistics of data and their large uncertainties. This clearly calls for new
experimental investigations in such a complicated energy region.

4 Conclusions and Perspectives

A broad body of fusion cross section data for light-to-medium mass systems is analyzed with
a novel artificial intelligence approach based on a hybridization of genetic programming and
neural networks. This approach made it possible, for the first time, to inspect the dependence
of the fusion cross section on numerous variables that describe both the collision system and
the structure of the nuclei involved in the reaction. We derive two computationally simple
formulas that can be used as universal models to describe the fusion between heavy ions.

The new findings seem to call for new experimental data well above the Coulomb barrier
(especially in regions II and III), which was largely neglected after the 90s, leaving a number



of unanswered questions that could be addressed with the help of modern detection systems
for charged particles [52–60].
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