Project Proposal Boosted Higgs: Mass Scheme Uncertainty

Stephen Jones

OS vs MS

Can relate the OS and \overline{MS} masses straightforwardly:

$$m_0 = Z_m^{
m OS} \ m^{
m OS}$$
 \longrightarrow $m^{
m \overline{MS}} = m^{
m OS} \frac{Z_m^{
m OS}}{Z_m^{
m \overline{MS}}}$ (not a big source of uncertainty here)

uncertainty here)

Marquard, Smirnov, Smirnov, Steinhauser 15

The MS mass depends on a scale μ (i.e. it is a "running mass") Scale dependence fixed by RGE:

$$m^{\overline{\mathrm{MS}}}(\mu) = m^{\overline{\mathrm{MS}}}(\mu_0) \frac{c(\alpha_s(\mu)/\pi)}{c(\alpha_s(\mu_0)/\pi)}$$

also known to 4-loop (not a big source of uncertainty here)

Chetyrkin 97; Vermaseren, Larin, van Ritbergen 97

HH Mass Scheme Uncertainties @ NLO

HH @ NLO: m_t in the OS and $\overline{\rm MS}$ scheme $\sigma_{\rm tot} = 32.81(7)^{+13.5\%}_{-12.5\%} \, ^{+4\%}_{-18\%} \, {\rm fb}$

Baglio, Campanario, Glaus, Mühlleitner, (Ronca), Spira, Streicher 18, 20, 20

Studied top quark mass scheme/scale uncertainties:

$$\begin{split} \frac{d\sigma(gg\to HH)}{dQ} \Big|_{Q=300~\text{GeV}} &= 0.0312(5)^{+9\%}_{-23\%}~\text{fb/GeV}, \\ \frac{d\sigma(gg\to HH)}{dQ} \Big|_{Q=400~\text{GeV}} &= 0.1609(4)^{+7\%}_{-7\%}~\text{fb/GeV}, \\ \frac{d\sigma(gg\to HH)}{dQ} \Big|_{Q=600~\text{GeV}} &= 0.03204(9)^{+0\%}_{-26\%}~\text{fb/GeV}, \\ \frac{d\sigma(gg\to HH)}{dQ} \Big|_{Q=1200~\text{GeV}} &= 0.000435(4)^{+0\%}_{-30\%}~\text{fb/GeV}, \end{split}$$

Large uncertainty obtained comparing OS scheme with $\overline{\rm MS}$ scheme at scale m_{HH}

H* Mass Scheme Uncertainties @ LO & NLO

Les Houches study examined H*, HH, HJ, ZZ LH Study 20

Consider $gg \rightarrow H^* @ Q = 900 \text{ GeV}$:

$\sigma(gg \to H^*)$ [pb]		Q = 900 GeV
LO	$18.43^{+0.8\%}_{-1.1\%}$	$0.139^{+0.0\%}_{-36.0\%}$
NLO	$42.17_{-0.5\%}^{+0.4\%}$	$0.230^{+0.0\%}_{-22.3\%}$

Similar to HH production, m_T scheme dependence reduced by only factor ~2

Note: For on-shell H(125) production uncertainty is tiny

Suggests that mass scheme uncertainties could be quite sizeable for many (loop-induced) Higgs processes with scales $\gtrsim m_T$ (?)

HJ Mass Scheme Uncertainties @ LO

Mass scheme uncertainty hugely different for each distribution

Invariant mass plot dominated by contributions with a small p_T which do not probe the top-quark threshold (verified by applying $p_{T,j_1} > 300 \text{ GeV}$ cut)

For boosted Higgs at LO we can see quite large effects \sim 25% at high- p_T LO scale uncertainty $\sim\pm30\%$ and NLO scale uncertainty $\sim\pm16\%$

HJ @ NLO

Chen, Huss, SPJ, Kerner, Lang, Lindert, Zhang 21

Full result known (numerically or via expansion in small- m_T) for OS scheme

SPJ, Kerner, Luisoni 18; (Lindert), Kudashkin, Melnikov, Wever 17, 18; Neumann 18;

Very stable and fast reals are available

Apparently only few % effect from including the top-quark mass in the virtuals (vs born reweighted HTL virtuals) e.g. Chen, Huss, SPJ, Kerner, Lang, Lindert, Zhang 21

HJ Expanded Virtuals

Can consider Higgs boson & top quark masses as small Introduce variables:

$$\eta = -\frac{m_H^2}{4m_T^2}, \quad \kappa = -\frac{m_T^2}{s}, \quad z = \frac{u}{s}$$

Expand integrals to $\mathcal{O}(\eta^0\kappa^1)$ justified for $m_H^2, m_T^2 \ll |s| \sim |t| \sim |u|$, For example at large $p_T^2 = ut/s$

Kudashkin, Melnikov, Wever 17

Expanded 2-loop virtuals can be combined with full reals to predict Higgs boson p_T distribution above top threshold

Lindert, Kudashkin, Melnikov, Wever 18

Easy(?) to change top-quark mass scheme in these results

Expanded Virtuals vs Full

Can compare just the virtuals ($V_{\rm fin}$) in the full and expanded results, differences at the level of 10-20% (but virtuals apparently only account for small part of total)

Summary

Proposal

Perform a study of HJ mass scheme uncertainty at NLO

Ingredients

Use reals from study of Chen et al.

Use virtuals from Melnikov et al.

(cross-check with numerical result of SPJ, Kerner, Luisoni)

Happy to hear comments on/interest in this proposal

Thank you for listening!