Accelerator R&D Roadmap

Dave Newbold, STFC Laboratory Directors Group Chair

Accelerator R&D Roadmap

• European Strategy contains clear recommendations on accelerator R&D:

- The particle physics community should ramp up its R&D effort focused on advanced accelerator technologies.
- The European particle physics community must intensify accelerator R&D and sustain it with adequate resources; a roadmap should prioritise the technology.
- Deliverables for this decade should be defined in a timely fashion and coordinated among CERN and national laboratories and institutes.
- Expert panel chairs
 - Magnets: P. Vedrine (IRFU)
 - Plasma: R. Assmann (DESY)
 - RF: S. Bousson (IJCLab)
 - Muons: D. Schulte (CERN)
 - ERL: M. Klein (U. Liverpool)
 - Co-opted authors for additional sections

Technology Facilities Council

The Questions Asked

- Key questions raised during the Strategy update process
 - What R&D is necessary for future facilities? What are the priorities?
 - How long might it take? How much will it cost?
 - What are the dependencies, conflicts or choices between activities?
 - What science can be done with demonstrators, or intermediate-scale facilities?
- Goal: provide the concrete evidence to support decision-making by the field at future Strategy updates
- Content of the roadmap
 - Broad and deep survey of each technology area
 - Identification of key R&D objectives for short term and longer term
 - Definition of delivery plans for the next five to ten years
 - Outline estimates of resource needs and the necessary facilities
 - 'Reference' chapters on e+e- programme and sustainability
 - Overarching recommendations on the future R&D programme
- The roadmap provides information, motivation and priorities
 - Decisions on overall scale and balance of the R&D programme are now required

Process

- Expert panels convened in January 2021
 - Wide representation from European institutes
 - International representation on all panels

Consultation

- Over fifty panel meetings and workshops held
- Hundreds of inputs from the accelerator community
- Workshop for the PP community in July

Interim reports

- R&D objectives reported at EPS-HEP, July
- Feedback gathered from national communities via ECFA delegates

Planning

- Closed process for prioritisation, planning and costing
- Final delivery plans approved in October
- SPC reviews in June, November and December 2021

Example of R&D Plan (RF Structures)

Superconducting RF

- High quality factor bulk niobium
- Field emission reduction
- Thin superconducting films
- SRF couplers
- Normal-conducting RF
 - Design, modelling and simulations
 - Manufacturing technology
 - mm-wave and higher frequencies
- Powering and LLRF
 - High-efficiency sources
 - mm-wave and gyro devices
 - Power need reduction
 - LLRF
 - Applications of AI / ML

Tasks	Begin End	Description
RF.SRF.BKNb	2022 2026	Superconducting RF: bulk Nb
RF.SRF.FE	2022 2026	Superconducting RF: field emission
RF.SRF.ThF	2022 2026	Superconducting RF: thin film
RF.SRF.INF	2022 2026	Superconducting RF: infrastructure
RF.SRF.FPC	2022 2026	Superconducting RF: power couplers
RF.SRF		Total of superconducting RF
RF.NC.GEN	2022 2026	Normal conducting RF: general NC stud-
		ies
RF.NC.MAN	2022 2026	Normal conducting RF: NC manufactur-
		ing techniques
RF.NC.HF	2022 2026	Normal conducting RF: mm wave & high
		frequency
		Total of normal conducting RF
RF.HP.HE	2022 2026	High-power RF: high-efficiency klystron
		& solid state
RF.HP.HF	2022 2026	High-power RF: mm-wave & gyro devices
RF.HP.TUN	2022 2026	High-power RF: reduced RF power needs
		(tuners)
RF.HP.AI	2022 2026	AI and machine learning
		Total of high-power RF
RF.TS.NCRF	2022 2026	NC RF test stands
RF.TS.MAT	2022 2026	Test stand: new materials
RF.TS.BEAM	2022 2026	Beam test
RF.TS.SRF	2022 2026	Test stand: SRF Horizontal cryostat
		Total for test stand

Resources

Five-year project staff (FTEy)

Costs of approved experimental projects with a link to the R&D programme are included within 'contributed resources'

- Panels defined 'nominal', 'minimal' and 'aspirational' planning scenarios
 - 'Nominal' corresponding to the roughly the current level of funding in Europe
- Many pre-existing commitments and plans are in place
 - New funding requests being made regularly; some delivery plans dependent on external investments

General Recommendations

- 1. Roadmap should be accepted as the **collective view** of the communities
- 2. Governance structures should oversee the ongoing R&D ensuring:
 - Proper coordination and balance in their goals and execution
 - Continued focus on implementation of the goals of the European Strategy
 - Regular updates on progress to the community and to CERN Council
- 3. A broad front of R&D should be maintained, corresponding to at least the minimal resource scenario in each area
- 4. Provision must be left for 'blue skies' R&D and novel developments
- 5. Priority should be given to continuity of funding for facilities
- 6. Environmental sustainability should be a primary consideration
- 7. Emphasis on prompt scientific exploitation of R&D outputs
- 8. Practical considerations should factor into the design and parameters of future machines, with the close engagement of industry
- 9. Close cooperation between European and international labs is required
- 10. Training and professional development of accelerator physicists is a key factor in sustaining a vibrant and productive field

Dave.Newbold@stfc.ac.uk

Proposed Coordination Structure

Multiple projects within each R&D Theme

- Intended be 'lightweight', causing minimal disruption / delay to existing projects
- Provide a coherent structure for a community plan in areas still 'ramping up'

Discussions with Funding Agencies

- LDG (and ECFA) now planning in detail for implementation stage
 - Approval for the final mandate at June meeting of CERN Council
 - Practically, our authority relies on the explicit backing of the funding agencies
 - In the coming weeks, we hope to achieve 'buy-in' for the structure and scope of the R&D programme
- In the coming discussions, we hope to:
 - Receive general remarks and feedback on the proposed structure for R&D coordination
 - Identify (in outline) current and near-future FA R&D commitments, projects, and capabilities at national institutes, laboratories and universities
 - Discuss interest in future contributions to the R&D effort, including a first idea of the potential level of investment and any areas of specific interest
 - Receive proposals for leadership of the coordination panels, or other comments on their composition.
- Open Q&A session for funding agencies Thursday 28th April
 - Agenda: <u>https://indico.cern.ch/event/1154156/</u>
 - Both local and remote participation will be possible
 - You private inputs and questions are also extremely welcome

Additional Material

Dave.Newbold@stfc.ac.uk

Magnets: Objectives

- Encompasses Ni3Sn and HTS (REBCO) developments
- 'Vertically integrated' approach to R&D
 - Development on all aspects from conductors to cables to magnets to systems
 - Emphases: full system optimisation; fast turnaround for R&D; modelling

Magnets: Plan

LHC RRB, 25th April 2022

RF: Objectives

	Particle sources	Magnet and Vacuum systems	High Field SC magnets	Normal Conducting RF structures	Superconducting RF cavities	RF power sources	Cryogenics	Instrumentation
ILC	•				•	•	•	•
FCC	•	•	•		•		•	•
PIP-II, MYRRHA					•	•	•	•
JLEIC	•		•	•		•		•
eRHIC, LHeC					•		•	•
DIAMOND2, SLS2		•				•		•
LCLS2-HE, SHINE		•			•		•	•
DONES	•	•		•	•	•	•	•
DEMOs	•		•			•	•	
PERLE					•	•		•
BELA, compact neutron sources	•			•				•

Scope covers both SC and NC RF structures

Not only cavities, but couplers, tuning elements, power sources, LLRF

Main objectives

- Efficiency and optimisation of the end-to-end system
- Efficient automation / industrialisation for assembly and tuning
- Diagnostics and rapid feedback mechanisms
- Development of sources, materials and structures for new wavebands (mm / THz)

RF: Plan

- Superconducting RF
 - High quality factor bulk niobium
 - Field emission reduction
 - Thin superconducting films
 - SRF couplers
- Normal-conducting RF
 - Design, modelling and simulations
 - Manufacturing technology
 - mm-wave and higher frequencies
- Powering and LLRF
 - High-efficiency sources
 - mm-wave and gyro devices
 - Power need reduction
 - LLRF
 - Applications of AI / ML

Tasks	Begin End	Description
RF.SRF.BKNb	2022 2026	Superconducting RF: bulk Nb
RF.SRF.FE	2022 2026	Superconducting RF: field emission
RF.SRF.ThF	2022 2026	Superconducting RF: thin film
RF.SRF.INF	2022 2026	Superconducting RF: infrastructure
RF.SRF.FPC	2022 2026	Superconducting RF: power couplers
RF.SRF		Total of superconducting RF
RF.NC.GEN	2022 2026	Normal conducting RF: general NC stud- ies
RF.NC.MAN	2022 2026	Normal conducting RF: NC manufactur- ing techniques
RF.NC.HF	2022 2026	Normal conducting RF: mm wave & high frequency
		Total of normal conducting RF
RF.HP.HE	2022 2026	High-power RF: high-efficiency klystron & solid state
RF.HP.HF	2022 2026	Il'al a sura DE ana sura la siaca
	2022 2020	High-power KF: mm-wave & gyro devices
RF.HP.TUN	2022 2026	High-power RF: mm-wave & gyro devices High-power RF: reduced RF power needs (tuners)
RF.HP.TUN RF.HP.AI	2022 2026 2022 2026 2022 2026	High-power RF: mm-wave & gyro devices High-power RF: reduced RF power needs (tuners) AI and machine learning
RF.HP.TUN RF.HP.AI	2022 2020 2022 2026 2022 2026	High-power RF: mm-wave & gyro devices High-power RF: reduced RF power needs (tuners) AI and machine learning Total of high-power RF
RF.HP.TUN RF.HP.AI RF.TS.NCRF	2022 2026 2022 2026 2022 2026 2022 2026	High-power RF: mm-wave & gyro devices High-power RF: reduced RF power needs (tuners) AI and machine learning Total of high-power RF NC RF test stands
RF.HP.TUN RF.HP.AI RF.TS.NCRF RF.TS.MAT	2022 2026 2022 2026 2022 2026 2022 2026 2022 2026	High-power RF: mm-wave & gyro devices High-power RF: reduced RF power needs (tuners) AI and machine learning Total of high-power RF NC RF test stands Test stand: new materials
RF.HP.TUN RF.HP.AI RF.TS.NCRF RF.TS.MAT RF.TS.BEAM	2022 2026 2022 2026 2022 2026 2022 2026 2022 2026 2022 2026 2022 2026	High-power RF: mm-wave & gyro devices High-power RF: reduced RF power needs (tuners) AI and machine learning Total of high-power RF NC RF test stands Test stand: new materials Beam test
RF.HP.TUN RF.HP.AI RF.TS.NCRF RF.TS.MAT RF.TS.BEAM RF.TS.SRF	2022 2026 2022 2026 2022 2026 2022 2026 2022 2026 2022 2026 2022 2026 2022 2026	High-power RF: mm-wave & gyro devicesHigh-power RF: reduced RF power needs (tuners)AI and machine learningTotal of high-power RFNC RF test standsTest stand: new materialsBeam testTest stand: SRF Horizontal cryostat

Laser / Plasma: Objectives

Goal is to complement large 'external' investment in plasmas

- Ensuring that the HEP-specific aspects are fully covered
- Drive for (essentially) plausible case for large-scale project at next ESPPU
 - Many 'fundamental' questions to be answered on paper, and demonstrated in a later phase

Laser / Plasma: Plan

Tasks	Begin	End	Description
PLA.FEAS.1	2022	2026	Coordination
PLA.FEAS.2	2022	2026	Plasma Theory and Numerical Tools
PLA.FEAS.3	2022	2026	Accelerator Design, Layout and Costing
PLA.FEAS.4	2022	2026	Electron Beam Performance Reach of Ad- vanced Technologies (Simulation Results - Comparisons)
PLA.FEAS.5	2022	2026	Positron Beam Performance Reach of Ad- vanced Technologies (Simulation Results - Comparisons)
PLA.FEAS.6	2022	2026	Spin Polarization Reach with Advanced Accelerators
PLA.FEAS.7	2022	2026	Collider Interaction Point Issues and Opportunities with Advanced Accelerators
PLA.FEAS.8	2022	2026	Reach in Yearly Integrated Luminosity with Advanced Accelerators
PLA.FEAS.9	2022	2026	Intermediate steps, early particle physics experiments and test facilities
PLA.FEAS.10	2022	2026	Study WG: Particle Physics with Ad- vanced Accelerators
PLA.FEAS			Total of Feasibility and pre-CDR Study
PLA.HRRP	2022	2026	High-Repetition Rate Plasma Accelerator Module
PLA.HEFP	2022	2026	High-Efficiency, Electron-Driven Plasma Accelerator Module with High beam Quality
PLA.DLTA	2022	2026	Scaling of DLA/THz Accelerators
PLA.SPIN	2022	2026	Spin-Polarised Beams in Plasma Acceler- ators
		F	Feasibility and pre-CDR on advar
		[Definition of particle physics case
		5	Selection of technology base fo
		C	CDR for an advanced collider
		٦	DR, prototyping and preparation
		Γ	Dedicated test facility: constructi
		,	Decision on construction (in via

Quality 26 Scaling of DLA/THz Accelerators 26 Spin-Polarised Beams in Plasma Accelerators	2021–2025	2026 2025	2028	2029	2030	2031	2032	2033 2034	2035	2036	2037 2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048 2049
Feasibility and pre-CDR on advanced accelerators																					
Definition of particle physics case																					
Selection of technology base for a CDR																					
CDR for an advanced collider																					
TDR, prototyping and preparation phase																					
Dedicated test facility: construction, operation																					
Decision on construction (in view of results and other collider projects)												7									
Construction of advanced collider																					

LHC RRB, 25th April 2022

Muons: Objectives

- Objectives are again focussed on the 'plausibility case'
 - Examine the key technical barriers and cost drivers before next EPSSU
 - Planning towards a muon beam demonstrator an optional element
- Key topics
 - Machine parameters; muon cooling cell; siting considerations; neutrino radiation; magnets & RF

Dave.Newbold@stfc.ac.uk

Muons: Plan

Technology Facilities Council

ERL: Objectives

Three-part programme

- Support and exploit ongoing facility programmes (worldwide)
- Focussed technical R&D into key technologies
- Development or upgrade of European facilities for the mid-2020s
- Relevant to both absolute performance and sustainability of future machines

ERL: Plan

Activity	Acronym	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057		2060
ERL Beam Diagnostics	ERL.DIA																													Inc	lude	d in E		Roadr	map				
bERLinPro @ 100 mA injector bERLinPro @ 100 mA recirculated	ERL.PRO.1 ERL.PRO.2																													Pul Fut	blish ure p	ed pr	opo bility	sals y	Πάρ				
PERLE @ 250 MeV	ERL.PER.1																																						
PERLE @ 500 MeV	ERL.PER.2	-	-	-					_			_	_		_	_	_			_				_	_	_						_	_	_	-			-	
50 GeV electrons on HL-LHC	LHeC						_																			_							_		_	_	-		
50 GeV electrons on HE-LHC	LHeC+																								IIIIQ											Шψ			
60 GeV electrons on FCC-h	FCC-eh																																						
4.4K SRF Development	SRF.4.4																																		_	_	_		
4.4K Cryomodule Development	ERL.WCM.1																																		_	_	_		
Beam Test of 4.4K module in PERLE	ERL.WCM.2	2																																	_		_		
High Temperature HOM Damping	ERL.HOM																																			_	_		
Twin Cavities	ERL.TWN																																		_	_	_		
Double Higgs Factory* Design Activitie	25															 																			_	_	_		
500 GeV, 10 ³⁶ Double Higgs Factory*	HH500																																		\Rightarrow	_	_		
	* A possible	e upg	grad	le to	eithe	er FC	C-ee	e or l	ILC,	or e	ven	as a	star	nd-a	lone	e fac	ility																						

 Report includes an assessment of the plausibility / relevance of recent proposals for ERL technology in e+e- machines

Common Themes in Panel Reports

- Mission-oriented approach
- Staged R&D
 - In many cases, the basic plausibility of some elements is still to be demonstrated
 - Emphasis on covering this ground thoroughly before ESPPU -> then ramp up
- Rapid turn-around
 - Vertically-integrated approach to R&D to achieve fast and regular results
 - Rests upon efficient and common use of test facilities
- Sustainability
 - Many of the key developments are driven by power efficiency
 - Some also have direct impacts on the cost / footprint of civil infrastructure
- Investment needs
 - Investment needed on the five-year timescale in major new facilities
 - Investment in skills and training is of course a continuous requirement
- Industry involvement
 - Early engagement of industry against a clear plan builds trust and cooperation
 - The basic cost of the raw materials of accelerators must be reduced by cooperation with industry
- External and interdisciplinary applications
 - Many scientific and societal applications of the R&D have been highlighted

Future Facilities Timeline

- 'Chicken-and-egg' problem
 - Cannot define an R&D timeline without knowing the approximate dates of future facilities
 - Cannot predict dates of future facilities without knowing R&D needs
- Detector / accelerator roadmaps have used a common timeline
 - Highly approximate, and not to be used out of context
 - Dates represent the 'earliest feasible date', driven by both technical considerations and the processes of approval
 - The goal in both cases is that R&D shall not be the rate-limiting step

Dave.Newbold@stfc.ac.uk