Development of an RF-carpet gas cell to obtain a low-energy thorium ion beam

A. Yamaguchi^{*a,b*}, Y. Shigekawa^{*c*}, H. Haba^{*c*}, M. Wada^{*d*}, and H. Katori^{*a,b,e*}

^a Quantum Metrology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan

^b Space-Time Engineering Research Team, RIKEN, Wako, Saitama 351-0198, Japan

^c Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198, Japan

^d KEK Wako Nuclear Science Center, Wako, Saitama 351-0198, Japan

^e Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan

The first-excited isomeric state of ²²⁹Th (^{229m}Th) attracts attention for its extremely low energy. Existence of ^{229m}Th was confirmed via observation of electrons emitted by internal conversion (IC) decays [1]. Laser spectroscopy of ^{229m}Th²⁺ was also demonstrated [2]. The energy of the ^{229m}Th was measured to be approximately 8 eV by IC electron spectroscopy [3] and γ -ray spectroscopies [4, 5, 6]. The nuclear transition between the ground and isomeric states of ²²⁹Th thus offers unique opportunities for high-precision laser spectroscopy of an atomic nucleus. One of the promising applications is an optical nuclear clock: an atomic clock based on this nuclear transition [7]. The ion trap is an ideal platform for the nuclear clock because the quantum states of isolated ²²⁹Th ions in a trap can be precisely manipulated by lasers.

We are developing an RF-carpet gas cell to obtain a low-energy 229 Th ion beam which can be used as an ion source for ion trap experiment. The 229 Th recoil ions emitted from 233 U source are cooled by collisions with He buffer gas and extracted as a low-energy ion beam by an RF-carpet [8]. Since 2% of recoil 229 Th ions from 233 U are 229m Th, laser spectroscopy of trapped 229m Th ions could also be performed by attaching the ion trap to the gas cell developed in this study, which would provide more detailed knowledge of this unique nuclear state.

^[1] L. von der Wense et al., Nature 533 (2016) 47.

^[2] J. Thielking *et al.*, Nature **556** (2018) 321.

^[3] B. Seiferle *et al.*, Nature **573** (2019) 243.

^[4] B. R. Beck et al., Phys. Rev. Lett. 98 (2007) 142501.

^[5] A. Yamaguchi et al., Phys. Rev. Lett. 123 (2019) 222501.

^[6] T. Sikorsky et al., Phys. Rev. Lett. 125 (2020) 142503.

^[7] E. Peik and C. Tamm, Europhys. Lett. 61 (2003) 181.

^[8] M. Wada et al., Nucl. Instrum. Methods Phys. Res. B 204 (2003) 570.