Direct measurement of the ³He⁺ magnetic moments

<u>Stefan Dickopf</u>¹, Marius Müller¹, Natalia S. Oreshkina¹, Alexander Rischka¹, Antonia Schneider¹, Bastian Sikora¹, Igor Valuev¹, Stefan Ulmer², Jochen Walz^{3,4}, Zoltan Harman¹, Christoph H. Keitel¹, Andreas Mooser¹, Klaus Blaum¹

- 1 Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- 2 RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- 3- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, D-55128 Mainz, Germany

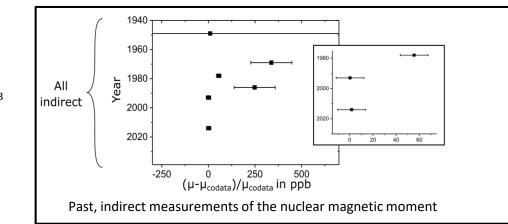
4 - Helmholtz-Institut Mainz, Staudingerweg 18, D-55128 Mainz, Germany

Motivation

First high-precision measurement of the ³He⁺ hyperfine structure and direct measurement of the helion *g*-factor

g_e (bound-state electron g-factor)

 \succ Comparison with theory value $\delta g_{e,theo}/~g_{e,theo}\sim 10^{-13}$


g_I (shielded nucleus g-factor)

- Currently only comparisons of ³He with H₂O or H₂ probe only
- Establish ³He NMR probes for accurate magnetometry

	Water NMR	³ He
Dependence on temperature	1	> 1/100
Dependence on probe shape	1	> 1/1000
Diamagnetic shielding	1 measured	> 1/10 calculated

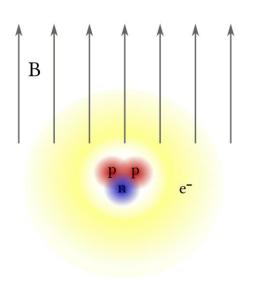
> Application: muon *g*-2 experiment

Rudzinski A., et al. *J.Chem. Phys.* **130** 244102 (2009) Nikiel A., *et al.* Eur. Phys. J. D **68** 330 (2014) Farooq M., *et al.* Phys. Rev. Lett. **124** 223001 (2020)

 $\Delta E_{\rm HFS}$ (zero-field hyperfine splitting)

$$E_{HFS} = E^F (1 + \delta^{QED} + \delta^{rec} + \delta^{hvp} + \delta^{nucl})$$

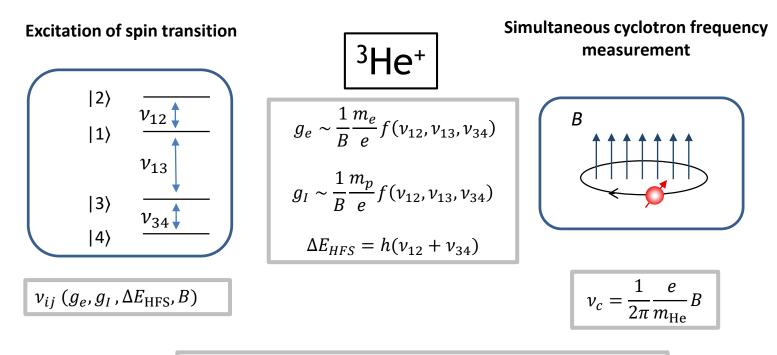
$$Extract nuclear structure with theory model$$



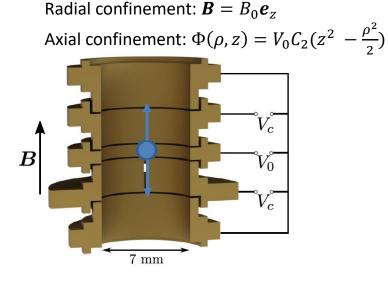
TCFS-Workshop

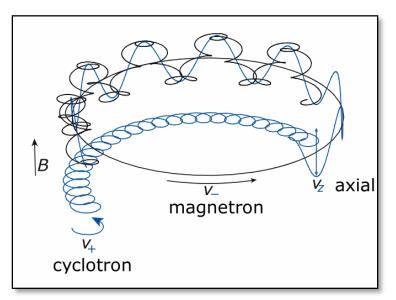
Hyperfine structure of ³He⁺

³He⁺ in the electronic ground state


Breit-Rabi diagram of ³He⁺

g-factor/HFS measurement

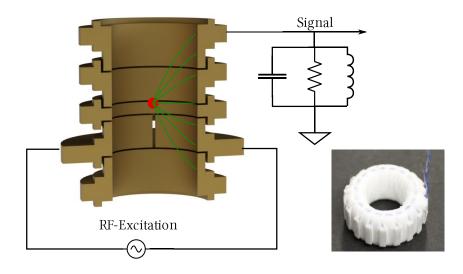

B-field independent measurement of g_e , g_I and ΔE_{HFS}



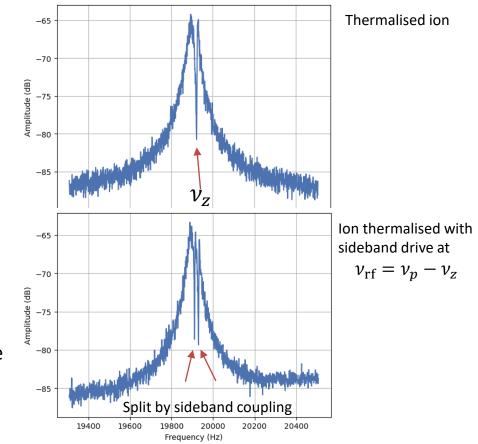
3

Penning trap measurements with single ions

$$v_{z} = \sqrt{2C_{2}V_{0}q/m}$$
$$v_{c} = \sqrt{v_{+}^{2} + v_{-}^{2} + v_{z}^{2}} = \frac{1}{2\pi}\frac{q}{m}B$$

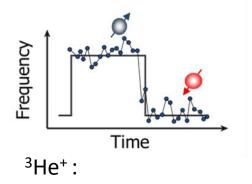


Typical values: $v_+ = 30 \text{ MHz}$ $v_- = 5 \text{ kHz}$ $v_z = 500 \text{ kHz}$



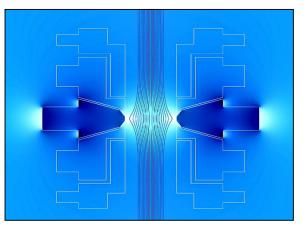
Penning trap frequency detection

- Thermal noise spectrum of RLC circuit is measured
- By tuning the ion's v_z to the resonance of the RLC circuit it thermalises to 4K

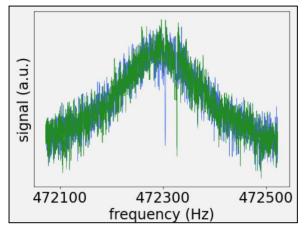


Penning trap spin-state detection

Addition of magnetic bottle inside separate analysis trap:


$$B_z = B_0 + B_2 z^2 \rightarrow \Delta \Phi(z) = -2 \frac{B_2}{m} \mu_i z^2$$

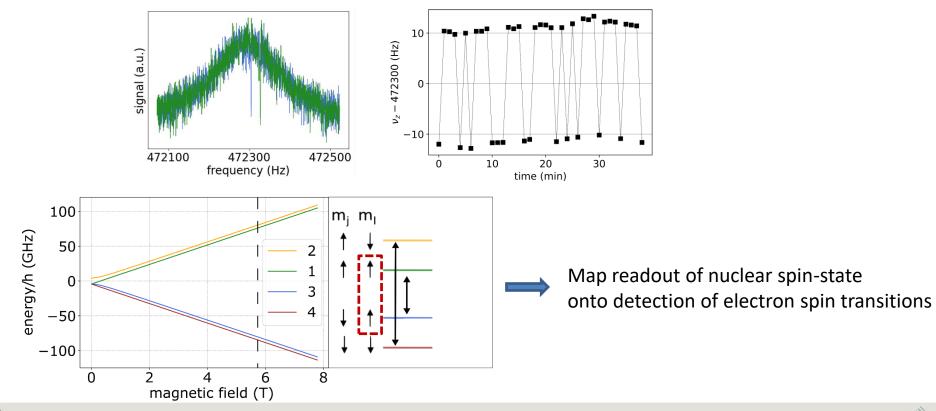
Spin-state *i* dependent axial frequency



 $\Delta v_{z,e} \approx 22 \text{Hz}$

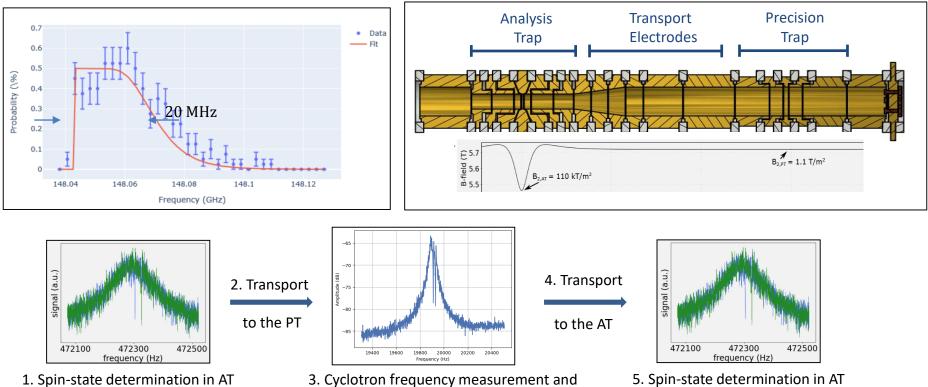
 $\Delta v_{z,I} \approx 100 \text{mHz} \ll v_z$ fluctuations

Nickel ring electrode



Signal for different spin states

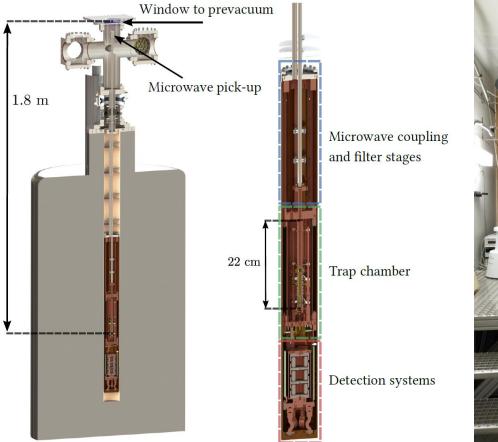
Spin-State detection ³He⁺


electronic spin-flip $\Delta v_{z,SF}$ = 20*Hz*, easily detectable compared to nuclear spin-flip 100 mHz

TCFS-Workshop

The double-trap technique

 B_2 leads to broadened resonance

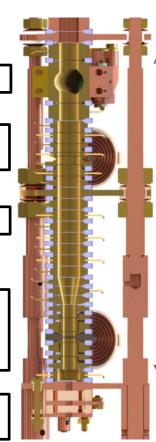


simultaneous spin-flip drive in the PT

8

Experimental setup

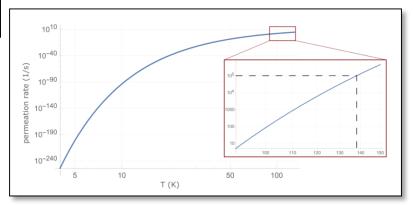
The Penning-trap setup


³He filled glass-sphere

Precision measurement of ν_c

Transport section

Spin-state detection: $\Delta v_z \propto \mu_z B_2$ (Continuous Stern-Gerlach-Effect)

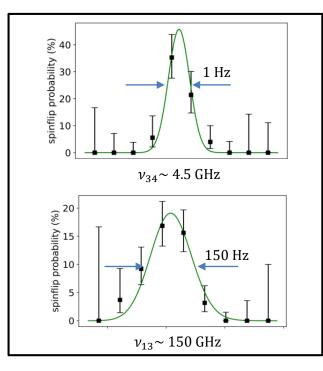

Field emission point for ionization

RF-Excitation of spin-state via Waveguide/external coil ~15 cm

 V_Z

Permeation of ³He through quartz-glass

- At 4K virtually no ³He escapes
- Heating with a resistor produces ³He atoms



Results

HFS measurement is completed

Group of Zoltan Harman contributed theory calculations

$$\frac{\Delta g_{e,\text{theo}}}{g_{e,\text{theo}}} = 1.5 \cdot 10^{-13}$$

$$\frac{\Delta g_{e,\text{exp}}}{g_{e,\text{exp}}} = 2.5 \cdot 10^{-10}$$

$$\frac{\Delta r_z}{r_z} = 7 \%$$

$$g_I' = g_I \cdot (1 - \sigma_{^3\text{He}^+})$$

$$\frac{\Delta (1 - \sigma_{\text{theo}})}{1 - \sigma_{^3}} = 3 \cdot 10^{-11}$$

$$\overset{\wedge}{=} \sigma_{\text{syst}} = 3 \cdot 10^{-11}$$

dependant lineshape error in PT

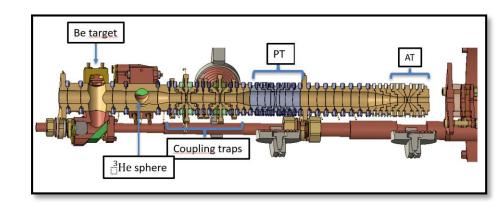
Ø

23.03.22

 $g'_{I,\exp}$

 $\sigma_{
m theo}$

 $\Delta g'_{I,\exp} = 1 \cdot 10^{-9}$


Summary

Motivation

- Calibration for ³He NMR probes independent of water probes
- Test of shielding parameters
- Determination of nuclear structure

Next steps

- Direct g_I measurement of ³He²⁺
- Requires sympathetic laser cooling for axial frequency stability

HFS measurement

- Avoid direct nuclear SF detection with doubleresonance technique
- Measured four HFS transitions to extract gfactors, E_{HFS} and Zemach radius

Thank you for your attention!

Water shielding

$$\frac{1 - \sigma_{\rm H_2O}}{1 - \sigma_{^3\rm He}} = \frac{\nu'_{\rm H_2O}}{\nu'_{^3\rm He}} \frac{|g_I|}{g_p}.$$

- \blacktriangleright Using the known NMR ratio $\nu'_{
 m H_2O}/\nu'_{
 m 3He}$
- > Yields improved precision of water shielding $(1 \sigma_{H_2O})$ of 4.5 p.p.b.

