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Motivation
First high-precision measurement of the 3He+ hyperfine
structure and direct measurement of the helion g-factor

Dependence on temperature 1 1/100

Dependence on probe shape 1 1/1000

Diamagnetic shielding
1

measured

1/10

calculated

Water NMR 3He

Rudzinski A., et al. J.Chem. Phys. 130 244102 (2009)
Nikiel A., et al. Eur. Phys. J. D 68 330 (2014)

Farooq M., et al. Phys. Rev. Lett. 124 223001 (2020)

𝒈𝒆 (bound-state electron g-factor)

➢ Comparison with theory value 𝛿𝑔𝑒,𝑡ℎ𝑒𝑜/ 𝑔𝑒,𝑡ℎ𝑒𝑜 ~ 10−13

𝒈𝑰 (shielded nucleus g-factor)
➢ Currently only comparisons of 3He with H2O or H2

probe only
➢ Establish 3He NMR probes for accurate magnetometry

➢ Application: muon g-2 experiment

𝜟𝑬𝐇𝐅𝐒 (zero-field hyperfine splitting)

Past, indirect measurements of the nuclear magnetic moment

➢𝐸𝐻𝐹𝑆 = 𝐸𝐹(1 + δ𝑄𝐸𝐷 + δ𝑟𝑒𝑐 + δℎ𝑣𝑝 + δ𝑛𝑢𝑐𝑙)
➢ Extract nuclear structure with theory model
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Hyperfine structure of 3He+

𝐻 = −
1

4
Δ𝐸HFS 𝝈𝑒 ∙ 𝝈𝐼 − (𝜇𝑒𝝈

𝑒 + 𝜇𝐼𝝈
𝐼) ∙ 𝑩

3He+ in the electronic ground state

−9 ⋅ 10−24J/T −1 ⋅ 10−26J/T

𝜈13 ∼ 150 GHz

𝜈34 ∼ 4.5 GHz

𝜈𝑖𝑗 (𝑔𝑒 , 𝑔𝐼 , Δ𝐸HFS, 𝐵)

Breit-Rabi diagram of 3He+

mj   mI
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g-factor/HFS measurement

𝜈𝑖𝑗 (𝑔𝑒 , 𝑔𝐼 , Δ𝐸HFS, 𝐵)

B

3He+

𝜈𝑐 =
1

2𝜋

𝑒

𝑚He
𝐵

B-field independent measurement of ge ,gI and Δ𝐸HFS

|2⟩

|1⟩

|3⟩

|4⟩

Excitation of spin transition Simultaneous cyclotron frequency 
measurement

𝜈12

𝜈13

𝜈34

𝑔𝑒 ∼
1

𝐵

𝑚𝑒

𝑒
𝑓 𝜈12, 𝜈13, 𝜈34

𝑔𝐼 ∼
1

𝐵

𝑚𝑝

𝑒
𝑓 𝜈12, 𝜈13, 𝜈34

Δ𝐸𝐻𝐹𝑆 = ℎ(𝜈12 + 𝜈34)
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Penning trap measurements with single ions
Radial confinement: 𝑩 = 𝐵0𝒆𝑧

Axial confinement: Φ 𝜌, 𝑧 = 𝑉0𝐶2(𝑧
2 −

𝜌2

2
)

𝜈𝑧 = 2𝐶2𝑉0𝑞/𝑚

𝜈𝑐 = 𝜈+
2 + 𝜈−

2 + 𝜈𝑧
2 =

1

2𝜋

𝑞

𝑚
𝐵

Typical values:
𝜈+ = 30 MHz
𝜈− = 5 kHz
𝜈𝑧 = 500 kHz
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Penning trap frequency detection

- Thermal noise spectrum of RLC circuit is
measured

- By tuning the ion‘s 𝜈𝑧 to the resonance of the
RLC circuit it thermalises to 4K

Thermalised ion

𝜈𝑧
Ion thermalised with
sideband drive at 

𝜈rf = 𝜈𝑝 − 𝜈𝑧

Split by sideband coupling
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Penning trap spin-state detection

𝐵𝑧 = 𝐵0 + 𝐵2𝑧
2 → ΔΦ 𝑧 = −2

𝐵2
𝑚
𝜇𝑖𝑧

2

Nickel ring electrode

Addition of magnetic bottle inside separate analysis trap: 

Spin-state 𝑖 dependent axial frequency

Δ𝜈𝑧,𝑒 ≈ 22Hz

Δ𝜈𝑧,𝐼 ≈ 100mHz ≪ 𝜈𝑧 fluctuations

3He+ : 

Signal for different spin states



Spin-State detection 3He+

Map readout of nuclear spin-state 
onto detection of electron spin transitions

electronic spin-flip ∆𝜈𝑧,𝑆𝐹 = 20𝐻𝑧, easily detectable compared to nuclear spin-flip 100 mHz

TCFS-Workshop23.03.22
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The double-trap technique
𝐵2 leads to broadened resonance

20 MHz

Analysis 
Trap

Transport 
Electrodes

Precision
Trap

1. Spin-state determination in AT 3. Cyclotron frequency measurement and 
simultaneous spin-flip drive in the PT

2. Transport 4. Transport

to the PT to the AT

5. Spin-state determination in AT
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Experimental setup
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The Penning-trap setup

3He filled glass-sphere

Precision measurement
of 𝜈𝑐

Spin-state detection:
Δ𝜈𝑧 ∝ 𝜇𝑧𝐵2

(Continuous Stern-
Gerlach-Effect)

RF-Excitation of spin-state via
Waveguide/external coil

Transport section

Field emission point for
ionization

➢ At 4K virtually no 3He escapes
➢ Heating with a resistor produces 3He atoms

Permeation of 3He through quartz-glass

~15 cm
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Results
HFS measurement is completed

1 Hz

150 Hz

𝜈34~ 4.5 GHz

𝜈13~ 150 GHz

➢ Group of Zoltan Harman contributed theory calculations

Δ𝑔𝑒,exp

𝑔𝑒,exp
= 2.5 ⋅ 10−10

Δ𝑔𝑒,theo
𝑔𝑒,theo

= 1.5 ⋅ 10−13

𝑔𝐼
′ = 𝑔𝐼 ⋅ (1 − 𝜎 3He+)

Δ𝑔′𝐼,exp

𝑔′𝐼,exp
= 1 ⋅ 10−9

Δ(1 − 𝜎theo)

1 − 𝜎theo
= 3 ⋅ 10−11

ΔEHFS
EHFS

= 3 ⋅ 10−11

Δ𝑟𝑧
𝑟𝑧

= 7%

➢ 𝜎stat > 𝜎syst
➢ 𝜎syst dominated by 𝐵2

dependant lineshape
error in PT
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Summary

Motivation

➢ Calibration for 3He NMR probes independent of 

water probes

➢ Test of shielding parameters

➢ Determination of nuclear structure

HFS measurement

➢ Avoid direct nuclear SF detection with double-

resonance technique

➢ Measured four HFS transitions to extract g-

factors, EHFS and Zemach radius

Next steps

➢ Direct 𝑔𝐼 measurement of 3He2+

➢ Requires sympathetic laser cooling for axial frequency
stability
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p
p n

Thank you for your
attention!
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Water shielding

➢ Using the known NMR ratio
➢ Yields improved precision of water shielding (1 − 𝜎H2O) of 4.5 p.p.b.


