Status of Precision Mass Measurements of Light Atomic Nuclei at the LIONTRAP Experiment

Sangeetha Sasidharan^{*a,b*}, Olesia Bezrodnova^{*a*}, Sascha Rau^{*a*}, Wolfgang Quint^{*b*}, Sven Sturm^{*a*},

Klaus Blaum^a

^a Max Planck Institute for Nuclear Physics, Heidelberg, Germany ^b GSI Helmholtzzentrum, Darmstadt, Germany

Atomic masses with high precision can be obtained by Penning-trap mass spectrometry. The LIONTRAP experiment is one such high-precision mass spectrometer that can achieve relative mass uncertainties of the order of 10^{-11} and is dedicated to light ions. The results at LIONTRAP include the atomic mass measurements of the proton [1], the deuteron and the HD⁺ molecular ion [2]. The deuteron mass was measured to a relative precision of 8.5 ppt [2]. Our results show an excellent agreement with values that were extracted from laser spectroscopy of HD^+ [3]. This comparison is currently limited by the precision of the electron's mass in atomic mass units (amu), derived from a measurement of the bound electron g-factor in ${}^{12}C^{5+}$ [4]. ⁴He is a prime candidate for a future improvement, as it is far less sensitive to higher-order terms of quantum electrodynamics (QED) and to the charge radius of the nucleus. Currently, we are measuring the atomic mass of 4 He to support such a determination of the electron mass in amu. Furthermore, an ultra-precise measurement of the mass difference of ³He and ³T will provide an important crosscheck of the determination of the electron anti-neutrino mass with the KATRIN experiment [5]. Moreover, ³He to ¹²C mass ratio could further clarify the so-called 'puzzle of the light masses', which is an inconsistency in the values of light masses from different world-leading experiments [2]. In this contribution, the present status of the experiment will be discussed.

^[1] F. Heiße et al., Phys. Rev. A 100, (2019).

^[2] S. Rau *et al.*, Nature **585**, (2020) pp. 43-47.

^[3] I. V. Kortunov et al., Nature Physics, 17, (2021) pp. 569-573.

^[4] S. Sturm *et al.*, Nature **506**, (2014) pp. 467-470.

^[5] KATRIN Collaboration et al., Nature Physics, 18 (2022) pp. 160-166.