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Challenges at the LHC

LHC offers access to a whole qualitatively new set of interactions,
Yukawas couplings, which can be probed at precision over a wide range of
momenta.

Extremely broadband new-physics search machine, with ~ 1k channels
across several orders of magnitude in momentum scales.

Accurate predictions and optimized algorithms are required to make
sense of noisy data spanning orders of magnitude in energy.
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Jets

e Because of color confinement, quarks and gluons shower and
hadronise immediately into collimated bunches of particles.

e Hadronic jets emerge from a number of processes:

o  Scattering of partons inside colliding protons
o Hadronic decay of heavy particles
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o Radiative gluon emission from partons 35 : . . . .

. I 2/l ATLAS and CMS papers [Figures by G. Salam] %%

e Jets are prevalent at hadron colliders, %01 I those using jets
and used in 2/3 of ATLAS and CMS s
analyses s 2

10




Jet algorithm

A jet algorithm maps final state particle momenta to jet momenta.

{ri} = {jk}
N—— N——
particles jets

Requires an external parameter, the jet radius R, which specifies up to which
angle separate partons are recombined into a single jet.

Recursively cluster particles that are closest in a metric defined by
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Boosted objects at the LHC

e At LHC energies, EW-scale particles (W/Z/t. . .) are often produced with
p: > m, leading to collimated decays.
e Hadronic decay products are thus often reconstructed into single jets.

peSm pe > m
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Jet radius

e The radius parameter in the equation roughly controls the size of the jet
o Complementary information to the algorithm

e Typical choice for small-R jets: R=0.4 (ATLAS and CMS)

o Used for “standard” QCD jets by most experimental analyses
o Ideais roughly to contain a light quark or gluon in such a jet

e Typical choice for large-R jets: R=0.8 (CMS) or R=1.0 (ATLAS)

o Used for “boosted” jets by most experimental analyses
o Aim is to contain a hadronically decaying particle (W, Z, H, top, etc)



Boosted objects at the LHC

Many techniques developed to identify hard structure of a jet based on
radiation patterns.
In principle, simplest way to identify these boosted objects is by looking at
the mass of the jet. "
But jet mass distribution is highly distorted
by QCD radiation and pileup.
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Jet grooming: (Recursive) Soft Drop/mMDT

Mass peak can be partly reconstructed by removing unassociated soft

wide-angle radiation (grooming).
Recurse through clustering tree and remove
soft branch if

min(p; 1, pr2) (ARH)B
> Zeut
Pt + P2 Ry

Define (zg, Hg) pair for branch above cut

[Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]
[Larkoski, Marzani, Soyez, Thaler JHEP 1405 (2014) 146]
[Dreyer, Necib, Soyez, Thaler JHEP 1806 (2018) 093]
[Mehtar-Tani, Soto-Ontoso, Tywoniuk Phys.Rev.D 101 (2020) 3, 034004]
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Jet grooming: common tools

Trimming

e Take jet with radius R

e Reclusters components
into smaller subjets with
radiusR_, <R

e Keep subjets that satisfy

>
pt, sub Zcut pt, jet

[Krohn, Thaler, Wang, JHEP 1002 (2010) 084]

Pruning (Recursive) Soft Drop / mMDT

e Define pruning radius
Roiun =Rt 2M7p, °

prun
e For every step of clustering

Decluster jetj., —j.+],
Check condition
min(pﬂ'ptz)/pt,jet Z Zcut(ARulR)B

jit =y check: ©  Z_. B:tunable values
o Wide-angle: AR >R e If condition fails, the softer
prun . .
o Soft: MNP, Py,) < Ze Py jer subjet is removed |
e |If either condition fails, e If passes, stops recursion
eliminates softer subjet e For =0, itis mMDT
e If both pass, continue _
[Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]
clustering [Larkoski, Marzani, Soyez, Thaler JHEP 1405 (2014) 146]

[Dreyer, Necib, Soyez, Thaler JHEP 1806 (2018) 093]
[Mehtar-Tani, Soto-Ontoso, Tywoniuk Phys.Rev.D 101 (2020) 3, 034004]

[Ellis, Vermilion, Walsh, PRD81 (2010) 094023]
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Trimming

SoftDrop

Recluster Remove if fails
with C/A soft drop
Pruning
Redo clustering Continue until
mg‘ branching passes Return jet
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Groomed jet mass

e Connection between measurements and calculations

e Jet mass is one of the simplest observables

e Grooming eliminates part of UE contamination

e Modified MassDrop Tagger and SoftDrop can be calculated analytically to high precision

e Needs to be resummed at all orders, matched to fixed-order
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Groomed jet mass

e Various interesting QCD structures emerging

o For mMDT it becomes [o, f(z. ) 1og(1/p)]" at leading-log
o  Finite z_  introduce a flavour changing matrix structure
e Compare with experiment — needs a matching procedure:

k m
Resummation \N LI—, + iV I—Q . Fixed order
of large logs small p large p at ~O(a,)

e (alculations done with different theoretical approaches

o NLL + LO for z.. &K1 Frye, Larkoski, Schwartz, Yan (2016)
o LL+NLOforallz_, Marzani, Soyez, Schunk (2017)
o Inclusive jets version Kang, Lee, Liu, Ringer (2018)
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Groomed jet mass

2317 (13 TeV)
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|dentifying jets with substructure observables

e Variety of observables have been constructed to probe the hard
substructure of a jet ( V/H/t decay lead to jets with multiple hard cores).

e Radiation patterns of colourless objects ( W/Z/H ) differs from quark or
gluon jets.

e Efficient discriminators can be obtained e.g. from ratio of N -subjettiness
or energy correlation functions.

65 GeV <m, <95 GeV Z Boson vs. QCD (Pythia 8)
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[Thaler, Van Tilburg, JHEP 1103 (2011) 015]

Jet shapes : N-subjettiness

e Measures radiation around N pre-deﬂned axis

7',(\,2) Z pt, mm (9,31 ,aN

pt’Jet 'EJet

e User,, =1,/t, for 2-pronged jets and 7, = 7,/z, for 3-pronged jets
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[Larkoski, Salam, Thaler, JHEP 1306 (2013) 108]
[Larkoski, Moult, Neill, JHEP 1412 (2014) 009]

Jet shapes : Energy correlation functions

Measures dispersion through N -point correlation functions, which are sensitive to

(]
(N = 1) -prong substructure
e Advantage of not needing pre-defined axis (z, = p,,/ p, , the momentum fraction)
eéﬂ) = Z z;sziJB-
1<i<j<ny
egﬂ ) = Z z,-zjzkﬁg Hﬁﬁjﬂk
1<i<j<k<n,
e For 2-pronged jets e For 3-pronged jets
(8) (B) ,(B)
e
pD{f) = 3 C3(ﬂ) _ &%

N (eéﬁ))3 (e:gﬂ))z
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Probing spin effects with energy correlators

e Higher point correlators are particularly interesting for probing QCD, e.g. triple
collinear splitting function

e Three-point energy correlator: in the limit 6, << 0 the intermediate gluon is almost
on shell and interference between both helicities leads to ¢ dependence

e Interesting probe of quantum interference
using jet substructure and of recent & BE :< - s
implementations of spin correlations in R
parton showers

——Analytic § Toy shower ——O(a2) - aelvtic)
{O(a3))
x1073 Quark jet L i

25 42,98

5 (All—' = ¢(ij)k)) 5 (85— 0) 8 (8. — eik)>

ijk=1

1080
[Chen, Moult, Zhu 2020]
[Karlberg, Salam, Scyboz, Verheyen 2021]
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Lund diagram

e Graphical representation of emissions in z0 vs. 1/6 coordinates.

Used to illustrate branching phase space in parton shower Monte Carlo
simulations and in perturbative QCD resummations.

A
log z6
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N
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i Pt jet 3] il
asCr d6?
dPem ~ _sﬂ_ W dz p,-(z)
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Lund diagram

e Soft-collinear emissions are emitted uniformly in the Lund plane
e Different kinematic regimes are clearly separated

Primary Lund-plane regions

~2Z

In(kt/GeV)

Pt jet 0

d6?
dPepn ~ %Ce —>- dz pi(2)
T 0

In(R/A)
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Grooming in the Lund plane

e Grooming eliminates kinematic region dominated by NP effects

Inz0

[Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]
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Lund plane representation of jets

To create a Lund plane representation of a jet, use the (Cambridge/Aachen) clustering
sequence of the jet to associate a unique Lund tree to each jet.

1. Undo the last clustering step, defining two subjets j1, j2
ordered in transverse momentum.

2. Save the kinematics of the current declustering step i as

a tuple 7 () = {ki, A, z, m, Y} [Dreyer, Salam, Soyez, JHEP 1812 (2018) 064]
A= (y1-y2)* +(P1— P2)*, ke = prA,
2 _ 2 __ Pr i1 ¥2H
m= = s A — , =tan < ———.
(p1 +p2) T e

3. Repeat this procedure on both j; and j, until they are
single particles.

Cambridge/Aachen clustering: pairwise recombination of particles with smallest A separation. 22



Lund plane representation

e FEach jetis thus mapped onto a tree of Lund declusterings from its clustering

sequence.
Primary sequence of hardest transverse momentum branch is of particular interest

for measurements and visualisation.

In kt

T

T3)
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Jets as Lund images

e Hard splittings visible along the diagonal line with jet mass m=m .

g QCD jets, averaged primary Lund plane . W jets, averaged primary Lund plane
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Measurement of the primary Lund plane

Lund images provide an opportunity for experimental measurements and
comparisons with theory

p‘CIVOV’e)
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(p3

Z'= emission /
T

4
Qe
L
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ATLAS Vs =13Tev, 139", p_ > 675 GeV

4 ATLAS
== NLO+resum+NP |

Inl/z
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Machine Learning in Jet Physics




Convolutational Neural Networks and Jet Images

e Project ajet onto a fixed n x n pixel image in rapidity-azimuth, where each pixel intensity
corresponds to the momentum of particles in that cell.

e Can be used as input for classification methods used in computer vision, such as deep
convolutional neural networks.

Convolved
Convolutions Feature Layers

1074

10~

107¢

107

Max-Pooling

1078

10 W'—= WZevent

Repeat
[Cogan, Kagan, Strauss, Schwartzman JHEP 1502 (2015) 118]

[de Oliveira, Kagan, Mackey, Nachman, Schwartzman JHEP 1607 (2016) 069]
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Recurrent Neural Networks and clustering trees

e Train a recurrent/recursive neural network on kinematic information of successive
declusterings of a jet.
e Techniques inspired from Natural Language Processing with powerful applications in

handwriting and speech recognition.

Event embedding

v(t1)

v(tz)

v(tar)

hy™ (@)

Classifier

\

O_'O L !cvrnl. (e)

hi™ (tar)

o~ O" O O 0

7

&

& &

[Guest, Collado, Baldi, Hsu, Urban ,PRD 94 (2016) 11, 112002]

[Louppe, Cho, Becot, Cranmer JHEP 1901 (2019) 057]
[Egan, Fedorko, Lister, Pearkes, Gay 1711.09059]
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Observable basis as low-dimensional representation

e Construct an observable basis that encodes the main physical properties of a jet (e.g. set of N
-subjettiness ratios, energy flow polynomials, ...).
e Train a dense neural network or use linear methods to build a classifier from these inputs.
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[Komiske, Metodiev, Thaler JHEP 1804 (2018) 013]
[Datta, Larkoski JHEP 1706 (2017) 073]



Flow networks

ﬁq“g’m; F'%W Net;‘l’mks (EFN) [Komiske, Metodiev, Thaler JHEP 01 (2019) 121]
-Ssale opbservanles
+permutation invariance Particles T

M

Per—Particle Representation Event Representation
EFN=F (Z Ziq)(yi’ ¢z)> I L;\;ie;litéiaiz;c’e’ """"""""""

/e

& and F parametrized with dense layers. 7
S e W —’@—'@}?—'

: o
Particle Flow Networks (PFN) 5 . Og' /
[1810.05165] ]
Generalization of EFN beyond IRC / ek
safety.
Direct contact with Deep Set frameworks

M
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Energy/Particle Flow Network

[from S. Macaluso]




Jets as point clouds

e Jettagging using point clouds,where each jet is treated as an unordered
set of constituents.

e Dynamic graph convolutions applied on graph representation of jet
constituents

[Hu, Gouskos Phys. Rev. D 101, 056019 (2020)]
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Jet tagging in the Lund plane

e Graph-based methods relying on Lund plane input can outperform
existing benchmarks significantly. (Qu, Gouskos 2019

[Dreyer, Qu 2020]
QCD rejection v. Top tagging efficiency
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Understanding what the machine learns

Can we determine what is driving performance of a neural network?

e Consider their application on a simple task where we have first principle
understanding.

e Build analytic likelihood-ratio discriminant for this configuration and
compare them with ML models.

We will consider quark/gluon discrimination.
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Calculating Lund plane variables

Primary Lund-plane density can be computed to single-logarithmic accuracy
for both quarks and gluons.

ngh pl setup 0. 091<A<0 111

0.6
A - RC(l Ioop)
. K =-= RC(2-loops) |
[Lifson, Salam, Soyez, JHEP 10 (2020) 170] 0.5 '.“ sl RC+C:I?pS

=+ RC+coll+soft

For given jet with Lund declusterings
{Ai, k¢ i, ...} define likelihood ratio

In1/A

A kt pl>2TeVR 1 ! ! | |
Laensity = | Pg( ir kt,1) 00 5 1o 20 50 100 200 5001000
pg(Ai, ki 1) S 04f T T
02t
<
S 00F
%—0.2::;',5""
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Building an analytic q/g discriminant

For a jet with primary declusterings {A;, k; i, zi, . . . } compute the likelihood
ratio

poll &z e b

[ = ey
primary g Gls e )

where p; o({Ai, ki, zi, ... )} is the probability to observe the given set of
declusterings if the jet were a quark or a gluon.

pa({Ai, ke i, zi, ... 1) = p™(glq0) + P (g190)
pe({Ai kii,zi,.. . }) = f'”a' \(q1g0) + p" (g|g0)

We can compute all single-logarithms from running coupling and collinear

effects. 35
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Optimal discriminant at single-logarithmic accuracy

» Computation in the collinear limit where Lund declusterings are
strongly ordered in angle A1 > Ay > --- > A,,.

» Construct the quark & gluon probability distribution iteratively from first
splitting.

Probabilities after including all Lund declusterings expressed as

p(final) - Sn+1,n15(11)511,11—1 o 13(1')81',1'—1 o 13(1)51’0]7(0)

where S is a NLL Sudakov matrix and P a matrix of splitting kernels.
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Comparison with pure-collinear parton shower

» Compare analytic and deep learning approaches in events generated
in the strong-angular-ordered limit.
» In this limit analytic approach is exact and becomes optimal

dlSCflmlnant. [FD, Soyez, Takacs, arXiv:2112.09140]
AUC: network convergence ROC: LSTM v. expected likelihood
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Application to full Monte Carlo

> Applying to Z+jet events generated with Pythia 8: difference in
performance, but same qualitative behaviour.

AUC: dependence on the k; cut
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Comparison with other methods

» Comparison of the Lund-plane-based approaches with other analytic
and ML models.

» LundNet+ID model achieves marginally higher AUC but PFEN-ID has
small performance improvement at low signal efficiency.

Significance: Lund models v. others Significance: Lund models v. others
T T T T 5 T T T T T T T T T T T T &
4.0 Pythia8, Z+jet = Nsp 40— Lund-Net — PFN — EFN
= Lund NLL == Lund-Net(+ID) == PFN-ID == Particle-Net
500 < p; < 550 GeV —— EECyslallky) "~y
b —— EECos(k>1GeV) | e /""":‘\SQ\ no k¢ cut |
5 -~ Afallk) 5 & N
W = I% . Q
< 3.0t M(ke>1 GeV) < 30} f \\
w 4 ke>1GeV © , \
8 //"‘\\\ 8
= 2.5 7" s c 2.5
S 7" NN S
= /" RARRY =
e Y WY e
S 20F X S 2.0t
& . n Sy & .
n SN
n I
1.5 I:I N 1.5 I
[ \:\ ] 5 :
] N Pythia8, Z+jet
,' 500 <p; <550 GeV, R = 0.4
1.0 1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1.0
& &q 39



Higgs tagging at the FCCee

ete" -Z —+qgv.ete - H—gg (v/s = 125 GeV, no ISR) |
ROC curve: Z-q v. H-gg observed performance:
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0.2 I g NN(hard+soft hem) i 2 -
0.1} = full event o%.1o.1%,),’ ] ° taggmg both hemlspheres
0.05f e ] @ double Lund-Net tag

@ Lund-Net for the full event
| Another performance gain

0.02
0.01}

0.005¢ Watch out: numbers to be taken with care

Lund-Net+ID -

Pythia8.306, V3 = 125 GeV |

o e @ no ISR, no detector effects, ...
&g

— o fixed-order corrections are relevant at large e,

0.001 /
0.1 0.2

T

[from G. Soyez]
40



But what does the machine learn?

» Important limitation stems from the fact that labelled training data is
usually obtained from Monte Carlo event generators.

» But parton shower simulations are not perfect tools!

simulation / truth

.\A"'IZ
16 ; . . ;\/
15F —— H-gg .
Z 14t :
3 131 : . .
— Common dipole showers display
2 12t . .
2 quark/gluon differences that
SRR .
g should not be there.
L T e [ —— J
W
09 0.3 < kio/kiy < 0.5 4
o — 0, -0.6 < o Inky/Q < -0.5 » How to be sure ML models are not
pte - 5 ani overfitting unphysical features?
[Ay|
[Dasgupta, FD, Hamilton, Monni, Salam, Soyez, Phys.Rev.Lett. 125 (2020) 5, 052002] 41



Designing new showers for precision physics

Sl i new “PanScales” parton showers, designed
parton = .
specifically to achieve NLL accuracy
showers
Dipole PanLocal
(Py8/Dire v1) (B=1.dip.)
VY23 '+ ! T B { T
Briwet i e Event shapes sensitive to transverse momentum
Bw Nt gt 1 Ok ¢ (jet broadenings, jet clustering transitions)
FCl .ﬁobs=0+ i 7 H J} i
FG T ? 1 T ? I Event shapes that probe p, e =0/
max[u’ "1 fBu=12 # 1 T * (like # = 0.5 ordering variable)
Thrust | A4 F ¢ - I B h like th
N 4 vent shapes like thrust
slicelyas 41 F ¢ 1 1 probe of non-global logarithms
N=Ut (ki-alg) $1 ¢ # 1 1 standard jet multiplicity (probe of full recursive

05 10,00 00> 0400 shower structure)
Relative deviation from NLL for as—0

[Dasgupta, FD, Hamilton, Monni, Salam, Soyez, Phys.Rev.Lett. 125 (2020) 5, 052002]

Paves the way for improved simulations with more

accurate physical description of perturbative radiation.




Conclusions

e Higgs sector and searches for new physics requires us to understand how
to relate the fundamental Lagrangian of particle physics with
experimental observations.

e Understanding the structure of Higgs potential will require higher
precision than what can be achieved today, higher order calculations and
improvements to parton showers and their accuracies are an essential
step towards this goal.

e Combination of physical insight and machine learning can lead to
substantial impact on our ability to exploit the substructure of jets for
searches for new physics.
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