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Challenges at the LHC
● LHC offers access to a whole qualitatively new set of interactions, 

Yukawas couplings, which can be probed at precision over a wide range of 
momenta.

● Extremely broadband new-physics search machine, with ∼ 1k channels 
across several orders of magnitude in momentum scales.

● Accurate predictions and optimized algorithms are required to make 
sense of noisy data spanning orders of magnitude in energy.
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Jets
● Because of color confinement, quarks and gluons shower and 

hadronise immediately into collimated bunches of particles.
● Hadronic jets emerge from a number of processes:

○ Scattering of partons inside colliding protons
○ Hadronic decay of heavy particles
○ Radiative gluon emission from partons
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● Jets are prevalent at hadron colliders, 
and used in 2/3 of ATLAS and CMS 
analyses 



Jet algorithm
A jet algorithm maps final state particle momenta to jet momenta.

Requires an external parameter, the jet radius R, which specifies up to which 
angle separate partons are recombined into a single jet.

Recursively cluster particles that are closest in a metric defined by
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Boosted objects at the LHC
● At LHC energies, EW-scale particles (W/Z/t. . . ) are often produced with                               

.              , leading to collimated decays.
● Hadronic decay products are thus often reconstructed into single jets.
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Jet radius
● The radius parameter in the equation roughly controls the size of the jet

○ Complementary information to the algorithm

● Typical choice for small-R jets: R=0.4 (ATLAS and CMS)
○ Used for “standard” QCD jets by most experimental analyses
○ Idea is roughly to contain a light quark or gluon in such a jet

● Typical choice for large-R jets: R=0.8 (CMS) or R=1.0 (ATLAS)
○ Used for “boosted” jets by most experimental analyses
○ Aim is to contain a hadronically decaying particle (W, Z, H, top, etc)
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Boosted objects at the LHC
● Many techniques developed to identify hard structure of a jet based on 

radiation patterns.
● In principle, simplest way to identify these boosted objects is by looking at 

the mass of the jet.
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● But jet mass distribution is highly distorted 
by QCD radiation and pileup.



Jet grooming: (Recursive) Soft Drop/mMDT
● Mass peak can be partly reconstructed by removing unassociated soft 

wide-angle radiation (grooming).
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● Recurse through clustering tree and remove 
soft branch if

[Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]
[Larkoski, Marzani, Soyez, Thaler JHEP 1405 (2014) 146]

[Dreyer, Necib, Soyez, Thaler JHEP 1806 (2018) 093]
[Mehtar-Tani, Soto-Ontoso, Tywoniuk Phys.Rev.D 101 (2020) 3, 034004]

● Define (zg , θg) pair for branch above cut



Jet grooming: common tools
Trimming

● Take jet with radius R
● Reclusters components 

into smaller subjets with 
radius Rsub < R

● Keep subjets that satisfy 
pt, sub > zcut pt, jet 

Pruning

● Define pruning radius      
Rprun = Rcut  2 m / pt 

● For every step of clustering  
j1+ j2→j12, check:
○ Wide-angle: ΔR12>Rprun  
○ Soft: min(pt1,pt2) < zcut pt, jet 

● If either condition fails, 
eliminates softer subjet

● If both pass, continue 
clustering

(Recursive) Soft Drop / mMDT

● Decluster jet j12 → j1+ j2
● Check condition 

min(pt1,pt2)/pt,jet > zcut(ΔR12/R)β
 

○ zcut, β: tunable values
● If condition fails, the softer 

subjet is removed
● If passes, stops recursion
● For β=0, it is mMDT
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Groomed jet mass
● Connection between measurements and calculations

● Jet mass is one of the simplest observables

● Grooming eliminates part of UE contamination

● Modified MassDrop Tagger and SoftDrop can be calculated analytically to high precision

● Needs to be resummed at all orders, matched to fixed-order
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Groomed jet mass
● Various interesting QCD structures emerging

○ For mMDT it becomes [𝛼s f (zcut ) log(1/ρ)]n at leading-log
○ Finite zcut introduce a flavour changing matrix structure

● Compare with experiment → needs a matching procedure:

● Calculations done with different theoretical approaches
○ NLL + LO for zcut≪ 1 Frye, Larkoski, Schwartz, Yan (2016) 
○ LL + NLO for all zcut Marzani, Soyez, Schunk (2017) 
○ Inclusive jets version Kang, Lee, Liu, Ringer (2018)

Resummation 
of large logs

Fixed order 
at ~O(αs)
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Groomed jet mass

CMS measurements with mMDT 
CMS-PAS-SMP-16-010

ATLAS measurements with SoftDrop 
CERN-EP-2019-269
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Identifying jets with substructure observables
● Variety of observables have been constructed to probe the hard 

substructure of a jet ( V/H/t decay lead to jets with multiple hard cores).
● Radiation patterns of colourless objects ( W/Z/H ) differs from quark or 

gluon jets.
● Efficient discriminators can be obtained e.g. from ratio of N -subjettiness 

or energy correlation functions.
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Jet shapes : N-subjettiness
● Measures radiation around N pre-defined axis

● Use 𝜏21 = 𝜏2/𝜏1  for 2-pronged jets and 𝜏32 = 𝜏3/𝜏2  for 3-pronged jets 
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Jet shapes : Energy correlation functions
● Measures dispersion through N -point correlation functions, which are sensitive to 

(N − 1) -prong substructure
● Advantage of not needing pre-defined axis (zi = pt,i / pt  , the momentum fraction)

● For 2-pronged jets ● For 3-pronged jets
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[Larkoski, Salam, Thaler, JHEP 1306 (2013) 108]
[Larkoski, Moult, Neill, JHEP 1412 (2014) 009]



Probing spin effects with energy correlators
● Higher point correlators are particularly interesting for probing QCD, e.g. triple 

collinear splitting function
● Three-point energy correlator: in the limit θS << θL  the intermediate gluon is almost 

on shell and interference between both helicities leads to ɸ dependence
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● Interesting probe of quantum interference 
using jet substructure and of recent 
implementations of spin correlations in 
parton showers

[Chen, Moult, Zhu 2020]
[Karlberg, Salam, Scyboz, Verheyen 2021]



● Graphical representation of emissions in zθ vs. 1/θ coordinates.
● Used to illustrate branching phase space in parton shower Monte Carlo 

simulations and in perturbative QCD resummations.

Lund diagram
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Lund diagram
● Soft-collinear emissions are emitted uniformly in the Lund plane
● Different kinematic regimes are clearly separated
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Grooming in the Lund plane
● Grooming eliminates kinematic region dominated by NP effects 

[Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]
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Lund plane representation of jets
To create a Lund plane representation of a jet, use the (Cambridge/Aachen) clustering 
sequence of the jet to associate a unique Lund tree to each jet.

22Cambridge/Aachen clustering: pairwise recombination of particles with smallest Δ separation.

[Dreyer, Salam, Soyez, JHEP 1812 (2018) 064]



Lund plane representation
● Each jet is thus mapped onto a tree of Lund declusterings from its clustering 

sequence.
● Primary sequence of hardest transverse momentum branch is of particular interest 

for measurements and visualisation.
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Jets as Lund images
● Hard splittings visible along the diagonal line with jet mass m = mw.
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Measurement of the primary Lund plane
Lund images provide an opportunity for experimental measurements and 
comparisons with theory
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Machine Learning in Jet Physics
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Convolutational Neural Networks and Jet Images
● Project a jet onto a fixed n × n pixel image in rapidity-azimuth, where each pixel intensity 

corresponds to the momentum of particles in that cell.
● Can be used as input for classification methods used in computer vision, such as deep 

convolutional neural networks.
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Recurrent Neural Networks and clustering trees
● Train a recurrent/recursive neural network on kinematic information of successive 

declusterings of a jet.
● Techniques inspired from Natural Language Processing with powerful applications in 

handwriting and speech recognition.
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[Guest, Collado, Baldi, Hsu, Urban ,PRD 94 (2016) 11, 112002]



Observable basis as low-dimensional representation
● Construct an observable basis that encodes the main physical properties of a jet (e.g. set of N 

-subjettiness ratios, energy flow polynomials, ...).
● Train a dense neural network or use linear methods to build a classifier from these inputs.
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Flow networks

30[from S. Macaluso]

[Komiske, Metodiev, Thaler JHEP 01 (2019) 121]



Jets as point clouds
● Jet tagging using point clouds,where each jet is treated as an unordered 

set of constituents.

● Dynamic graph convolutions applied on graph representation of jet 
constituents
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[Hu, Gouskos Phys. Rev. D 101, 056019 (2020)]



Jet tagging in the Lund plane
● Graph-based methods relying on Lund plane input can outperform 

existing benchmarks significantly.
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[Dreyer, Qu 2020]
[Qu, Gouskos 2019]



Understanding what the machine learns
Can we determine what is driving performance of a neural network?

● Consider their application on a simple task where we have first principle 
understanding.

● Build analytic likelihood-ratio discriminant for this configuration and 
compare them with ML models.

We will consider quark/gluon discrimination.
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Calculating Lund plane variables
Primary Lund-plane density can be computed to single-logarithmic accuracy 
for both quarks and gluons.
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Building an analytic q/g discriminant
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Optimal discriminant at single-logarithmic accuracy
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Comparison with pure-collinear parton shower
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Application to full Monte Carlo
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Comparison with other methods
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Higgs tagging at the FCCee
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[from G. Soyez]



But what does the machine learn?
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Designing new showers for precision physics
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Conclusions
● Higgs sector and searches for new physics requires us to understand how 

to relate the fundamental Lagrangian of particle physics with 
experimental observations.

● Understanding the structure of Higgs potential will require higher 
precision than what can be achieved today, higher order calculations and 
improvements to parton showers and their accuracies are an essential 
step towards this goal.

● Combination of physical insight and machine learning can lead to 
substantial impact on our ability to exploit the substructure of jets for 
searches for new physics.
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