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Hidden Sectors

• Simplest assumption: dark matter consists of a single species of weakly 
interacting massive particles

o No observation of WIMPs → look for new models and phenomenology

• Dark matter may consist of multiple species of composite particles 
interacting via new, dark forces

o Visible matter is mostly composite particles & has similar density to DM
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Strongly Coupled Models
• New “dark QCD” force, SUdark(Nc

dark) (carried by dark gluons) with scale Λdark

• Nf
dark flavors of (fermionic) dark quarks χi (charged under SUdark(Nc

dark))

• Dark quarks hadronize to form dark mesons and baryons → “dark showers”

• Some dark hadrons may be stable because of conserved quantities

o Dark baryon number, dark isospin number, etc.

 DM candidates!

• Other dark hadrons decay back to SM (through virtual mediators)

 Leads to novel phenomenology
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Production
• Hidden sector couples to SM weakly via massive mediator:

Z′ from broken U(1), vector, leptophobic, couplings gq, gχ

• Coupling choices aligned with LHC DM Working Group:
o gq = 0.25
o gχ = 1.0/√(Nc

darkNf
dark) = 0.5

 Bdark = 47%, ΓZ′/mZ′ = 5.6%
 Same as LHC DM models w/ gDM = 1.0
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arXiv:1707.05326

Decay
• Fraction of stable hadrons rinv may vary from 0 to 1
o Decreases w/ dark quark mass splitting, increases w/ Nf

dark

 Jets that contain mix of visible and invisible particles (prompt decays)
o Not covered by existing searches for dijet resonances, pT

miss+ISR

• Z′ → χχ → dark hadrons → SM quarks → SM hadrons
o Decay to SM → two high-pT, wide jets
o ρdark: democratic decay
o πdark: mass insertion decay (prefer heavy flavor)
o Nc

dark = 2, Nf
dark = 2, mχ = ½mdark
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Resonant Search
• Kinematic signature: Less missing energy than WIMPs, aligned w/ jet

 Bump hunt in mT(JJ,pT
miss)

o Kinematic edge at mZ′

o Better resolution than mJJ

o SM backgrounds have steeply
falling distributions
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Signal Models
• Parameters varied: mZ′, mdark (dark hadron mass scale), rinv, αdark

o αdark: running coupling of dark QCD (alternate form of scale Λdark)
o αd
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 “Empirical” relationship derived from Pythia
 Variations: αd
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• Three 2D scans (mZ′ vs. mdark, rinv, αdark) → 475 points
o Benchmark values: mdark = 20 GeV, rinv = 0.3, αdark = αd
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• 4D scan with same grid of values would be 8208 points
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Dual Strategy
• Dark QCD theories are very complicated

o Need to make choices about numerous parameters

o Plus modeling of hadronization/fragmentation, etc.

• First search for jets aligned with pT
miss → maximize generality & sensitivity
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“Inclusive” search
• Use only event-level

kinematic variables
• Results apply to any model 

with similar kinematic behavior

“BDT-based” search
• Employ machine learning for 

optimized semivisible jet tagger
• Assumes chosen signal models 

are “correct”



Backgrounds
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• Wide, high-pT jets: boosted tops
• “Lost” lepton ℓ: out of acceptance, 

can’t veto (or hadronic τ)
• Neutrino aligned w/ wide jet: 

mimics semivisible jet

Δφ

E/T

QCD

• Jet mismeasurement induces E/T
aligned with jet

• Major background

W(ℓν)+jets
• Lost lepton or hadronic τ
• Less likely than tt̄ to mimic 

semivisible jet, but higher σ

Z(νν)+jets
• Real E/T from νν, but least likely to 

align with jet



Mass Sculpting

• Avoid/minimize direct cuts on mT
ingredients: pT

miss, jet pT

o Relative variable (“transverse ratio”): 
RT = pT

miss/mT

 Reject QCD background without 
shifting mT peak
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Triggering
• Trigger on jet pT, HT

 Require low Δη(J1,J2) for
high efficiency

• Usually improves signal sensitivity
 Most t-channel QCD events

already rejected by RT requirement
• mT > 1500 GeV for trigger efficiency
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Passes:
high pT, low Δη

Fails:
low pT, high Δη



Electroweak Rejection
Veto leptons: reject tt̄, W(ℓν)

Require low Δφmin(J1,2,pT
miss):

Reject tt̄, W(ℓν), Z(νν)
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arXiv:1903.06078

Instrumental Backgrounds
• Centrally-maintained filters reject

most instrumental sources of artificial
high-pT

miss events
o But low-Δφ region ignored by almost

all analyses: filters not tuned here
• Major source of jet mismeasurement:

nonfunctional ECAL readout channels
(“dead” or “hot” cells)

 Custom filter vetoing events w/ narrow
(AK4) jets w/ ΔR(j1,2, nonfunctional) < 0.1
→ reject additional 40% of QCD background
o Signal efficiency 95%

• Misreconstructed jets near barrel-endcap gap in ECAL
o Appear at high pT

miss and high mT

o Veto events w/ pT(j1) > 1000 GeV and fγ(j1) > 0.7
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Inclusive Signal Regions
• With all inclusive selection requirements applied:

• If only one signal region were defined, high-RT
(RT > 0.25) would have optimal significance

• Adding separate region low-RT (0.15 < RT < 0.25)
improves expected performance
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Process Efficiency [%]
QCD 0.000016
tt̄ 0.0060
W(ℓν)+jets 0.0029
Z(νν)+jets 0.0085
signal ~17



mT Variations

• rinv has largest impact on signal mass distributions
o αdark has minor impact; mdark has very little impact
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Low rinv signals populate 
low-RT signal region

As rinv increases, 
kinematic edge softens

Very high rinv signals 
look like ISR



Tagging Semivisible Jets
• Various jet substructure variables (& Δφ(J, pT

miss)) can weakly discriminate 
between semivisible jets and SM background jets
o Heavy object tagging: mSD, τ21, τ32, N2

(1), N3
(1)

o Quark-gluon discrimination: DpT
, σmajor, σminor, girth

o Flavor (energy fractions): fγ, fh±, fh0, fe, fμ

 Combine useful variables into a BDT for strong discrimination!
o Background: equal mix of QCD and tt̄ ; signal: mix of many models
o Reweight background jet pT spectrum to match signal: avoid sculpting
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Tagger Performance
• Strong and consistent performance
o Training on only QCD (tt̄) 

caused misclassification of tt̄
(QCD) jets at rate of 10–20%

o Some inefficiency for signals 
with high or low mdark

• Working point 0.55 chosen based 
on background estimation
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mZ′ = 3.1 TeV, mdark = 20 GeV, 
rinv = 0.3, αdark = αd
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Acc
(WP = 0.5)

AUC 1/εB
(εS = 0.3) 

QCD 0.881 0.947 651.4
tt̄ 0.881 0.931 270.6
W(ℓν)+jets 0.881 0.936 441.5
Z(νν)+jets 0.881 0.930 420.7



BDT-based Signal Regions
• Start from inclusive signal regions (high-RT, low-RT)

• Require both leading wide jets to be tagged as semivisible

o high-SVJ2, low-SVJ2 regions: strict subsets of inclusive regions

 Reduce background by factor ~60 while preserving signal
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Background Estimation
• Estimate smoothly-falling SM backgrounds via

analytic fit to mT data
• Primary fit function:

o Perform fits varying sign and magnitude of initial
parameter values (necessary to escape false minima)

o Optimal # parameters for each signal region determined w/ Fisher test
• Several secondary functions (from other resonant searches) employed for 

bias studies:
o Ensure that chosen function can fit different possible data distributions
o Generate toy data with secondary functions, fit w/ primary function
o b = (σext – σinj)/εσext

should be normally distributed (μ = 0, σ = 1)
o |‹b›| ≤ 0.5 in all cases → fits are sufficiently unbiased
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Optimal # Parameters
region g(x)
high-RT 3
low-RT 2
high-SVJ2 2
low-SVJ2 2



Background Fits (inclusive)

• No significant deviations from SM
o Small pulls, few if any cases of several contiguous pulls > 0

• Signals shown w/ cross section at observed limit
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Background Fits (BDT-based)

• No significant deviations from SM
o Small pulls, few if any cases of several contiguous pulls > 0

• Signals shown w/ cross section at observed limit
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Systematic Uncertainties
• Signal:

o Experimental: (uncorrelated between years of data-taking)

 Luminosity, trigger efficiency, jet energy corrections (up to 12%),
jet energy resolution, pileup, statistical uncertainties in simulated 
samples

o Theoretical: (correlated between years of data-taking)

 PDFs, renormalization/factorization scale, parton shower modeling 
(ISR/FSR), jet energy scale/composition (up to 21%)

• Background:

o Fit parameters: freely floating, uncertainties arise from statistical 
uncertainty in data

o Fit normalizations: also freely floating, can change by up to 10%
→ most impactful uncertainty
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Observed Limits (inclusive)

Observed (expected) exclusions:
• 1.5 < mZ′ < 4.0 TeV (1.5 < mZ′ < 4.3 TeV)
• Depending on mZ′:
o 0.07 < rinv < 0.53 (0.06 < rinv < 0.57)
o All mdark, αdark variations
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Observed Limits (BDT-based)

Observed (expected) exclusions:
• 1.5 < mZ′ < 5.1 TeV (1.5 < mZ′ < 5.1 TeV)
• Depending on mZ′:
o 0.01 < rinv < 0.77 (0.01 < rinv < 0.78)
o All mdark, αdark variations
 Signal parameters excluded for wider 

range in mZ′ vs. inclusive search
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Future Semivisible Jet Searches
• Bifundamental mediator • Challenges:

o Additional parameter ydark

o Non-resonant diagrams dominate 
as mediator mass increases

• Low-mass Z′ mediators (boosted)
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Conclusions
• CMS search directly excludes a large portion of semivisible jet model space 

for the first time

o Sensitivity to a broad range of mZ′, mdark, rinv values

• Dual strategy provides both generality and sensitivity

o Inclusive search can be reinterpreted for any kinematically similar signal

o BDT-based search improves background rejection by almost two orders of 
magnitude (first SVJ tagger applied to data)

• Ongoing search program targets different mediators, regions of model space

o Will employ new techniques such as autoencoders to increase sensitivity 
and reinterpretability even further

o Run 3 plans developing:
opportunities to improve triggers, etc.

• Stay tuned for more SVJ results from CMS!
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Dark Matter Relic Abundance
• Dark matter production, annihilation at 

equilibrium in early universe

• Universe expands and cools:
stops DM production, then annihilation

• WIMPs imply fixed DM abundance
(bottom)
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Dark Matter Landscape
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αdark variations
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Semivisible Jet Kinematics
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Event Selection
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Data quality
Reject tt̄, W(ℓν), Z(νν)

Preselection
• NJ ≥ 2
• pT(J1,J2) > 200 GeV, |η(J1,J2)| < 2.4,

J1,2 pass noise rejection
• RT ≡ pT

miss/mT > 0.15
• Δη(J1,J2) < 1.5
• mT > 1500 GeV
• e/μ veto (pT > 10 GeV, |η| < 2.4)
• pT

miss filters
• Custom dead ECAL cell filter: veto 

events w/ ΔR(j1,2, cnonfunctional) < 0.1
• Inactive HCAL filter (2018 only):

veto events w/ pT(j) > 30 GeV,
–3.05 < η(j) < –1.35,
–1.62 < φ(j) < –0.82

Final Selection
• Gap jet filter: veto events w/

pT(j1) > 1000 GeV, fγ(j1) > 0.7
• Δφmin(J1,2,pT

miss) < 0.80

Signal topology

Data quality
Reject QCD
Trigger efficiency
Reject tt̄, W(ℓν)

Data quality



Control Regions
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• Used for data quality studies
o Statistically limited, but otherwise 

kinematically similar to signal region
• Δη range maximizes data yield

(in fully efficient region, mT > 1850 GeV)
o 1500 < mT < 1850 GeV can be used w/ trigger 

efficiency correction applied

• Used for trigger efficiency 
measurement

• Corresponding Single Muon
High-Δη region used for CR 
trigger efficiency measurement

Single Muon
• NJ ≥ 2
• pT(J1,J2) > 200 GeV, |η(J1,J2)| < 2.4,

J1,2 pass noise rejection
• RT ≡ pT

miss/mT > 0.15
• Δη(J1,J2) < 1.5
• e veto (pT > 10 GeV, |η| < 2.4)
• Nμ ≥ 1 (pT > 50 GeV, |η| < 2.4, 

medium ID, Imini < 0.2, HLT match)

High-Δη
Preselection, except:
• 1.5 < Δη(J1,J2) < 2.2
• mT > 1850 GeV



Cutflows
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Variable Definitions
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• Girth: 
• Major/minor axes: 

• pTD: 
• Nsubjettiness: τ21 = τ2/τ1, τ32 = τ3/τ2

• Energy correlation functions:



Soft Drop Mass
• Start w/ jet clustered by anti-kt algorithm w/ R = 0.8

• Recluster jet constituents w/ Cambridge-Aachen algorithm

o Undo clustering one step at a time

o Get two subjets j1, j2

o Check condition: 

o If met, then keep whole jet and stop

o If not met, keep higher pT subjet and repeat

• CMS uses zcut = 0.1, β = 0

• See arXiv:1402.2657

• Effect: drop soft constituents (at wide angles)
→ remove ISR, underlying event, pileup

• Mass calculation: find invariant mass from softdrop subjet 4-vectors
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BDT Input Variables (1)
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BDT Input Variables (2)
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BDT Input Variables (3)
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More mT Variations
• αdark has 

non-trivial 
impact

• mdark has 
very little 
impact
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Signal Efficiency (inclusive)
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Signal Efficiency (BDT-based)
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Secondary Functions

• f(x) from CMS dijet searches e.g. arXiv:1911.03947
• h(x) from UA2 dijet searches: Z. Phys. C 49 (1991) 17, Nucl. Phys. B 400 

(1993) 3
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High-RT Tail Counts

• Predicted counts and 
uncertainties obtained 
from integrating 
background fit

45

mT [TeV] Obs. Pred.

5–8 6 8.4
+2.1

-1.4

6–7 4 2.0
+0.6

-0.4
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