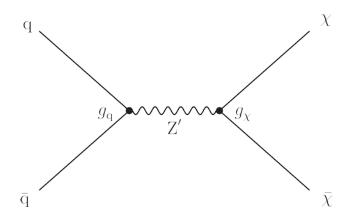

Semivisible Jets at CMS

Kevin Pedro (Fermilab) July 5, 2022


Hidden Sectors

- Simplest assumption: dark matter consists of a single species of weakly interacting massive particles
 - o No observation of WIMPs → look for new models and phenomenology
- Dark matter may consist of multiple species of composite particles interacting via new, dark forces
 - o Visible matter is mostly composite particles & has similar density to DM

Strongly Coupled Models


- New "dark QCD" force, $SU_{\rm dark}(N_c^{\rm dark})$ (carried by dark gluons) with scale $\Lambda_{\rm dark}$
- N_f^{dark} flavors of (fermionic) dark quarks χ_i (charged under $SU_{\text{dark}}(N_c^{\text{dark}})$)
- Dark quarks *hadronize* to form dark mesons and baryons → "dark showers"

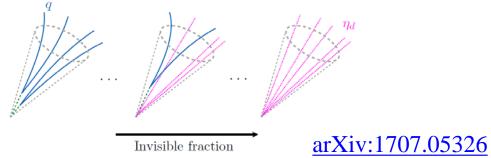
- Some dark hadrons may be *stable* because of conserved quantities
 - o Dark baryon number, dark isospin number, etc.
 - DM candidates!
- Other dark hadrons decay back to SM (through virtual mediators)
 - Leads to novel phenomenology

Production

• Hidden sector couples to SM weakly via massive mediator: Z' from broken U(1), vector, leptophobic, couplings g_q , g_χ

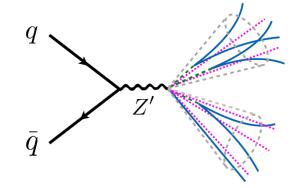
Coupling choices aligned with LHC DM Working Group:

$$o g_q = 0.25$$

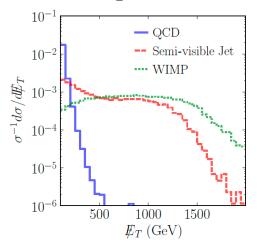

$$o g_{\chi} = 1.0/\sqrt{(N_c^{\text{dark}} N_f^{\text{dark}})} = 0.5$$

$$ightharpoonup B_{dark} = 47\%, \ \Gamma_{Z'}/m_{Z'} = 5.6\%$$

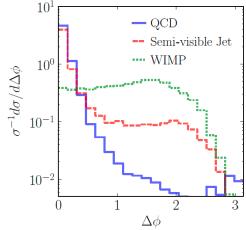
■ Same as LHC DM models w/ $g_{DM} = 1.0$


Decay

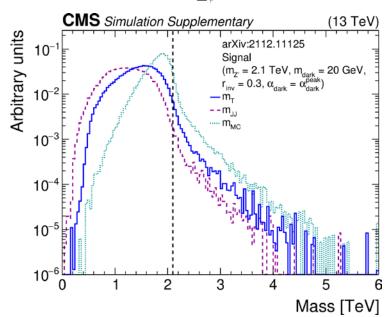
- Fraction of stable hadrons r_{inv} may vary from 0 to 1
 - o Decreases w/ dark quark mass splitting, increases w/ N_f^{dark}
- > Jets that contain mix of visible and invisible particles (prompt decays)
 - o *Not covered* by existing searches for dijet resonances, p_T^{miss}+ISR


- $Z' \rightarrow \chi \chi \rightarrow dark \ hadrons \rightarrow SM \ quarks \rightarrow SM \ hadrons$
 - o Decay to SM \rightarrow two high-p_T, wide jets
 - $\circ \rho_{dark}$: democratic decay
 - o π_{dark} : mass insertion decay (prefer heavy flavor)

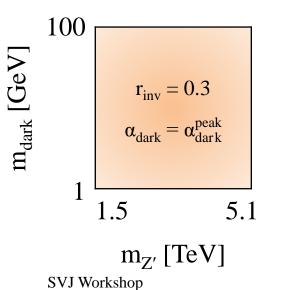
o
$$N_c^{\text{dark}} = 2$$
, $N_f^{\text{dark}} = 2$, $m_{\chi} = \frac{1}{2} m_{\text{dark}}$

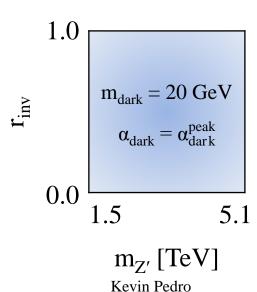


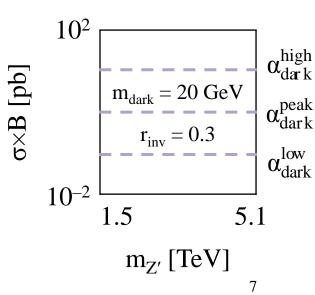
Resonant Search


• Kinematic signature: Less missing energy than WIMPs, aligned w/ jet

arXiv:1503.00009




- \triangleright Bump hunt in $\mathbf{m}_{\mathbf{T}}(\mathbf{JJ},\mathbf{p}_{\mathbf{T}}^{\mathbf{miss}})$
 - o Kinematic edge at $m_{Z'}$
 - o Better resolution than m_{II}
 - o SM backgrounds have steeply falling distributions

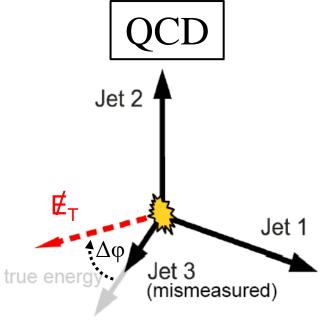


Signal Models

- Parameters varied: $m_{Z'}$, m_{dark} (dark hadron mass scale), r_{inv} , α_{dark}
 - o α_{dark} : running coupling of dark QCD (alternate form of scale Λ_{dark})
 - o α_{dark}^{peak} maximizes dark hadron multiplicity (depends on m_{dark})
 - "Empirical" relationship derived from Pythia
 - Variations: $\alpha_{\text{dark}}^{\text{high}} = \frac{3}{2} \alpha_{\text{dark}}^{\text{peak}}$, $\alpha_{\text{dark}}^{\text{low}} = \frac{1}{2} \alpha_{\text{dark}}^{\text{peak}}$
- Three 2D scans $(m_{Z'} \text{ vs. } m_{\text{dark}}, r_{\text{inv}}, \alpha_{\text{dark}}) \rightarrow 475 \text{ points}$
 - o Benchmark values: $m_{dark} = 20$ GeV, $r_{inv} = 0.3$, $\alpha_{dark} = \alpha_{dark}^{peak}$
- 4D scan with same grid of values would be 8208 points

Dual Strategy

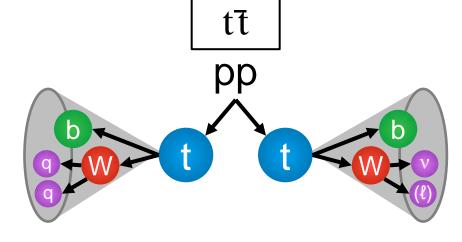
- Dark QCD theories are very complicated
 - o Need to make choices about numerous parameters
 - o Plus modeling of hadronization/fragmentation, etc.
- First search for jets aligned with $p_T^{miss} \rightarrow maximize$ generality & sensitivity


"Inclusive" search

- Use only event-level kinematic variables
- Results apply to any model with similar kinematic behavior

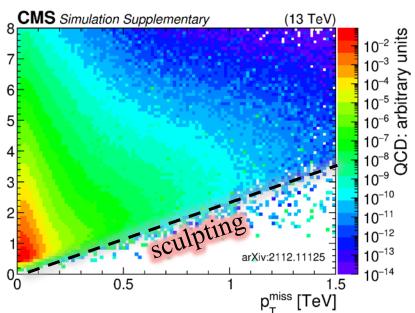
"BDT-based" search

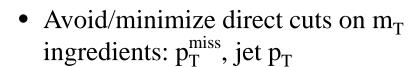
- Employ machine learning for optimized semivisible jet tagger
- Assumes chosen signal models are "correct"


Backgrounds

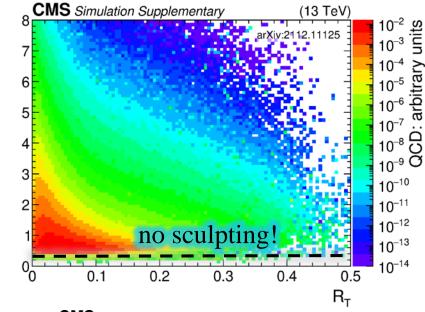
- Jet mismeasurement induces \mathbb{E}_{T} aligned with jet
- Major background

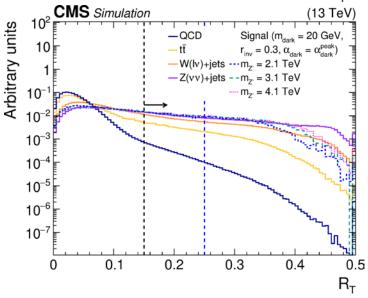
$$W(\ell v)$$
+jets


- Lost lepton or hadronic τ
- Less likely than $t\bar{t}$ to mimic semivisible jet, but higher σ

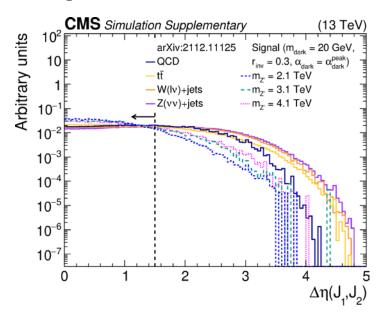


- Wide, high-p_T jets: boosted tops
- "Lost" lepton \(\ell\): out of acceptance,
 can't veto (or hadronic \(\ta\))
- Neutrino aligned w/ wide jet: mimics semivisible jet

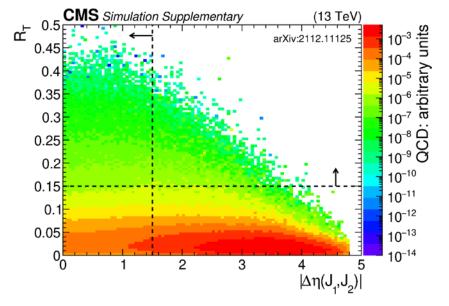

• Real \mathbb{E}_{T} from vv, but least likely to align with jet


Mass Sculpting

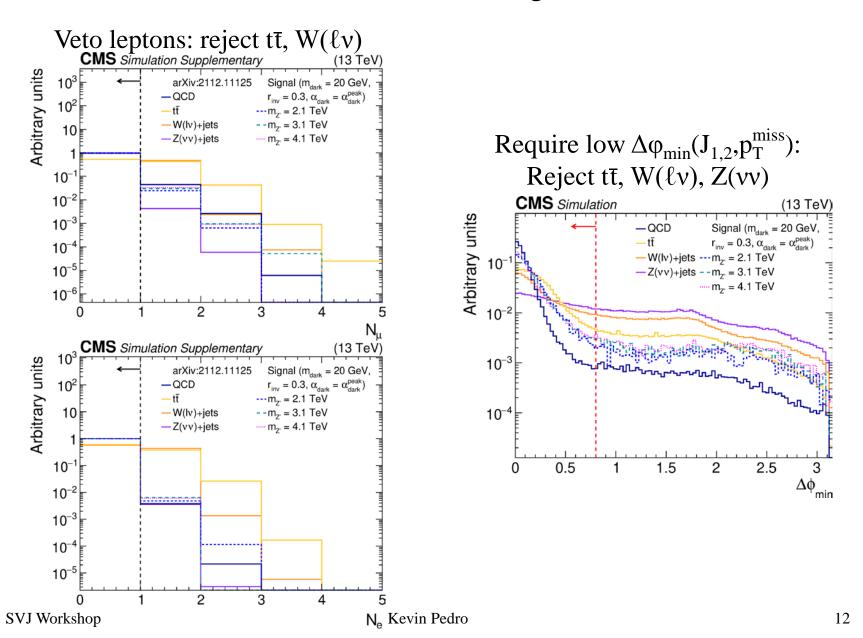
- o Relative variable ("transverse ratio"): $R_T = p_T^{miss}/m_T$
- ➤ Reject QCD background without shifting m_T peak

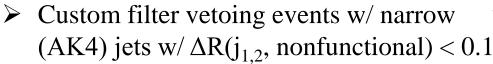


 $\mathsf{m}_{\!\scriptscriptstyle T}$ [TeV]


Triggering

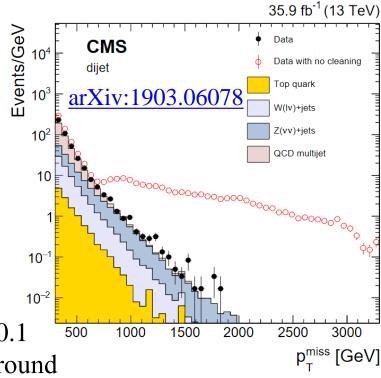
- Trigger on jet p_T, H_T
 - Require low $\Delta \eta(J_1, J_2)$ for high efficiency
- Usually improves signal sensitivity
 - \triangleright Most *t*-channel QCD events already rejected by R_T requirement
- $m_T > 1500 \text{ GeV}$ for trigger efficiency



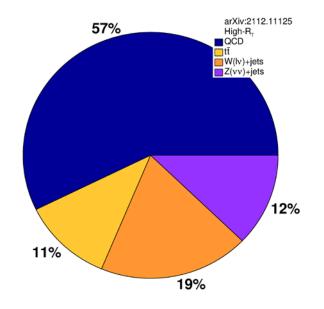


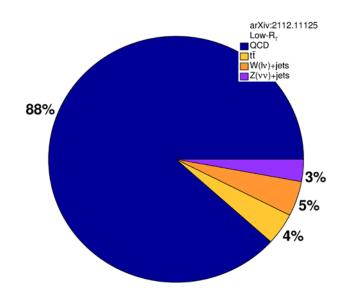
Electroweak Rejection

Instrumental Backgrounds

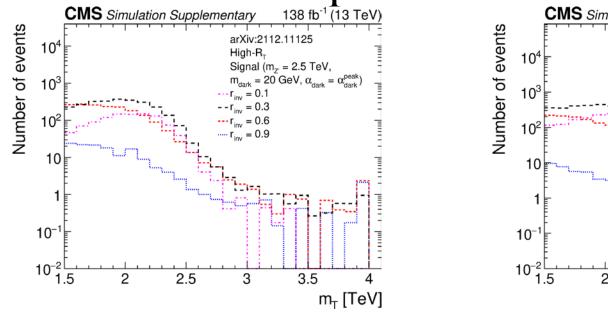

- Centrally-maintained filters reject *most* instrumental sources of artificial high-p_T^{miss} events
 - o But low- $\Delta \varphi$ region ignored by almost all analyses: filters not tuned here
- Major source of jet mismeasurement: nonfunctional ECAL readout channels ("dead" or "hot" cells)

→ reject additional 40% of QCD background

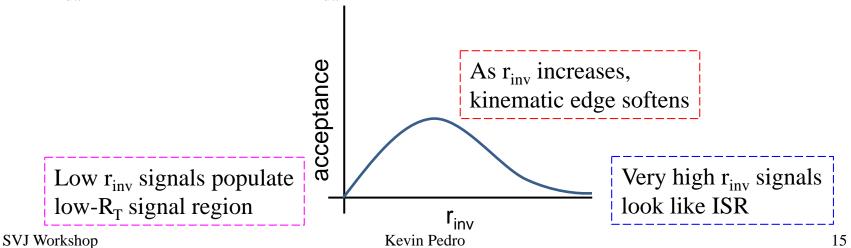

- Misreconstructed jets near barrel-endcap gap in ECAL
 - o Appear at high p_T^{miss} and high m_T
 - o Veto events w/ $p_T(j_1) > 1000$ GeV and $f_{\gamma}(j_1) > 0.7$



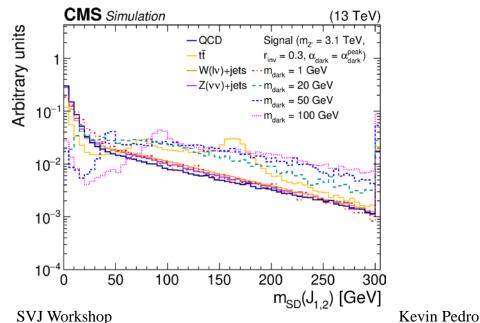
Inclusive Signal Regions


- With all inclusive selection requirements applied:
- If only one signal region were defined, high- R_T ($R_T > 0.25$) would have optimal significance
- Adding separate region low- R_T (0.15 < R_T < 0.25) improves expected performance

Process	Efficiency [%]
QCD	0.000016
t₹	0.0060
$W(\ell \nu)$ +jets	0.0029
Z(vv)+jets	0.0085
signal	~17

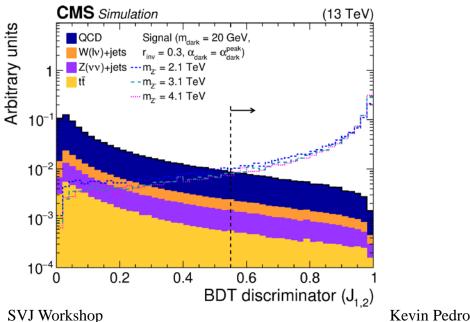


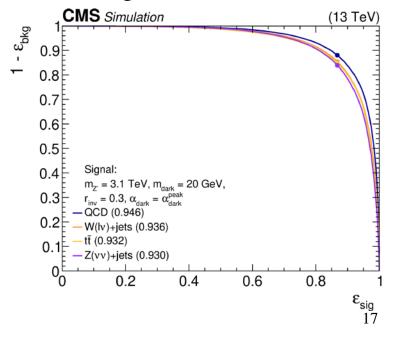
m_T Variations



- r_{inv} has largest impact on signal mass distributions
 - o α_{dark} has minor impact; m_{dark} has very little impact

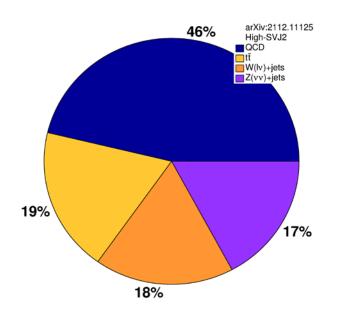
Tagging Semivisible Jets

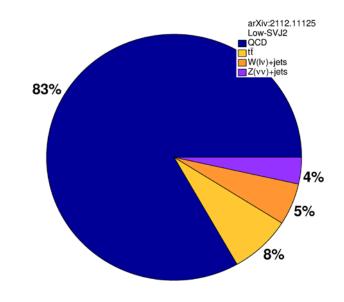

- Various jet substructure variables (& $\Delta \phi(J, p_T^{miss})$) can weakly discriminate between semivisible jets and SM background jets
 - o Heavy object tagging: m_{SD} , τ_{21} , τ_{32} , $N_2^{(1)}$, $N_3^{(1)}$
 - o Quark-gluon discrimination: D_{p_T} , σ_{major} , σ_{minor} , girth
 - o Flavor (energy fractions): f_{γ} , $f_{h\pm}$, f_{h0} , f_{e} , f_{μ}
- ➤ Combine useful variables into a BDT for strong discrimination!
 - o Background: equal mix of QCD and tt ; signal: mix of many models
 - o Reweight background jet p_T spectrum to match signal: avoid sculpting



Tagger Performance

	$m_{Z'}=3.1$ TeV, $m_{dark}=20$ GeV, $r_{inv}=0.3, \alpha_{dark}=\alpha_{dark}^{peak}$			
	Acc (WP = 0.5)	AUC	$1/\epsilon_{B} $ (\varepsilon_{S} = 0.3)	
QCD	0.881	0.947	651.4	
t₹	0.881	0.931	270.6	
W(ℓv)+jets	0.881	0.936	441.5	
Z(vv)+jets	0.881	0.930	420.7	



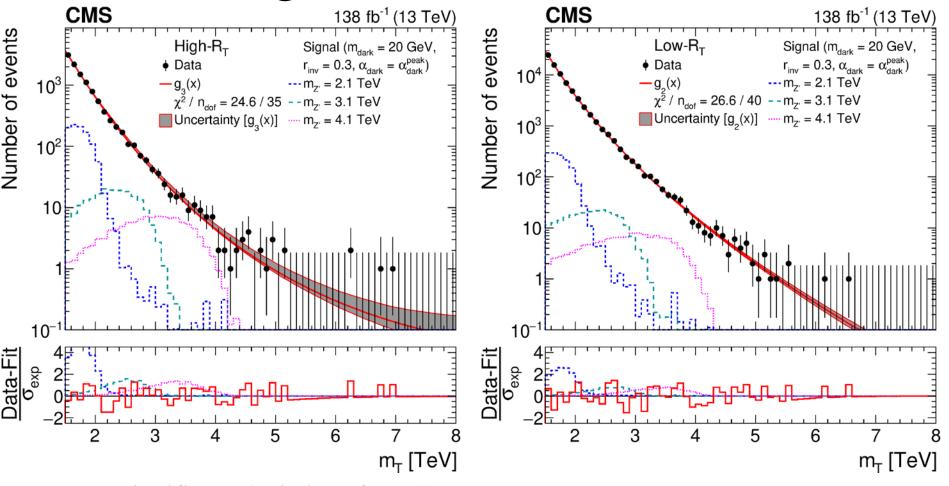

- Strong and consistent performance
 - o Training on only QCD (tt) caused misclassification of tt (QCD) jets at rate of 10–20%
 - o Some inefficiency for signals with high or low m_{dark}
- Working point 0.55 chosen based on background estimation

BDT-based Signal Regions

- Start from inclusive signal regions (high-R_T, low-R_T)
- Require both leading wide jets to be tagged as semivisible
 high-SVJ2, low-SVJ2 regions: strict subsets of inclusive regions
- ➤ Reduce background by factor ~60 while preserving signal

Background Estimation

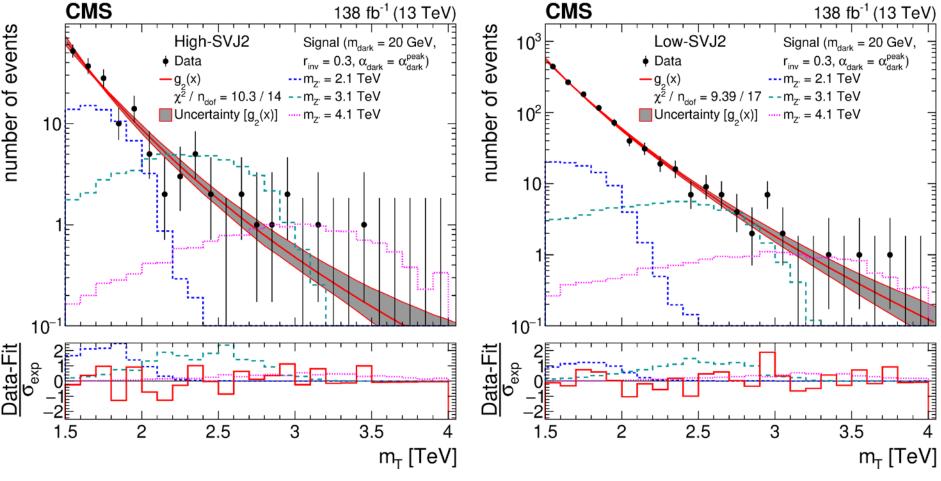
- Estimate smoothly-falling SM backgrounds via analytic fit to m_T data
- Primary fit function:


$$x = m_{\rm T}/\sqrt{s}$$

$$g(x) = \exp(p_1 x) x^{p_2(1+p_3 \log(x)(1+p_4 \log(x)(\cdots)))}$$

- o Perform fits varying sign and magnitude of initial parameter values (necessary to escape false minima)
- o Optimal # parameters for each signal region determined w/ Fisher test
- Several secondary functions (from other resonant searches) employed for bias studies:
 - o Ensure that chosen function can fit different possible data distributions
 - o Generate toy data with secondary functions, fit w/ primary function
 - o $b = (\sigma_{\text{ext}} \sigma_{\text{inj}})/\epsilon_{\sigma_{\text{ext}}}$ should be normally distributed ($\mu = 0, \sigma = 1$)
 - $\circ |\langle b \rangle| \le 0.5$ in all cases \rightarrow fits are sufficiently unbiased

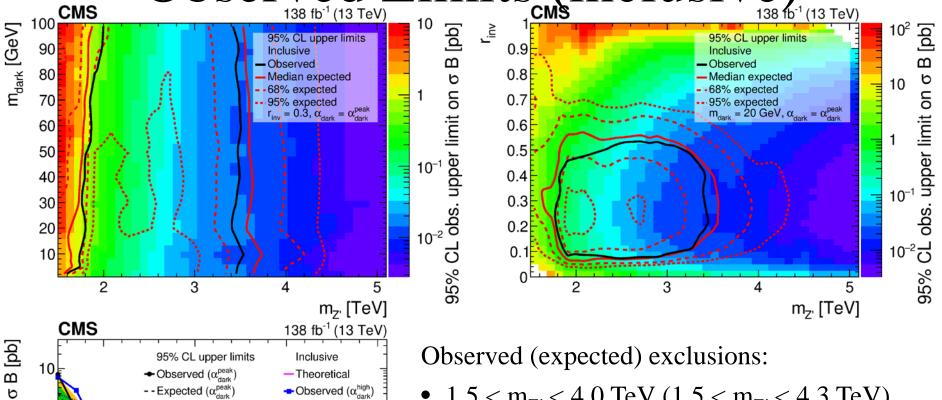
Optimal # Parameters


region	g(x)
high-R _T	3
low-R _T	2
high-SVJ2	2
low-SVJ2	2

Background Fits (inclusive)

- No significant deviations from SM
 Small pulls, few if any cases of several contiguous pulls > 0
- Signals shown w/ cross section at observed limit

Background Fits (BDT-based)


- No significant deviations from SM
 Small pulls, few if any cases of several contiguous pulls > 0
- Signals shown w/ cross section at observed limit

Systematic Uncertainties

• Signal:

- o Experimental: (uncorrelated between years of data-taking)
 - Luminosity, trigger efficiency, **jet energy corrections** (up to 12%), jet energy resolution, pileup, statistical uncertainties in simulated samples
- o Theoretical: (correlated between years of data-taking)
 - PDFs, renormalization/factorization scale, parton shower modeling (ISR/FSR), **jet energy scale/composition** (up to 21%)
- Background:
 - o Fit parameters: freely floating, uncertainties arise from statistical uncertainty in data
 - Fit normalizations: also freely floating, can change by up to 10%
 → most impactful uncertainty

Observed Limits (inclusive)

95% CL upper limits

68% expected (α^{peak}) 95% expected (α_{dark}^{peak})

 $m_{dark} = 20 \text{ GeV}, r_{inv} = 0.3$

◆Observed (α^{peak}_{dark})

- Expected (α^{peak}_{dark})

 10^{-1}

 10^{-2}

 10^{-3}

SVJ Workshop

Inclusive

Theoretical

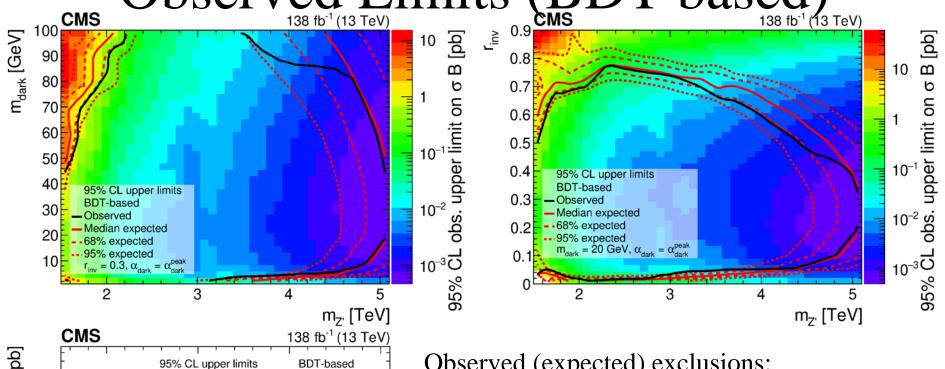
- Observed (α^{high}_{dark})

····· Expected (α_{dark}^{high})

→ Observed (α^{low}_{dark})

m_{z'} [TeV]

---Expected (α_{dark})


Observed (expected) exclusions:

- $1.5 < m_{Z'} < 4.0 \text{ TeV} (1.5 < m_{Z'} < 4.3 \text{ TeV})$
- Depending on m_{Z'}:

$$0.07 < r_{inv} < 0.53 \ (0.06 < r_{inv} < 0.57)$$

o All m_{dark} , α_{dark} variations

Observed Limits (BDT-based)

Kevin Pedro

10

10-1

 10^{-2}

 10^{-3}

SVJ Workshop

◆ Observed (α^{peak})

Expected (α^{peak}_{dark})

68% expected (α^{peak}) 95% expected (α^{peak})

 $m_{dark} = 20 \text{ GeV}, r_{inv} = 0.3$

Theoretical

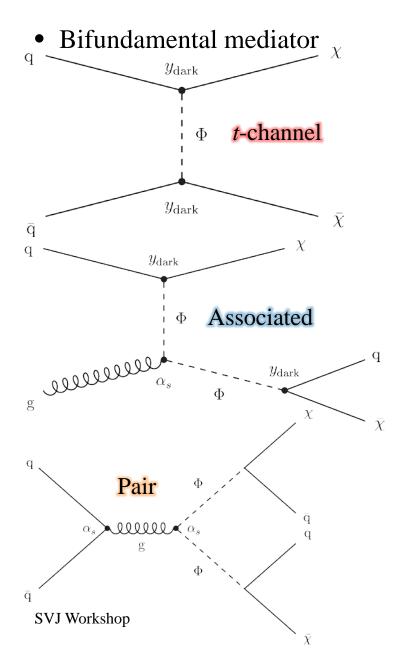
Observed (α^{high}_{dark}) ····· Expected (α^{high})

→ Observed (α^{low}_{dark})

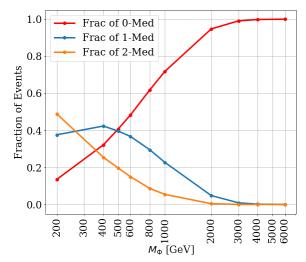
---Expected (α^{low}_{dark})

m_{z'} [TeV]

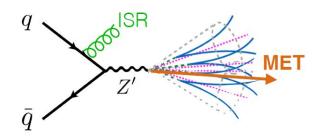
Observed (expected) exclusions:


- $1.5 < m_{Z'} < 5.1 \text{ TeV} (1.5 < m_{Z'} < 5.1 \text{ TeV})$
- Depending on m_{Z'}:

$$0.01 < r_{inv} < 0.77 \ (0.01 < r_{inv} < 0.78)$$


- o All m_{dark} , α_{dark} variations
- Signal parameters excluded for wider range in $m_{Z'}$ vs. inclusive search

24


Future Semivisible Jet Searches

- Challenges:
 - o Additional parameter y_{dark}
 - Non-resonant diagrams dominate as mediator mass increases

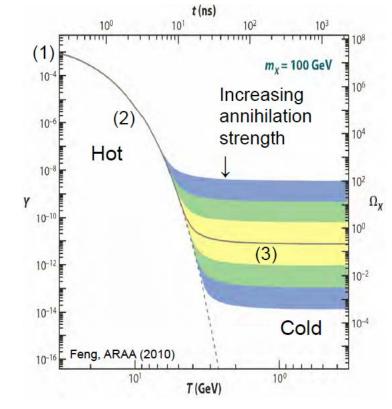
Low-mass Z' mediators (boosted)

Kevin Pedro 25

Conclusions

- CMS search directly excludes a large portion of semivisible jet model space for the first time
 - \circ Sensitivity to a broad range of $m_{Z'}$, m_{dark} , r_{inv} values
- Dual strategy provides both generality and sensitivity
 - o Inclusive search can be reinterpreted for any kinematically similar signal
 - o BDT-based search improves background rejection by almost two orders of magnitude (first SVJ tagger applied to data)
- Ongoing search program targets different mediators, regions of model space
 - o Will employ new techniques such as autoencoders to increase sensitivity and reinterpretability even further
 - Run 3 plans developing:
 opportunities to improve triggers, etc.
- Stay tuned for more SVJ results from CMS!

Backup


Strongly-Coupled Hidden Sector References

- M. J. Strassler and K. M. Zurek, "Echoes of a hidden valley at hadron colliders", Phys. Lett. B 651 (2007) 374, arXiv:hepph/0604261.
- Y. Bai and P. Schwaller, "Scale of dark QCD", Phys. Rev. D 89 (2014) 063522, arXiv:1306.4676.
 T. Cohen, M. Lisanti, and H. K. Lou, "Semivisible jets: Dark matter undercover at the LHC", Phys. Rev. Lett. 115 (2015) 171804, arXiv:1503.00009.
- P. Schwaller, D. Stolarski, and A. Weiler, "Emerging jets", JHEP 05 (2015) 059, arXiv:1502.05409.
- G. D. Kribs and E. T. Neil, "Review of strongly-coupled composite dark matter models and lattice simulations", Int. J. Mod. Phys. A 31 (2016) 1643004, arXiv:1604.04627.
- S. Knapen, S. Pagan Griso, M. Papucci, and D. J. Robinson, "Triggering Soft Bombs at the LHC", JHEP 08 (2017) 076, arXiv:1612.00850.
- T. Cohen, M. Lisanti, H. K. Lou, and S. Mishra-Sharma, "LHC searches for dark sector showers", JHEP 11 (2017) 196, arXiv:1707.05326.
- H. Beauchesne, E. Bertuzzo, G. Grilli di Cortona, and Z. Tabrizi, "Collider phenomenology of Hidden Valley mediators of spin 0 or 1/2 with semivisible jets", JHEP 08 (2018) 030, arXiv:1712.07160.
- S. Renner and P. Schwaller, "A flavoured dark sector", JHEP 08 (2018) 052, arXiv:1803.08080.
- CMS Collaboration, "Search for new particles decaying to a jet and an emerging jet", JHEP 02 (2019) 179, arXiv:1810.10069.
- H. Beauchesne, E. Bertuzzo, and G. Grilli Di Cortona, "Dark matter in Hidden Valley models with stable and unstable light dark mesons", JHEP 04 (2019) 118, arXiv:1809.10152.
- M. Park and M. Zhang, "Tagging a jet from a dark sector with jet-substructures at colliders", Phys. Rev. D 100 (2019) 115009, arXiv:1712.09279.
- T. Cohen, J. Doss, and M. Freytsis, "Jet substructure from dark sector showers", JHEP 09 (2020) 118, arXiv:2004.00631.
- J. Alimena et al., "Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider", J. Phys. G 47 (2020) 090501, arXiv:1903.04497.
- E. Bernreuther, F. Kahlhoefer, M. Krämer, and P. Tunney, "Strongly interacting dark sectors in the early Universe and at the LHC through a simplified portal", <u>JHEP 01 (2020) 162</u>, <u>arXiv1907.04346</u>.

 • E. Bernreuther, T. Finke, F. Kahlhoefer, M. Krämer, and A. Mück, "Casting a graph net to catch dark showers", <u>SciPost Phys. 10</u>
- (2021) 046, arXiv:2006.08639.
- H. Mies, C. Scherb, and P. Schwaller, "Collider constraints on dark mediators", JHEP 04 (2021) 049, arXiv:2011.13990.
- C. Cesarotti, M. Reece, and M. Strassler, "Spheres To Jets: Tuning Event Shapes with 5d Simplified Models", JHEP 05 (2021) 096, arXiv:2009.08981.
- S. Knapen, J. Shelton, and D. Xu, "Perturbative benchmark models for a dark shower search program", Phys. Rev. D 103 (2021) 115013, arXiv:2103.01238.
- CMS Collaboration, "Search for resonant production of strongly-coupled dark matter in proton-proton collisions at 13 TeV", JHEP 06 (2022) 156, arXiv:2112.11125.
- F. Canelli, A. de Cosa, L. Le Pottier, J. Niedziela, K. Pedro, M. Pierini, "Autoencoders for Semivisible Jet Detection", JHEP 02 (2022) 074, arXiv:2112.02864.
- G. Albouy et al., "Theory, phenomenology, and experimental avenues for dark showers: a Snowmass 2021 report", arXiv:2203.09503.
- C. Cazzaniga, A. de Cosa, "Leptons lurking in semi-visible jets at the LHC", arXiv:2206.03909.

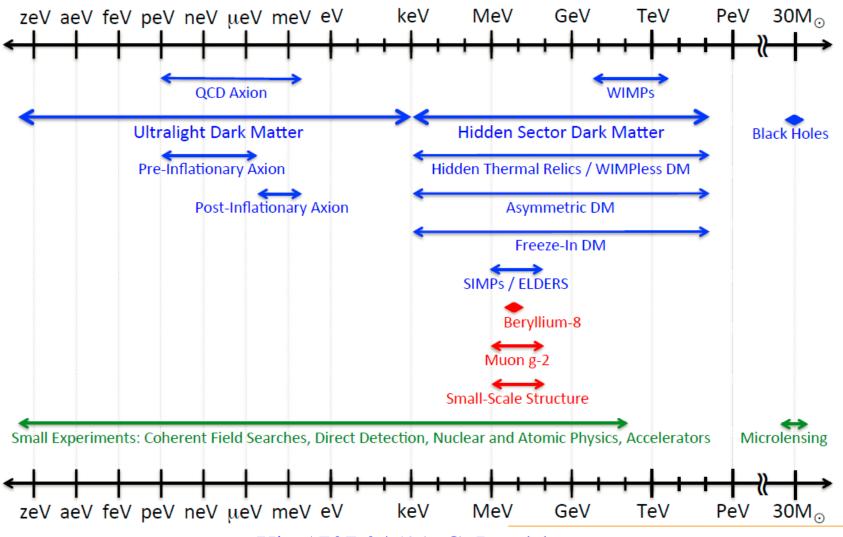
Dark Matter Relic Abundance

- Dark matter production, annihilation at equilibrium in early universe
- Universe expands and cools: stops DM production, then annihilation
- WIMPs imply fixed DM abundance (bottom)

$$\Omega_{\rm DM} h^2 = 0.12$$

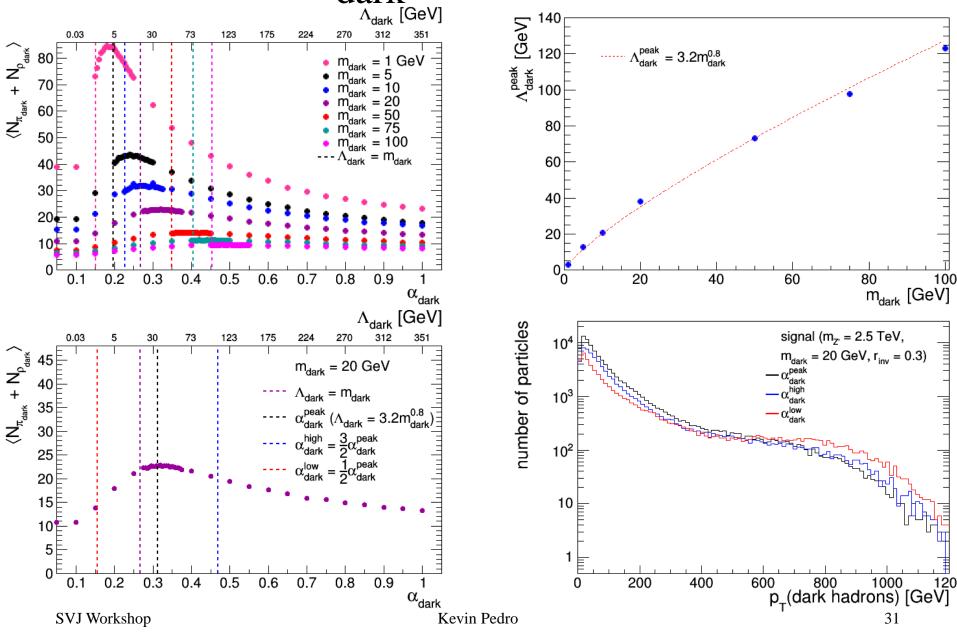
29

$$\Omega_{\rm DM} h^2 = \frac{0.2 \times 10^{-9} \rm GeV^{-2}}{\langle \sigma v \rangle}$$

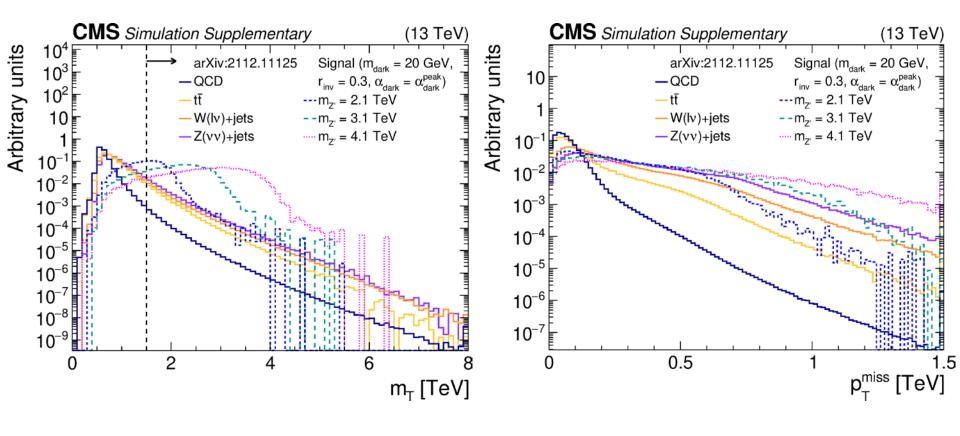

$$\langle \sigma v \rangle \sim 10^{-9} {\rm GeV}^{-2} \ _{\rm section)}^{\rm (weak\ cross}$$

 $\Omega_{\rm DM} \sim 0.2$

SVJ Workshop Kevin Pedro

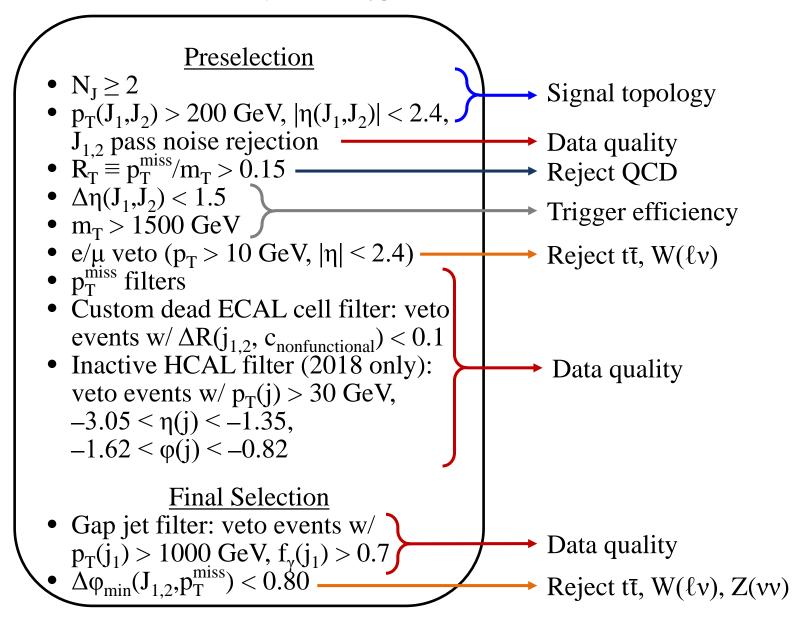

Dark Matter Landscape

Dark Sector Candidates, Anomalies, and Search Techniques



arXiv:1707.04591, G. Landsberg

 α_{dark} variations



Semivisible Jet Kinematics

32

Event Selection

Control Regions

Single Muon

- $N_1 \ge 2$
- $p_T(J_1,J_2) > 200 \text{ GeV}, |\eta(J_1,J_2)| < 2.4,$ $J_{1,2} \text{ pass noise rejection}$
- $R_T = p_T^{miss}/m_T > 0.15$
- $\Delta \eta(J_1, J_2) < 1.5$
- e veto $(p_T > 10 \text{ GeV}, |\eta| < 2.4)$
- $N_{\mu} \ge 1$ ($p_T > 50$ GeV, $|\eta| < 2.4$, medium ID, $I_{mini} < 0.2$, HLT match)

- Used for trigger efficiency measurement
- Corresponding Single Muon High-Δη region used for CR trigger efficiency measurement

- Used for data quality studies
 - Statistically limited, but otherwise kinematically similar to signal region
- $\Delta \eta$ range maximizes data yield (in fully efficient region, m_T > 1850 GeV)
 - o 1500 < m_T < 1850 GeV can be used w/ trigger efficiency correction applied

$\frac{\text{High-}\Delta\eta}{2}$

Preselection, except:

- $1.5 < \Delta \eta(J_1, J_2) < 2.2$
- $m_T > 1850 \text{ GeV}$

Cutflows

Selection	QCD	tī	W+jets	Z+jets	$r_{\rm inv} = 0.3$
$p_{\rm T}({\rm J}_{1,2}) > 200{ m GeV}, \eta({ m J}_{1,2}) < 2.4$	1.2	6.4	2.0	1.3	83.5
$R_{\rm T} > 0.15$	1.3	12.1	18.5	34.6	39.7
$\Delta\eta(J_1,J_2)<1.5$	94.9	88.0	85.1	78.8	80.0
$m_{\mathrm{T}} > 1.5\mathrm{TeV}$	0.20	3.1	4.0	5.6	81.8
$N_{\mu}=0$	93.0	62.0	66.0	99.5	96.8
$N_{ m e}=0$	99.6	59.8	57.3	99.6	99.4
$p_{\mathrm{T}}^{\mathrm{miss}}$ filters	99.5	99.9	99.9	99.9	99.8
$\Delta R(j_{1,2}, c_{\text{nonfunctional}}) > 0.1$	60.6	95.1	95.2	95.6	95.2
veto $f_{\gamma}(j_1) > 0.7 \& p_{\rm T}(j_1) > 1.0 {\rm TeV}$	99.7	99.7	99.6	99.7	99.7
$\Delta\phi_{ m min} < 0.8$	94.8	81.7	61.8	44.7	87.7
Efficiency [%]	1.6e-05	0.0060	0.0029	0.0085	17
high- $R_{ m T}$	9.0	29.5	38.8	39.1	45.2
$low-R_{\mathrm{T}}$	91.0	70.5	61.2	60.9	54.8
high-SVJ2	0.093	0.62	0.46	0.69	34.6
low-SVJ2	1.1	1.7	0.92	0.94	42.3

Variable Definitions

• Girth:
$$g = \sum_{i} \frac{p_{T,i}}{p_{T,iet}} r_i$$

• Major/minor axes:

$$\mathcal{M} = \begin{bmatrix} \sum_{i} p_{\mathrm{T},i}^{2} \Delta \eta_{i}^{2} & -\sum_{i} p_{\mathrm{T},i}^{2} \Delta \eta_{i} \Delta \phi_{i} \\ -\sum_{i} p_{\mathrm{T},i}^{2} \Delta \eta_{i} \Delta \phi_{i} & \sum_{i} p_{\mathrm{T},i}^{2} \Delta \phi_{i}^{2} \end{bmatrix}$$

$$\sigma_{\mathrm{major}} = \sqrt{\lambda_{1} / \sum_{i} p_{\mathrm{T},i}^{2}}$$

$$\sigma_{\mathrm{minor}} = \sqrt{\lambda_{2} / \sum_{i} p_{\mathrm{T},i}^{2}}$$

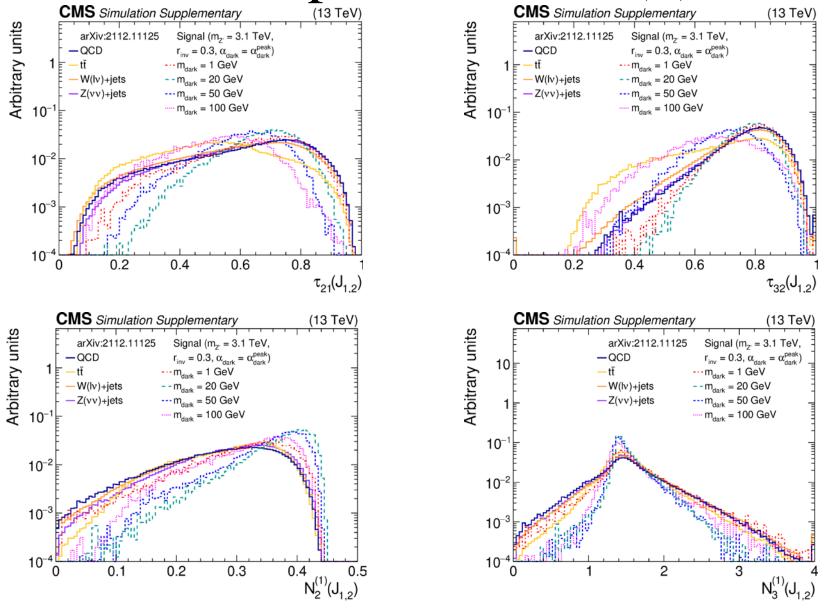
$$\bullet \quad \mathrm{Nsubjettiness:} \quad \tau_{21} = \tau_{2} / \tau_{1}, \quad \tau_{32} = \tau_{3} / \tau_{2}$$

$$\tau^{(\beta)} = \frac{1}{\tau_{2}} \sum_{i} p_{\mathrm{T},i} + \sum_{i} p_{\mathrm{T},i}$$

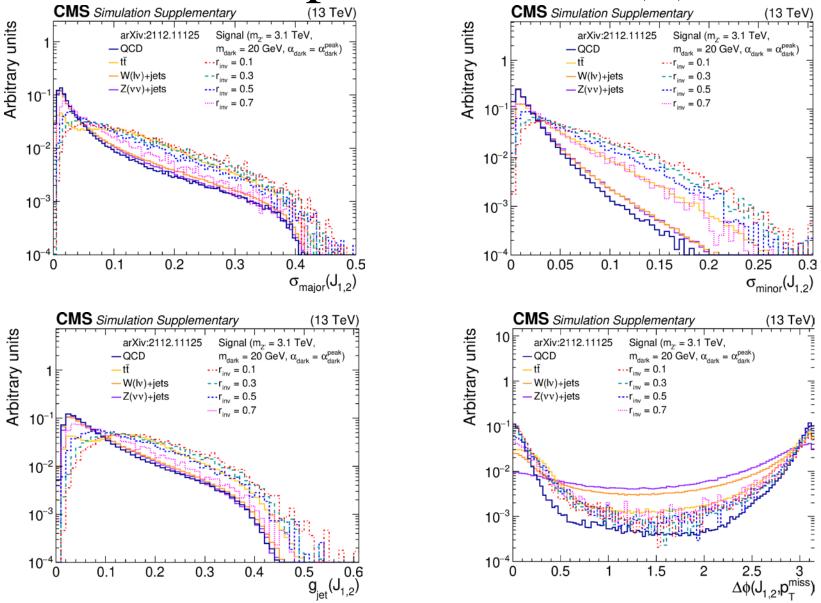
$$\begin{array}{ccc} & & & \\ \Delta \phi_i^2 & & \\ & & \mathbf{p_T} \mathbf{D} \colon & p_{\mathrm{T}} D = \frac{\sqrt{\sum_i p_{\mathrm{T},i}^2}}{\sum_i p_{\mathrm{T},i}} \end{aligned}$$

- $\tau_{N}^{(\beta)} = \frac{1}{\sum_{k} p_{T,k} R_{0}} \sum_{k} p_{T,k} \min\{\Delta R_{1,k}^{(\beta)}, \Delta R_{2,k}^{(\beta)}, \dots, \Delta R_{N,k}^{(\beta)}\}$
- Energy correlation functions:

$$v_n^{(\beta)} = \sum_{1 \le i_1 < \dots < i_n \le n_{\text{const.}}} z_{i_1} \dots z_{i_n} \prod_{m=1}^v \min_{s < t \in \{i_1, \dots, i_n\}} \left\{ \theta_{st}^{\beta} \right\}$$


$$N_2^{(1)} = \frac{2^{e_3^{(1)}}}{\left(1^{e_2^{(1)}}\right)^2} \qquad N_3^{(1)} = \frac{2^{e_4^{(1)}}}{\left(1^{e_3^{(1)}}\right)^2}$$

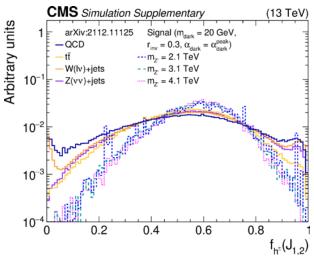
$$\begin{split} m_{\mathrm{T}}^2 &= \left[E_{\mathrm{T,JJ}} + E_{\mathrm{T}}^{\mathrm{miss}} \right]^2 - \left[\vec{p}_{\mathrm{T,JJ}} + \vec{p}_{\mathrm{T}}^{\mathrm{miss}} \right]^2 \\ &= m_{\mathrm{JJ}}^2 + 2 p_{\mathrm{T}}^{\mathrm{miss}} \left[\sqrt{m_{\mathrm{JJ}}^2 + p_{\mathrm{T,JJ}}^2} - p_{\mathrm{T,JJ}} \cos(\phi_{\mathrm{JJ,miss}}) \right] \end{split}$$


Soft Drop Mass

- Start w/ jet clustered by anti-k_t algorithm w/ R = 0.8
- Recluster jet constituents w/ Cambridge-Aachen algorithm
 - o Undo clustering one step at a time
 - o Get two subjets j_1 , j_2
 - o Check condition: $\frac{\min(p_{Tj1}, p_{Tj2})}{p_{Tj1} + p_{Tj2}} > z_{\text{cut}} \times \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}$
 - o If met, then keep whole jet and stop
 - o If not met, keep higher p_T subjet and repeat
- CMS uses $z_{cut} = 0.1$, $\beta = 0$
- See <u>arXiv:1402.2657</u>
- Effect: drop soft constituents (at wide angles)
 - → remove ISR, underlying event, pileup
- Mass calculation: find invariant mass from softdrop subjet 4-vectors

BDT Input Variables (1)

BDT Input Variables (2)


BDT Input Variables (3)

Signal (m_{dark} = 20 GeV,

8.0

 $r_{inv} = 0.3, \, \alpha_{dark} = \alpha_{dark}^{peak}$

m_z = 4.1 TeV

arXiv:2112.11125

Signal (m_{dark} = 20 GeV,

0.4

0.5

 $f_{\mu}(J_{1,2})$

 $r_{inv} = 0.3, \, \alpha_{dark} = \alpha_{dark}^{peak}$

---m₋ = 2.1 TeV

 $--m_{z} = 3.1 \text{ TeV}$

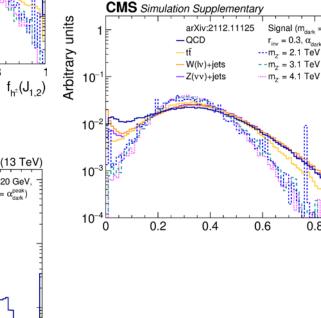
m_{z'} = 4.1 TeV

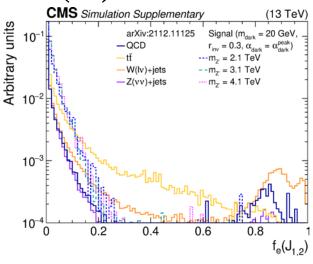
CMS Simulation Supplementary

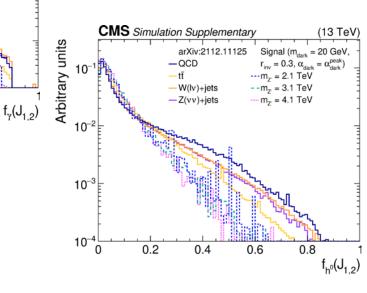
-QCD

—Z(vv)+jets

0.2

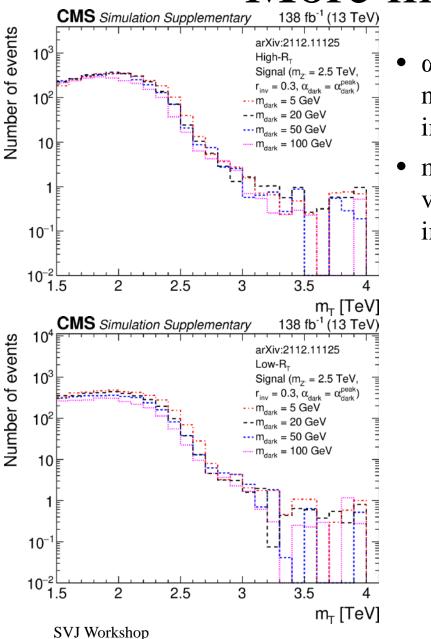

0.3

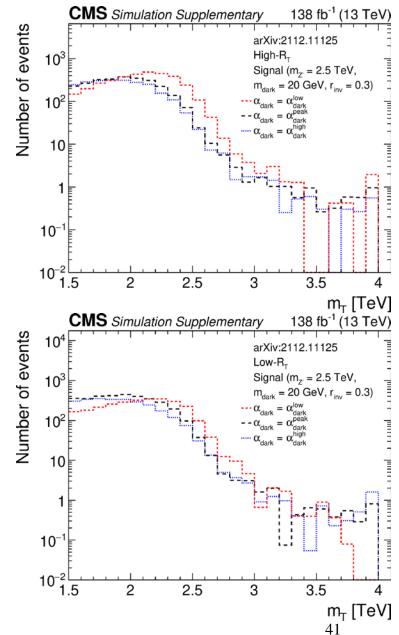

— tī


Arbitrary units

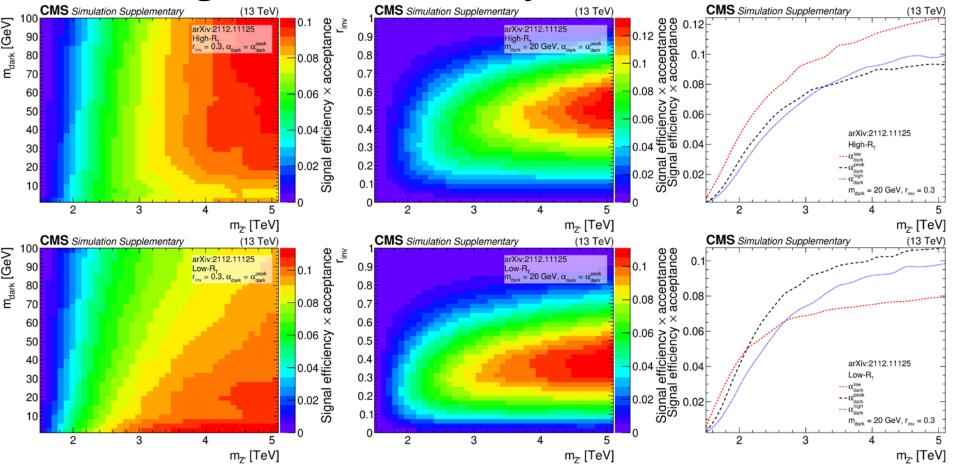
 10^{-3}

10

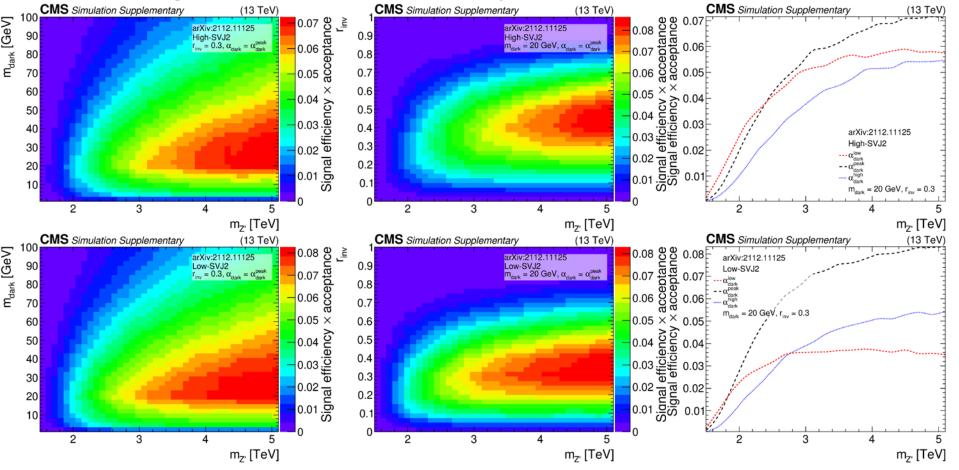



0.1

More m_T Variations CMS Simulations



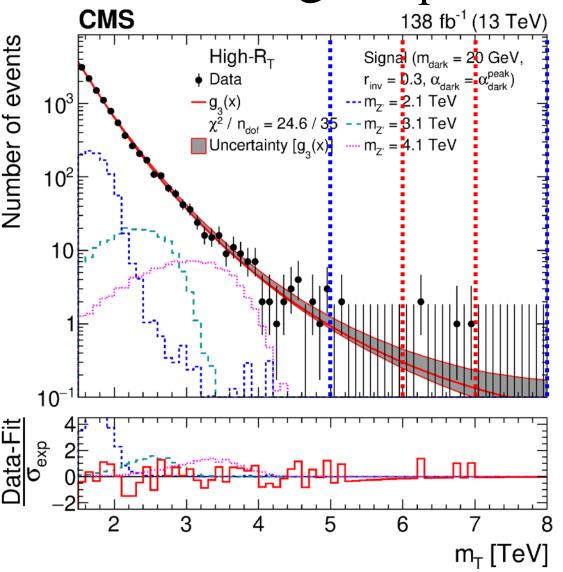
- α_{dark} has non-trivial impact
- m_{dark} has very little impact


Kevin Pedro

Signal Efficiency (inclusive)

Signal Efficiency (BDT-based)

Secondary Functions


$$x = m_{\rm T}/\sqrt{s}$$

$$f(x) = (1-x)^{p_1}(x)^{p_2+p_3\log(x)}$$

$$h(x) = (x)^{-p_1}\exp(-p_2x - p_3x^2)$$

- f(x) from CMS dijet searches e.g. arXiv:1911.03947
- *h*(*x*) from UA2 dijet searches: <u>Z. Phys. C **49** (1991) 17</u>, <u>Nucl. Phys. B **400** (1993) 3</u>

High-R_T Tail Counts

m _T [TeV]	Obs.	Pred.
5–8	6	8.4 +2.1
6–7	4	$2.0^{+0.6}$

 Predicted counts and uncertainties obtained from integrating background fit