Darkshowers – snowmass whitepaper

Suchita Kulkarni (she/her)

Junior group leader

suchita.kulkarni@uni-graz.at

@suchi_kulkarni

On behalf of snowmass dark showers group Based on arXiv:2203.09503

Snowmass darkshowers

The snowmass darkshowers group was formed during the snowmass process and began of course with formation of the most creative logo

- Met at least once a month to discuss ongoing work
- A total of ~70 members on the mailing list, demonstrates critical mass
- Group consists of theorists (incl. PYTHIA8 authors) and experimentalists, enabled cross talk and cohesive progress; fully bottom up approach
- All meetings slides, recording and live minutes can be found at <u>this link</u>
- Mailing list remains active: <u>dark-showers-snowmass21@cern.ch</u>

What we have in mind

non-Standard jets!

Non-Abelian theories characterisation

- Only thinking about new SU(N) gauge group uncharged under the SM
- Theories traditionally characterised by $N_{c_D}, N_{f_D}, \Lambda_D, \alpha_D, m_{q_D}$ together with mediator mass and couplings in UV and $m_{\pi_D}, m_{\rho_D}, m_{baryon_D}$ corresponding branching ratios, lifetimes in IR

Theories with dark jets

- Traditionally signature based approach: $N_{c_D}, N_{f_D}, \Lambda_D, \alpha_D, m_{q_D}, m_{\pi_D}, m_{\rho_D}, m_{baryon_D}$ branching ratios along with mediator properties free variables
- ullet Two primary portal analysis s-channel Z' and t-channel bifundamental ϕ
- Signature space with semivisible jets, emerging jets, trackless jets
- Treat dark rho and dark pions on same footing
- Simulation based on Pythia Hidden Valley module

See also:
Beauchenese, Bertuzzo, Di Cortana
arXiv:1712.07160
Bernreuther, Kahlhoefer, Krämer, Tunney
arXiv:1907.04346
Knapen, Shelton, Xu
arXiv:2103.01238

LHC phenomenology

Semivisible jets

- Unstable dark mesons decay promptly via two body decays
- $r_{inv} = N_{stable}/(N_{stable} + N_{unstable})$ Cohen, Lisanti, Lou arXiv:1503.00009
- Small r_{inv} : dijet search strategy; Large r_{inv} : monojet searches; Intermediate r_{inv} : Dedicated searches

Emerging jets

- Dark mesons with finite lifetime: jet with multiple displaced vertices
- Unflavoured case: one lifetime for all dark hadrons
 Schwaller, Stolarski & Weiler arXiv:1502.05409
- Flavoured case: diagonal, off-diagonal dark hadrons have different lifetime

Phenomenology has not always been realistic e.g. missing particles and symmetry constraints; now updated within snowmass study

LHC phenomenology

Semivisible jets

- Unstable dark mesons decay promptly via two body decays
- $r_{inv} = N_{stable} / (N_{stable} + N_{unstable})$ Cohen, Lisanti, Lou
- Small r_{inv} : dijet search strategy; Large r_{inv} : monojet searches;

Intermediate r_{inv} : Dedicated searches

Emerging jets

- Dark mesons with finite lifeti multiple displaced vertical
- Unflavoured case: hadrons chwaller, Stolarski & Weiler arXiv:1502.05409
- Flavour gonal, off-diagonal ave different lifetime dark ha

Phenomenology has not always been realistic e.g. missing particles and symmetry constraints; now updated within snowmass study

Strongly interacting theories: composition

UV physics contains

- Gauge fields (gluons)
- Matter fields i.e. Dirac/Majorana fermions, Scalars (in representation N_r)
- This talk: **mass degenerate** Dirac fermions in fundamental rep

- Two discrete parameters N_{c_D} , N_{f_D}
- ullet Two continuous parameters $m_{q_D}, lpha_D(\mu)$ (UV)
 - ullet $\Lambda_D, m_{\pi_D}/\Lambda_D$ or $m_{\pi_D}, m_{\pi_D}/m_{
 ho_D}$ (IR)
- $N_{c_D} = 2$ and/or $N_{f_D} = 1$ special cases

QCD-like theories

- For mass degenerate fermions theory has four free parameters $N_{c_D}, N_{f_D}, m_{\pi_D}/\Lambda_D, \Lambda_D$
- Couple via s-channel

Nc	Nf	ar
3	<< 9	Xiv:200
4	<< 13	arXiv:2008.12223
5	<< 16	23
6	<< 18	

$$\alpha_D(Q^2) = \frac{1}{\frac{11 N_{c_D} - 2 N_{f_D}}{6\pi} \log\left(\frac{Q}{\Lambda_D}\right)}$$

- QCD-like theories: asymptotically free theories and are in chirally broken phase
- $N_{c_D}=2$ is pseudo-real group and hence somewhat problematic, care should be taken (applicable even for new PYTHIA8_(8.307) HV module)!
 - ullet For these theories, pions ($qar{q}$) are mass degenerate with baryons (qq)
 - Two flavour theory has five 'pions', PYTHIA8 HV will simulate only three = $(N_{f_D}^2 1)$
- Always use $N_{f_D} > 1$; $N_{f_D} = 1$ theory has no pions

See also talk by M. Strassler at <u>LLPX</u>

Mass spectrum

• $SU(Nc_D), Nc_D > 2$ theory with N_{f_D} mass degenerate quarks has $N_{f_D}^2 - 1$ mass degenerate dark rho, pions, plus 1 spin -0 and spin -1 singlet

$$\pi = \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^{0} \\ K^{-} & \overline{K^{0}} & -\sqrt{\frac{2}{3}}\eta \end{pmatrix} + \eta' \quad \rho_{\mu} = \begin{pmatrix} \frac{\rho_{\mu}^{0}}{\sqrt{2}} + \frac{\omega_{\mu}}{\sqrt{6}} & \rho_{\mu}^{+} & K_{\mu}^{*+} \\ \rho_{\mu}^{-} & -\frac{\rho_{\mu}^{0}}{\sqrt{2}} + \frac{\omega_{\mu}}{\sqrt{6}} & K_{\mu}^{*0} \\ K_{\mu}^{*-} & \overline{K_{\mu}^{*0}} & -\sqrt{\frac{2}{3}}\omega_{\mu} \end{pmatrix} + \phi$$

• Lattice data used to derive (N_{c_D} , N_{f_D} independent) fits

$$\frac{m_{\pi_D}}{\tilde{\Lambda}_D} = 5.5 \sqrt{\frac{m_{q_D}}{\tilde{\Lambda}_D}} \qquad \frac{m_{\rho_D}}{\tilde{\Lambda}_D} = \sqrt{5.76 + 1.5 \frac{m_{\pi_D}^2}{\tilde{\Lambda}_D^2}}$$

Mediators to the SM

 q_D q_D In addition to Z'**\\\\\\ UV** theories h_D Z' \bar{q}_D $\bigvee_{\rho_D} \bigvee_{Z'} \bigvee_{Z'}$ IR portals $\pi_{\!D}$ LHC signatures

SVJ composition depends on Z' properties

SVJ typically rich in HF

Dark mesons decays

Analysis of broken symmetries and chiral Lagrangian set dark meson decays

- Regime 1, $m_{\rho_D} > 2m_{\pi_D}$: ρ_D decays to π_D
- Regime 2, $m_{\rho_D} < 2m_{\pi_D}$: ρ_D decays to SM via mixing with Z' or via three body decays (can lead to LLP!)

arXiv:1801.05805

- Not captured in previous LHC phenomenology
- PYTHIA8 has had no possibility do set different decay modes/lifetimes for specific ho_D
- In either regimes, π_D can also decay if π_D and Z' get mass from same dark Higgs i.e. pion mixes with longitudinal mode of Z'
- If no mixing between π_D and Z': can stabilise the π_D at least at collider scale

S. Kulkarni 06 July 2022

How to get jets?

- Choose $N_{c_D} > 2$ and $N_{f_D} > 1$
- Pick $0.25 < m_{\pi_D}/\Lambda_D < 2$ to set mass spectrum
 - NB: This mass spectrum will provide current quark mass (NOT the same as PYTHIA8 HV 4900101:m0 parameter
 - Set constituent quark mass 4900101:m0 as $m_{q_{const}} \equiv m_{q_D} + \Lambda_D$ (this is not an exact relation)
- Pick $m_{Z'} \gtrsim 30 \Lambda_D$ to get jets
- Neglect special treatment for singlets for now
- Assume baryons don't matter due to their large mass
- Depending on m_{π_D}/Λ_D and portal, set the dark meson decay modes
 - For m_{π_D}/Λ_D < 1.53, the $\rho_D \to \pi_D \pi_D$ mode is open!

PYTHIA8 improvements and validation

Need to be able to control properties of individual hadrons in PYTHIA8 HV

See also: Mies, Scherb, Schwaller arXiv:2011.13990

- How should such mass degenerate dark quark theories look like in MC simulation?
- Do we reproduce SM QCD using PYTHIA8 HV module?

Pythia8.307 now available

- Adjustments in HV (mini)-string fragmentation so that it leads dark meson to p_T suppression to match with SM QCD; now available in PYTHIA8_(8.307)
- PYTHIA8 $_{(8.307)}$ now has possibility to separately control properties of dark quark and mesons (separateFlav = on)
- Validated only for mass degenerate scenarios
- Hadronization module not validated however it reproduces SM QCD in appropriate regime

S. Kulkarni 06 July 2022

Why should we care?

- We run the risk of simulating unphysical theories
- α_D runs within jetty physics range, provides reference scale Λ_D ; need to understand how to correlate scales
- Dark meson mass spectrum dependent on dark quark masses; quantities in IR result from UV physics
- Quantify dark hadronization uncertainties, which may limit the predictive power for substructure variables
- Classify signature parameter space
 - Three body ρ_D decays are not previously captured
 - Phenomenology of spin 0, 1 singlets not explored
- Understand limitations of the simulation tools
 - Development and validation of new PYTHIA8 $_{(8.307)}$ HV module possible because we can understand physics
- Develop first principles understanding
- Correlate physical phenomenon e.g. dark matter signature cross correlation

Impact on SM final states

Regime 1: $\rho \to \pi\pi$ open Regime 2: $\rho \to \pi\pi$ closed

- Snowmass studies currently concentrate on regime I
- Focus on large R jet substructure analysis for one benchmark with $\Lambda_D=10\,{
 m GeV}$
- Number of decaying pions can lead to differences in jet substructure variable potentially in region of interest for BDT but hard to make a statement without studying QCD background
- Potentially different kinematics for regime II scenarios, not yet explored
- Some of the jet substructure variables (e.g. pT_D) are not be IRC safe, care should be taken while using them

Beyond QCD-like theories: SUEP

- Large 't Hooft coupling $\lambda = \alpha_D N_{c_D}$: unsuppressed large- angle radiation \rightarrow wide, spherical showers; small class of theories have been proven to exist
- No dedicated simulation tools, at best some idealised approximations exist
- Common underlying feature is global radiation pattern, event shape observables can serve as useful analysis tool
- New variables to quantify event isotropy for SUEP benchmark models
- Experimental avenues being investigated; care in handling tools necessary
- Trigger strategies create bias towards less spherical events

S. Kulkarni 06 July 2022

Beyond QCD-like theories: Glueballs

Curtin, Gemmell, Verhaaren arXiv:2202.12899

- Occur in simplest non-Abelian theories, theories containing no light fermions or scalars
- These refer to bound states of gluons, theories characterised entirely by confinement scale; spectrum computed on lattice
- First effort for creating Yang-Mills parton shower and hadronization
- First publicly available simulation tool with two different hadronization settings
 - Perturbatively motivated jet-like hadronization
 - More exotic SUEP like final state

Conclusions

- Strongly interacting dark sectors can explain a variety of SM shortcomings and present interesting opportunities at the experiments
- A strong phenomenological and experimental program exists
- The dark showers snowmass project
 - surveyed existing models, constraints for QCD-like theories with semivisible, emerging jets
 - overhauled and validated PYTHIA8_(8.307) HV module with more realistic spectra and increased control on dark mesons properties, took first steps towards understanding substructure variables
 - set first guidelines for consistent UV to IR physics for QCD-like theories
 - surveyed new analysis strategies to identify new strongly interacting physics at colliders
 - discussed beyond QCD-like scenarios including SUEPs and glueballs
- A successful exploration of strongly interacting sectors benefits from understanding the theories in UV and IR and is further complemented by lattice simulations
- Future exploration of strongly interacting scenarios is a community exercise, will need lattice,
 (SM) QCD, LLP, DM experts and experimentalists working together

A HUGE THANK YOU TO ALL CONTRIBUTORS OF THE SNOWMASS PAPER

Backup

Free parameters in QCD-like theories

- Let us consider QCD-like SU(N_D) gauge theories with N_{f_D} mass degenerate Dirac fermions (in fundamental representation)
 - Two continuous free parameters: (current) quark mass, gauge coupling $\alpha_D(\mu)$ (similar to $\alpha_s(\mu)$)
- This theory produces bound states in the form of pions, rho etc.
- In particular, for N_{f_D} flavours we get $N_{f_D}^2 1$ number of mass degenerate pions and rho mesons
- The exact mass spectrum of bound states is computed by lattice
 - Side remark: lattice does not know 'units', so the masses predicted by lattice are always some dimensionless numbers
 - Means we need to choose one dimensionful number to convert them to physical masses
 - ullet Dimensionful number $o \Lambda_D$,scale where $lpha_D$ diverges
 - Theory has only four free parameters $\Lambda_D, m_{\pi_D}/\Lambda_D, N_{c_D}, N_{f_D}; m_{\pi_D}/\Lambda_D$ proxy for quark mass

Side remark: In the SM $\Lambda \sim \mathcal{O}(300) \text{MeV}, \quad \frac{m_\pi}{\Lambda} \sim 0.5$

'Hacking' branching ratios in PYTHIA

- For a theory with N_f flavours, number of pions are N_f^2-1
- Mass degenerate quarks imply mass degenerate pions (and rho)
- Out of these N_f-1 are diagonal pions and $N_f(N_f-1)/2$ off-diagonal pions
- Pythia models these diagonal and off-diagonal states using three pions, pythia assigns three pdg codes for these, one for diagonal, one for upper triangle and one for lower
- The number of pions/rhos that can decay depends on the specific theory
- Thus, one should rescale branching ratio of the pions by their multiplicity to account for the probability of decay
- If x number of diagonal pions decay then the rescale factor is $x/(N_f-1)$
- Similarly for y number of off-diagonal pions decaying the probability is $y/(N_f(N_f-1)/2)$

$$\Pi = \begin{bmatrix} \pi_D^0 & \pi_D^{\pm} & \dots \\ \vdots & \ddots & \\ \pi_D^{\pm} & \pi_D^0 \end{bmatrix}$$

• Theory dictates that equal number of diagonal and off-diagonal pions and rhos decay in any given theory (if rho to pi threshold is closed)

Meson masses

• Lattice simulations for a large number of (large N) SU(N) theories show that meson masses are more or less independent of the gauge group dimension

S. Kulkarni 22 06 July 2022

PYTHIA8 HV settings

- Choose $m_{Z'} \gtrsim 30 \Lambda_D$ to get jets
- Choose $N_{c_D} > 2, N_{f_D} > 1$
- Choose $0.25 < m_{\pi_D}/\Lambda_D < 2$ to set mass spectrum using lattice fits
 - NB: This mass spectrum will provide current quark mass (NOT the same as PYTHIA8 HV 4900101:m0 parameter
- Set constituent quark mass 4900101:m0 as $m_{q_{const}} \equiv m_{q_D} + \Lambda_D$ (this is not an exact relation)
- Set branching ratios as predicted by theory model

Fig. M. Strassler

Benchmarks

- A few suggested first list of benchmarks in snowmass v1, minor improvements in v2 foreseen
- Applicable for s-channel vector mediated SM DS interactions

Regime	$N_{c_{ m D}}, N_{f_{ m D}}$	$\Lambda_{ m D}$	Q	$m_{\pi_{ m D}}$	$m_{ ho_{ m D}}$	Stable	Dark hadron
	, –	[GeV]		[GeV]	[GeV]	dark hadrons	decays
	3,3	5	Various	3	12.55	$0/1/2\pi_{ m D}^0$	$ ho_{ m D}^{0/\pm} ightarrow \pi_{ m D}^{0/\pm} \pi_{ m D}^{\mp}$
$m_{\pi_{ m D}} < m_{ ho_{ m D}}/2$							$\pi_{\mathrm{D}}^{0} \to c\overline{c}$
	3,3	10	Various	6	25	$0/1/2~\pi_{ m D}^0$	$ ho_{ m D}^{0/\pm} ightarrow \pi_{ m D}^{0/\pm} \pi_{ m D}^{\mp}$
							$\pi_{ m D}^0 ightarrow c \overline{c}$
	3,3	50	Various	30	125.5	$0/1/2~\pi_{ m D}^0$	$ ho_{ m D}^{0/\pm} ightarrow\pi_{ m D}^{0/\pm}\pi_{ m D}^{\mp}$
							$\pi_{ m D}^0 ightarrow b ar{b}$
$m_{\pi_{ m D}} > m_{ ho_{ m D}}/2$	3,4	10	(-1,2,3,-4)	17	31.77	All $\pi_{ m D}$	$ ho_{ m D}^0 ightarrow { m q} { m ar q}$
							$ ho_{ m D}^{\pm} ightarrow \pi_{ m D}^{\pm} { m q} { m ar q}$

S. Kulkarni 24 06 July 2022

Running of α_D

- Running depends on N_{f_D}/N_{c_D}
- \bullet Two loop corrections become important as $N_{\!f_{\!D}}/N_{\!c_{\!D}}$ increases