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Jets with weird energy patterns

Rinv = 0.0-1.0
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Where and how 

to best utilize ML in SVJ  searches


?

?
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Blabla

• Dodge

• Dodge


Blabla

• Dodge
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On-detec tor  ML

40 MHz

Level-1 hardware trigger

• Improve signal acceptance?

• Latency O(1)µs

SVJ trigger?

750 kHz

SVJ trigger?

7.5 kHz

Offline reconstruction and analysis

Model-independent searches?

High Level Trigger

• Improve signal acceptance?

• Latency O(100) ms

Detector
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Blabla
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On-detec tor  ML

Offline reconstruction and 
analysis


•ML to improve sensitivity  
(and acceptance?)
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https://indico.cern.ch/event/783977/contributions/3455149/attachments/1893510/3123337/Fallon_DMatLHC2019.pdf 
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FIG. 4: Illustration of the typical missing energy direction for several di↵erent rinv scenarios.

Now we are equipped with all the necessary technology to develop a semi-visible jet search

strategy and provide an estimate of the mass reach that could be derived using the current

LHC data set.

III. Dark Sector Showers from Contact Operators

In this section, we consider the case where the portal is modeled as a contact operator,

and show that it leads to semi-visible jets. We focus on the following dimension-six operator:

Lcontact �
cijab

⇤2

�
qi�

µ
qj

��
�a�µ�b

�
, (4)

where ⇤ is the characteristic dimensionful scale for the operator, and the cijab are O(1)

couplings that encode the possible flavor structures. As discussed in Sec. II A above, the

DM ⌘d is a scalar bound state comprised of the �’s. Of course, a variety of operators can be

written that span a range of e↵ective interactions and spin states of �a. While the following

analysis can be repeated for these di↵erent scenarios, we focus on the vector contact operator

as an illustrative example. We also restrict ourselves to the production mode u u, d d ! � �,

which corresponds to the flavor structure cijab = c �ij�ab. Flavor constraints generally allow a

richer flavor structure, e.g. one could apply the Minimal Flavor Violation (MFV) assumption

to cijab. Assuming MFV, heavy-flavor production channels dominate, leading to final states

rich in bottom and top quarks. In contrast, the diagonal flavor structure assumed here leads

to dominantly light-flavor jets.

When dark quarks are pair-produced at the LHC, they shower and hadronize in the

hidden sector. The magnitude and orientation of the missing energy in each event depends

sensitively on the relative fraction of stable to unstable dark mesons that are produced in the

shower. The possibilities are illustrated in Fig. 4. When rinv = 0, all the dark hadrons decay

rinv

αdark

mZ′￼

mdark

https://arxiv.org/abs/1707.05326
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FIG. 4: Illustration of the typical missing energy direction for several di↵erent rinv scenarios.

Now we are equipped with all the necessary technology to develop a semi-visible jet search

strategy and provide an estimate of the mass reach that could be derived using the current

LHC data set.

III. Dark Sector Showers from Contact Operators

In this section, we consider the case where the portal is modeled as a contact operator,

and show that it leads to semi-visible jets. We focus on the following dimension-six operator:

Lcontact �
cijab

⇤2

�
qi�

µ
qj

��
�a�µ�b

�
, (4)

where ⇤ is the characteristic dimensionful scale for the operator, and the cijab are O(1)

couplings that encode the possible flavor structures. As discussed in Sec. II A above, the

DM ⌘d is a scalar bound state comprised of the �’s. Of course, a variety of operators can be

written that span a range of e↵ective interactions and spin states of �a. While the following

analysis can be repeated for these di↵erent scenarios, we focus on the vector contact operator

as an illustrative example. We also restrict ourselves to the production mode u u, d d ! � �,

which corresponds to the flavor structure cijab = c �ij�ab. Flavor constraints generally allow a

richer flavor structure, e.g. one could apply the Minimal Flavor Violation (MFV) assumption

to cijab. Assuming MFV, heavy-flavor production channels dominate, leading to final states

rich in bottom and top quarks. In contrast, the diagonal flavor structure assumed here leads

to dominantly light-flavor jets.

When dark quarks are pair-produced at the LHC, they shower and hadronize in the

hidden sector. The magnitude and orientation of the missing energy in each event depends

sensitively on the relative fraction of stable to unstable dark mesons that are produced in the

shower. The possibilities are illustrated in Fig. 4. When rinv = 0, all the dark hadrons decay

How do we build the strongest  
and most generic classifier for SVJ?

rinv

αdark

mZ′￼

mdark

https://arxiv.org/abs/1707.05326
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Unsupervised

• Anomaly detection algorithm e.g (V)AE

• Learns background compression/density

• No signal prior (no MC)

• Model independent
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How to best represent a jet? How to do classification without labels? How to utilise in the way we select our data? 
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Ful ly  superv ised

Best representation of jet (sparse, unordered, permutation inv.)? 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Ful ly  superv ised v1 = (E1,px,1,py,1,,pz,1)

v2 = (E2,px,2,py,2,,pz,2)

v3

e1→5 = g(v⃗1,v⃗5)

v5  = (E5,px,5,py,5,,pz,5)

Best representation of jet (sparse, unordered, permutation inv.)? 
SOTA: Graph Neural Networks acting on point cloud data


• ParticleNet (GNN on point cloud) 
LundNet (GNN,Lund plane) 
ABCNet (GNN, attention) 
Point Cloud Transformers (transformer, attention)  
ParticleNeXt (GNN, attention, Lund) 
ParT (transformer, attention)


 
 
 
 
 
 
 

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.056019
https://arxiv.org/abs/2012.08526f
https://arxiv.org/abs/2001.05311
https://arxiv.org/abs/2102.05073
https://indico.cern.ch/event/980214/contributions/4413544/
https://arxiv.org/abs/2202.03772
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Ful ly  superv ised
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Fully connected

Aggregate (mean/max/sum)

S B

Fully connected

Best representation of jet (sparse, unordered, permutation inv.)? 
SOTA: Graph Neural Networks acting on point cloud data


• ParticleNet (GNN on point cloud)  
LundNet (GNN,Lund plane) 
ABCNet (GNN, attention) 
Point Cloud Transformers (transformer, attention)  
ParticleNeXt (GNN, attention, Lund) 
ParT (transformer, attention)


 
 
 
 
 
 
 

vi

vjeij = MLP(vi, vj, vij) vij

e1→5 = MLP(v⃗1,v⃗5)

Lund-like features

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.056019
https://arxiv.org/abs/2012.08526f
https://arxiv.org/abs/2001.05311
https://arxiv.org/abs/2102.05073
https://indico.cern.ch/event/980214/contributions/4413544/
https://arxiv.org/abs/2202.03772
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Best representation of jet (sparse, unordered, permutation inv.)? 
SOTA: Graph Neural Networks acting on point cloud data


• ParticleNet (GNN on point cloud)  
LundNet (GNN,Lund plane) 
ABCNet (GNN, attention) 
Point Cloud Transformers (transformer, attention)  
ParticleNeXt (GNN, attention, Lund) 
ParT (transformer, attention)


What make these useful for SVJ:

• No high-level variables, these are learned from low-level inputs

• Attention and transformers:  

allow a network to learn  unknown important jet features


 
 
 
 
 
 
 

Ful ly  superv ised

e1→5 = MLP(v⃗1,v⃗5)

v1’ =

v2’ =

v3’ = 
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Fully connected

Aggregate (mean/max/sum)

S B

Fully connected

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.056019
https://arxiv.org/abs/2012.08526f
https://arxiv.org/abs/2001.05311
https://arxiv.org/abs/2102.05073
https://indico.cern.ch/event/980214/contributions/4413544/
https://arxiv.org/abs/2202.03772


GPT-3: 175 billion parameters (0.16% of the human brain)

Nature: Robo-writers 

https://www.nature.com/articles/d41586-021-00530-0


Nature: Robo-writers 

https://www.nature.com/articles/d41586-021-00530-0
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At tent ion  & t ransformers

(Self-)Attention

• Let method learn relevant parts for task at hand

• Allows inputs to interact with each other (“self”) and find out who they should 

pay more attention to (“attention”). 

• Outputs: aggregates of interactions and attention scores


 
 
 
 
 
 
 

xi

xj
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At tent ion  & t ransformers

(Self-)Attention

• Let method learn relevant parts for task at hand

• Allows inputs to interact with each other (“self”) and find out who they should 

pay more attention to (“attention”). 

• Outputs: aggregates of interactions and attention scores


 
 
 
 
 
 
 

xi

xj

Weighted sum over all input vectors:

 

 

Weight (how related inputs are):

 

 

Map to [0,1]:
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At tent ion  & t ransformers

(Self-)Attention

• Let method learn relevant parts for task at hand

• Allows inputs to interact with each other (“self”) and find out who they should 

pay more attention to (“attention”). 

• Outputs: aggregates of interactions and attention scores


 
 
 
 
 
 
 

xi

xj

Weighted sum over all input vectors:

 

 

Weight (how related inputs are):

 

 

Map to [0,1]:

xj→MLP(xJ)

xi→MLP(xi)
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At tent ion  & t ransformers

(Self-)Attention

• Let method learn relevant parts for task at hand

• Allows inputs to interact with each other (“self”) and find out who they should 

pay more attention to (“attention”). 

• Outputs: aggregates of interactions and attention scores


Attention weights: weighted importance between each pair of particles

• Determine relationship between all particles of point cloud

• Jet features become parameters of the model

• Several attention layers → different important features (multi-head attention)


 
 

xi

xj

Weighted sum over all input vectors:

 

 

Weight (how related inputs are):

 

 

Map to [0,1]:

xj→MLP(xJ)

xi→MLP(xi)
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At tent ion  & t ransformers

Transformer:

• Only set of interaction between units is self-attention! 

 
 
 
 

ei0 = MLP(vi, v0, vi0)

ei1 = MLP(vi, v1, vi1)

ei2 = MLP(vi, v2, vi2)

ei3 = MLP(vi, v3, vi3)

SB
vi

vjeij = MLP(vi, vj, vij) vij



Encoding a lot of information → a lot of parameters

• Critical to avoid overtraining and ensure generic embeddings


GPT-3: trained on ~200 billion words (estimated cost O(10) million dollars)

• Need huge statistics to train a jet transformer!

• ParT: Dedicated particle transformer, 2M parameters!


JetC lass  Dataset



感谢您下载包图网平台上提供的PPT作品，为了您和包图网以及原创作者的利益，请勿复制、传播、销售，否则将承担法律责任！包图网将对作品进行维权，按照传播下载次数进行十倍的索取赔偿！

ibaotu.com
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• JetClass is inclusive: 
• 10 types of jets 
• Kinematics, 
• PID, 
• trajectory displacement 

• JetClass is large:
• 100M jets for training à 10M each class
• 5M for validation
• 20M for test à 2M each class

H ! 4qH ! bb̄ H ! cc̄ H ! gg H ! `⌫qq
0

q/gt ! b`⌫t ! bqq0 W ! qq0 Z ! qq̄

Encoding a lot of information → a lot of parameters

• Critical to avoid overtraining and ensure generic embeddings


GPT-3: trained on ~200 billion words (estimated cost O(10) million dollars)

• Need huge statistics to train a jet transformer!

• ParT: Dedicated particle transformer, 2M parameters!


New dedicated jet tagging dataset: Jetclass 

• 10 types of jets

• 100M training 

• 5M validation

• 20M test


Extremely useful for benchmarking of 
new algorithms!


JetC lass  Dataset

https://github.com/jet-universe


ABCNet:  
Pixel intensity =  particle importance w.r.t most energetic particle in jet, from attention weights


No substructure information given,  learned through attention layers!


Point Cloud Transformers applied to Collider Physics 13

8. Visualization

The SA module defines the relative importance between all points in the set through the

attention weights. We can use this information to identify the regions inside a jet that

have high importance for a chosen particle. To visualize the particle importance, the

HLS4ML LHC jet dataset is used to create a pixelated image of a jet in the transverse

plane. The average jet image of 100k examples in the evaluation set is used. For each

image, a simple preprocessing strategy is applied to align the di↵erent images. First,

the whole jet is translated such that the particle with the highest transverse momentum

in the jet is centered at (0,0). This particle is also used as the reference particle from

where attention weights are shown. Next, the full jet image is rotated, making the

second most energetic particle aligned with the positive y-coordinate. Lastly, the image

is flipped in the x-coordinate in case the third most energetic particle is located on the

negative x-axis, otherwise the image is left as is. These transformations are also used in

other jet image studies such as [34, 18]. The pixel intensity for each jet image is taken

from the attention weights after the softmax operation is applied, expressing the particle

importance with respect to the most energetic particle in the event. A comparison of

the extracted images for each SA layer and for each jet category is shown in Fig. 3 .
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Figure 3. Average jet image for each jet category (columns) and for each self-attention
layer (rows). The pixel intensities represent the overall particle importance compared
to the most energetic particle in the jet.

The di↵erent SA layers are able to extract di↵erent information for each jet. In

particular, the jet substructure is exploited, resulting in an increased relevance to harder

subjets in the case of Z boson, W boson, and top quark initiated jets. On the other

hand, light quark and gluon initiated jets have a more homogeneous radiation pattern,

resulting also in a more homogeneous picture.

ABCNet

https://arxiv.org/abs/2001.05311
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• Particle Transformer (ParT): transformer designed for 
particle physics
• Input embedding: Not only inject single particle information, but 

also include pair-wise feature

P-MHA

Linear

MatMul

Mask

MatMul

Linear Linear

Q K

V
SoftMax

P-MHA

LN

M
LP

(b) Particle Attention Block (c) Class Attention Block

LN

LN

xl

Particles

Interactions

Particle 
Attention 

Block So
ftM

ax

Class 
Attention 

Block

Em
be

dd
in

g
Em

be
dd

in
g

x0

  blocksL

Particle 
Attention 

Block

Class token

Class 
Attention 

Block

Y

(a) Particle Transformer

xL−1 xL

xl−1
x

Y

Y

xclass

Linear

GELU

Linear

LN

Scale

MHA

LN

LN

LN

x′ class

xL

Linear

GELU

Linear

LN

Particle 
Attention 

Blockx1

concat

Particle Transformer (ParT): transformer designed for particle physics 

Common in NLP:  Use large pre-trained model, then fine-tune to specific task at hand!

• ParT: Transformer self-attention is  task irrelevant embedding! 

 
 
 
 
 
 

You can take ParT from here, fine-tune it and demonstrate for SVJ!

感谢您下载包图网平台上提供的PPT作品，为了您和包图网以及原创作者的利益，请勿复制、传播、销售，否则将承担法律责任！包图网将对作品进行维权，按照传播下载次数进行十倍的索取赔偿！

ibaotu.com

5th ML Workshop, 2022/05/13, Sitian Qian (PKU) 12

Take home:
Pre-train with JetClass helps ParT to reach SOTA performance!

q/g
disc

rim
.

Top
Tagg

ing

ParT

Task relevantTask irrelevant

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.056019
https://github.com/jet-universe
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But  we sa id  we want  model  independence!
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Yesterday, we said we want:

• Model independent taggers


 
 
 
 
 
 
 

Weakly  superv ised

DOI:10.1007/JHEP02(2022)074 

arxiv:2206.03909 

https://arxiv.org/pdf/2206.03909.pdf
https://link.springer.com/article/10.1007/JHEP02(2022)074
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Weakly  superv ised �2Motivation
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<210 GeV
T

160 GeV<p

Usual paradigm: train in simulation, test on data.

If data and simulation differ, this is sub-optimal!

Eur. Phys. J. C 74 (2014) 3023

quark gluonquark vs gluon 
jets in simulation

quark gluonquark vs gluon 
jets in data

BOOST 2018, Nachman et al. 

Yesterday, we said we want:

• Model independent taggers

• Simulation independent taggers


 
 
 
 
 
 
 

https://indico.cern.ch/event/649482/contributions/2993322/attachments/1688082/2715256/WeakSupervision_BOOST2018.pdf
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Weakly  superv ised �2Motivation
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Usual paradigm: train in simulation, test on data.

If data and simulation differ, this is sub-optimal!

Eur. Phys. J. C 74 (2014) 3023

quark gluonquark vs gluon 
jets in simulation

quark gluonquark vs gluon 
jets in data

BOOST 2018, Nachman et al. 

Yesterday, we said we want:

• Model independent taggers

• Simulation independent taggers

• Powerful taggers


Can we have it all?


 
 
 
 
 
 
 

https://indico.cern.ch/event/649482/contributions/2993322/attachments/1688082/2715256/WeakSupervision_BOOST2018.pdf
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Classification Without Labels

• Design mixed samples in data s.t  

signal fraction f1 > f2 

• Lemma:  “Given mixed S+B samples SB 

and SR, optimal classifier trained to 
distinguish SB and SR is also optimal for 
distinguishing S from B”


• Higher signal fraction, better performance


How to design mixed samples for SVJ?

 
 
 
 
 
 
 

CWola
MIXED SAMPLE 1 MIXED SAMPLE 2
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CWola
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Learning Setup

CWola hunting in ATLAS 

https://indico.cern.ch/event/853615/attachments/2037283/3411394/CWoLa_5.13.20_v2.pdf
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LABEL = SIGNAL
LABEL = BKG

https://indico.cern.ch/event/853615/attachments/2037283/3411394/CWoLa_5.13.20_v2.pdf
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CWola
• Significances of data in signal regions with respect to background-only fit
• Signal regions stitched together -> can be discontinuous

40

Fits in Signal Regions

[16]

Phys. Rev. Lett. 125, 131801  

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.131801
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Weakly  superv ised  -  CWoLa

SIGNAL BACKGROUND

rinv = 1 Z(νν)

0<rinv<1 q/g jet
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Weakly  superv ised  -  CWoLa

rinv = 1

q/g jet

Z(νν)

vs.

?

0<rinv<1
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Weakly  superv ised  -  CWoLa

SVJ

rinv = 1

q/g jet

vs.

?

Z( )ℓℓ

"Boosting mono-jet searches with model-agnostic machine learning" Kraemer et al. 

https://inspirehep.net/literature/2072400
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Weakly  superv ised  -  CWoLa

MIXED SAMPLE 1 MIXED SAMPLE 2

LABEL = SIGNAL LABEL = BKG

Any jet classifier (e.g. ParT!)

THESE JETS ARE FROM A 
MET+JET TOPOLOGY

→ SVJ SIGNAL REGION

THESE JETS ARE FROM A 
+JET TOPOLOGY


→ SVJ SIGNAL IS NOT EXPECTED HERE
ℓℓ



fSR nSR
exp nSR nSR

A nSR
B (nSR � nSR

exp)/
q

2 nSR
exp

0% 1000 1048 0 1048 1.07

0.2% 1000 1065 47 1018 1.45

0.4% 1000 1107 100 1007 2.39

0.5% 1000 1175 184 991 3.91

0.6% 1000 1306 247 1059 6.84

0.7% 1000 1389 367 1022 8.70

0.8% 1000 1500 419 1081 11.18

1% 1000 1666 625 1041 14.89

2% 1000 2357 1392 965 30.34

4% 1000 4182 3269 913 71.15

Table 1. Number of events nSR selected from the signal region for NCR = NSR = 106 and several
signal fractions fSR. We have used the mean score of five classifiers trained on the same data. We
also show the number of events expected to be selected in the absence of a new physics signal,
nSR

exp, and the number of selected anomalous and background events (nSR
A and nSR

B ). The latter
two numbers are not known for real data. The last column shows an estimate of the statistical
significance of a possible discovery.

the same data and average their scores. Most importantly, the Null test works fine. If there

are no anomalous events in the data (fSR = 0), the selected number is, within statistical

fluctuations, in agreement with the expected value nSR
exp = 1000. CWoLa does not provide

any false indication for new physics. Hence, overfitting is no issue. Moreover, a signal

rate fSR = 1%, which is still consistent with constraints from the latest ATLAS mono-jet

search, leads to nSR = 1666. Without statistical doubts, such a finding would indicate that

there is something to be understood about the data. Ideally, a thorough investigation of

the selected jets will uncover the unexpected jet structure and hint towards a suitable new

physics model.

Around a signal fraction fSR = 0.6%, the statistical significance rapidly drops below

5�. Even under the ideal circumstances which are assumed in this chapter, the classifier is

then not able to identify the new physics events as anomalous. Note that only NSR
A = 6000

anomalous events are in the training sample with NSR + NCR = 2 · 106 events. It is

extremely challenging for a classifier to e�ciently learn the anomalous structures under

these circumstances. In a supervised setup, the data instances would be weighted according

to their abundance to help the classifier. In our weakly supervised setup, however, this is

not possible.

Moreoever, our studies show that the absolute number of anomalous events is an

essential parameter. If the number of background events is increased for a fixed number of

anomalous events in the signal region, the performance of the CWoLa method is relatively

stable, although the signal fraction is decreasing. In Tab. 2, we show the tagged number of

events from the signal region for several NSR, with the number of anomalous events fixed at

NSR
A = 10k. Moreover, Tab. 3 shows the improving performance for a fixed signal fraction

– 9 –

Fraction of signal in SR Statistical significance 
of possible discovery

Still consistent with constraints  
from ATLAS mono-jet search!

MY WISHLIST?  
FIRST MODEL-INDEPENDENT SEARCH WITH PRE-TRAINED TRANSFORMER, 

FINE-TUNED ON CWOLA MIXED SAMPLES 
FOR SVJ SEARCHES!

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.112006
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You have already heard about autoencoders and anomaly detection from Barry! 

 
 
Where are we excited to try these out in experiment?

 
 
 
 
 

Unsuperv ised

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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Blabla

• Dodge

• Dodge


Blabla

• Dodge

• Dodge


 
 
 
 
 
 
 

On-detec tor  ML

Event filtering systems


•Maximize SVJ signal acceptance through novel triggers!
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40 MHz

~PB/s

Level-1 hardware trigger

• Select ~2% of most  

interesting events

• O(1) µs latency


High Level Trigger CPU farm

• Select 1% of events from L1

750 kHz

~TB/s

7.5 kHz 
~GB/s

Offline reconstruction and analysis

Detector

• Collisions every 25 ns

• Up to1 PB/s generated
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40 MHz

~PB/s

Level-1 hardware trigger

• Select ~2% of most  

interesting events

• O(1) µs latency


High Level Trigger CPU farm

• Select 1% of events from L1

750 kHz

~TB/s

7.5 kHz 
~GB/s

Offline reconstruction and analysis

Do physics with 0.018%  of collision events, the rest is discarded!

Detector

• Collisions every 25 ns

• Up to1 PB/s generated
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~1 billion collisions per second


~1 PB of data per second




44

New Physics is produced 1 in 1012

 
Saving all collisions not useful  
(even if we could)! 

 
 
 
 

Mono-jet search limits at 95% CL

0.3 - 736 fb

13 TeV

gg→H

Total
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Blabla

• Dodge
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• Dodge
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40 MHz

~PB/s

Level-1 hardware trigger

• Select ~2% of most  

interesting events

• O(1) µs latency


High Level Trigger CPU farm

• Select 1% of events from L1

750 kHz

~TB/s

7.5 kHz 
~GB/s

Offline reconstruction and storage

Do physics with 0.018%  of collision events, the rest is discarded!


Detector

• Collisions every 25 ns

• Up to1 PB/s generated


ARE WE LOOSING SVJ AT L1?
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Blabla

• Dodge

• Dodge


Blabla

• Dodge

• Dodge


 
 
 
 
 
 
 

On-detec tor  ML

HLT


•Maximize SVJ signal acceptance 
through dedicated triggers


*see backup
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Blabla

• Dodge

• Dodge


Blabla

• Dodge

• Dodge


 
 
 
 
 
 
 

On-detec tor  ML

LEVEL-1


•>98% of events rejected here!

•Maximize signal acceptance 

through dedicated triggers
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Limi ta t ions  o f  current  t r igger

Energy (GeV)Trigger threshold

NP?

- - LOST DATA

- - SELECTED DATA

- - POSSIBLE NP SIGNAL

Level-1  re jec ts  >99%  o f  events !  
Is  there  a  more  e ff i c ient  way  to  se lec t?
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Anomaly  detec t ion  a t  Leve l-1

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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constituents are part of the hard scatter and which are not. The x
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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Decide on the algorithm that you want to explore 
The Example Team ѻDeepAnomalyѻhas chosen Autoencoders 

Encode input in smaller dimensional space 
Train on typical LHC background 
Anomalous data will have higher loss  
Calculating the loss requires to store the input until the 
output is computed

Encoder De
co

de
r

Latent 
space

UNSUPERVISED NEW PHYS ICS  DETECT ION AT 40 MHZ 
EXAMPLE TEAM ѻDEEPANOMALYѻ#  
DES IGNS ALGORITHM 

3.2 Baseline performance

The models described in the previous section are trained with floating point precision on an NVIDIA RTX2080 GPU.
We refer to these models as baseline (B). Figures 4 and 5 shows the distribution of the anomaly-detection scores
considered in this paper (IO AD for the AE models, Rz and DKL(ADs for the VAE models). For completeness, results
obtained from the IO AD score of the VAE models are also shown.

0 1000 2000 3000 4000 5000
Loss Distribution

10−8

10−7

10−6

10−5

10−4

10−3

10−2

A.
U

.

IO AE
background
LQ →  bτ
A →  4L
h± → τν
h0 → ττ

Figure 4: Distribution of four anomaly detection scores (IO AD for AE and VAE models, Rzand DKLADs for the VAE
models) for the DNN model, for the SM cocktail and the four new physics benchmark models.

The model performance is assessed using the four new physics benchmark models. The receiver operating characteristic
(ROC) curves in Fig. 6 show the dependence of the true positive rate (TPR) as a function of the false positive rate (FPR),
computing by changing the lower threshold applied on the different anomaly scores. We further quantify the anomaly
detection performance quoting the area under the ROC curve (AUC) and the TPR corresponding to to a working point
of SM false positive rate "SM = 10

�5 (see Table 1), which corresponds to the average of ⇡ 1000 SM events accepted
every month [1].

7

EVERYTHING HERE IS ANOMALOUS 
 

→ TRIGGER ACCEPT!
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Anomaly  detec t ion  a t  Leve l-1

Extremely challenging task!

• Requires <100 ns inference in  

very busy FPGA devices


Preparing to deploy AD @ L1 during Run 3 in CM S! 

• Select ~1000 anomalous events/month, can enhance  

New Physics signals by several orders of magnitude


Run 3: Use Global Trigger inputs (10 jets, 4 muons, 4 e/gamma)

• High-level objects, poor resolution

• Need to get “inside” the jets at L1 for SVJ!


 

ARTICLESNATURE MACHINE INTELLIGENCE

Anomaly detection scores
An autoencoder is optimized to retain the minimal set of informa-
tion needed to reconstruct an accurate estimate of the input. During 
inference, an autoencoder might have problems generalizing to 
topologies it was not exposed to during training. Selecting events 
where the autoencoder output is far from the given input is often 
seen as an effective AD algorithm. The simplest solution is to use 
the same metric that defines the training loss function. In our case, 
we use the modified MSE between the input and the output. We 
refer to this strategy as input–output (IO) AD.

In the case of a VAE deployed in the L1T, one cannot simply 
exploit an IO AD strategy since this would require sampling ran-
dom numbers on the FPGA. One could generate pseudo-random 
numbers exploiting meta information (for example, the event num-
ber) or symmetries in data (for example, the ϕ coordinate of one of 
the objects). This might imply a limitation on the dimensionality of 
the latent space, which might impact performance. Moreover, one 
would have to store random numbers on the FPGA, which would 
consume resources and increase the latency. We did not explore this 
possibility further. Instead, we consider an alternative strategy by 
defining an AD score based on the −→Ȋ  and −→ȑ  values returned by the 
encoder (see equation (1)). In particular, we consider two options: 
the KL divergence term entering the VAE loss (see equation (2)) 
and the z-score of the origin −→�  in the latent space with respect to 

a Gaussian distribution centred at −→Ȋ  with standard deviation −→ȑ  
(ref. 10):
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These two AD scores have several benefits we take advantage of: 
Gaussian sampling is avoided; we save significant resources and 
latency by not evaluating the decoder; and we do not need to buf-
fer the input data for computation of the MSE. During the model 
optimization, we tune β so that we obtain (on the benchmark sig-
nal models) comparable performance for the DKL AD score and the 
IO AD score of the VAE. In practice, one should train the model 
using real data, which might contain a very small fraction of signal. 
Previous studies have verified16 that small rates of signal contamina-
tion have little effect on the training. One would use simulated sig-
nals in the same manner as in this paper to tune model parameters. 
Such a procedure would not bias the architecture choice towards 
specific signals, given the low dependence of the optimal β value on 
the nature of the anomaly.

Performance at floating-point precision
The model performance is assessed using the four new physics 
benchmark signals. The anomaly-detection scores considered in 
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Fig. 2 | Model performance at floating-point precision. ROC curves of four AD scores (IO AD for AE and VAE models, Rz and DKL ADs for the VAE models) 
for the CNN (left) and DNN (right) models, obtained from two new physics benchmark models: h±!→!τν (top) and h0!→!ττ (bottom).
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Anomaly  detec t ion  a t  Leve l-1

HL-LHC is where anomalous jet triggering at L1 might happen!

• Tracking + PF at L1 opens up many doors

• Must begin R&D now 

 

• AI can provide highly efficient SVJ tags! 
Boils down to latency, resources and bandwidth


 
 
 

8 Chapter 1. Introduction and overview

Figure 1.3: Functional diagram of the CMS L1 Phase-2 upgraded trigger design. The Phase-2 L1
trigger receives inputs from the calorimeters, the muon spectrometers and the track finder. The
calorimeter trigger inputs include inputs from the barrel calorimeter (BC), the high-granularity
calorimeter (HGCAL) and the hadron forward calorimeter (HF). It is composed of a barrel
calorimeter trigger (BCT) and a global calorimeter trigger (GCT). The muon trigger receives in-
put from various detectors, including drift tubes (DT), resistive plate chambers (RPC), cathode
strip chambers (CSC), and gas electron multipliers (GEM). It is composed of a barrel layer-1
processor and muon track finders processing data from three separate pseudorapidity regions
and referred to as BMTF, OMTF and EMTF for barrel, overlap and endcap, respectively. The
muon track finders transmit their muon candidates to the global muon trigger (GMT), where
combination with tracking information is possible. The track finder (TF) provides tracks to
various parts of the design including the global track trigger (GTT). The correlator trigger (CT)
in the center (yellow area) is composed of two layers dedicated to particle-flow reconstruction.
All objects are sent to the global trigger (GT) issuing the final L1 trigger decision. External
triggers feeding into the GT are also shown (more in Section 2.6) including potential upscope
(mentioned as ”others”) such as inputs from the MTD. The dashed lines represent links that
could be potentially exploited (more details are provided in the text). The components under
development within the Phase-2 L1 trigger project are grouped in the same area (blue area).
The various levels of processing are indicated on the right: trigger primitives (TP), local and
global trigger reconstruction, particle-flow trigger reconstruction (PF) and global decision.

processors as part of the detector backend. The reconstructed track parameters and track re-
construction quality flags are provided to the trigger system to achieve precise vertex recon-
struction and matching with calorimeter and muon objects. This key feature maximizes the
trigger efficiency while keeping the trigger rate within the allowed budget. A global track trig-
ger (GTT) will be included, to reconstruct the primary vertices of the event along with tracker-
only based objects, such as jets and missing transverse momentum. The GTT can also be used

O(1000) algorithms  
in parallel on ~10 FPGAs 

12.5 µs

Trigger 
accept/reject
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What  wi l l  we  do  wi th  these  data?
Clustering with VAE

22

๏ In the clustering example, 
the different populations 
are forced on sums of 
Gaussian distributions 

๏ This gives more regular 
shape for the clusters 

Catalogue of anomalous events?

Clustering algorithm?
Statistical analysis?

Anomalous Open Data?

?

?

?

?

?
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Weakly  superv ised  -  CWoLaConclus ion

Clustering with VAE

22

๏ In the clustering example, 
the different populations 
are forced on sums of 
Gaussian distributions 

๏ This gives more regular 
shape for the clusters 

v3

e1→5 = g(v⃗1,v⃗5)

v5  = (E5,px,5,py,5,,pz,5)



Data challenge on real-time anomaly detection

• Dataset:  Nature Scientific Data (2022) 9:118  

• Code: mpp-hep.github.io/ADC2021/ 


Tutorial: Anomaly detection on FPGA with hls4ml

• github:thaarres/quantumUniverse_pynqZ2  


 Join monthly Fast Machine Learning meetings

• Sign up to our Fast ML e-group hls-fml here  
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ADC 2021

mpp-hep.github.io/ADC2021/ 

https://www.nature.com/articles/s41597-022-01187-8.pdf
https://mpp-hep.github.io/ADC2021/
https://github.com/thaarres/quantumUniverse_pynqZ2
https://e-groups.cern.ch/e-groups/EgroupsSearchForm.do
https://mpp-hep.github.io/ADC2021/
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Backup



ABCNet:  
Pixel intensity =  particle importance w.r.t most energetic particle in jet, from attention weights


No substructure information given,  learned through attention layers!


Point Cloud Transformers applied to Collider Physics 13

8. Visualization

The SA module defines the relative importance between all points in the set through the

attention weights. We can use this information to identify the regions inside a jet that

have high importance for a chosen particle. To visualize the particle importance, the

HLS4ML LHC jet dataset is used to create a pixelated image of a jet in the transverse

plane. The average jet image of 100k examples in the evaluation set is used. For each

image, a simple preprocessing strategy is applied to align the di↵erent images. First,

the whole jet is translated such that the particle with the highest transverse momentum

in the jet is centered at (0,0). This particle is also used as the reference particle from

where attention weights are shown. Next, the full jet image is rotated, making the

second most energetic particle aligned with the positive y-coordinate. Lastly, the image

is flipped in the x-coordinate in case the third most energetic particle is located on the

negative x-axis, otherwise the image is left as is. These transformations are also used in

other jet image studies such as [34, 18]. The pixel intensity for each jet image is taken

from the attention weights after the softmax operation is applied, expressing the particle

importance with respect to the most energetic particle in the event. A comparison of

the extracted images for each SA layer and for each jet category is shown in Fig. 3 .
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Figure 3. Average jet image for each jet category (columns) and for each self-attention
layer (rows). The pixel intensities represent the overall particle importance compared
to the most energetic particle in the jet.

The di↵erent SA layers are able to extract di↵erent information for each jet. In

particular, the jet substructure is exploited, resulting in an increased relevance to harder

subjets in the case of Z boson, W boson, and top quark initiated jets. On the other

hand, light quark and gluon initiated jets have a more homogeneous radiation pattern,

resulting also in a more homogeneous picture.

ABCNet

https://arxiv.org/abs/2001.05311


Encoding a lot of information → a lot of parameters

• Critical to avoid overtraining and ensure generic embeddings


GPT-3: trained on ~200 billion words (estimated cost O(10) million dollars)

• Need huge statistics to train a jet transformer!

• ParT: Dedicated particle transformer, 2M parameters!


JetC lass  Dataset
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• JetClass is inclusive: 
• 10 types of jets 
• Kinematics, 
• PID, 
• trajectory displacement 

• JetClass is large:
• 100M jets for training à 10M each class
• 5M for validation
• 20M for test à 2M each class

H ! 4qH ! bb̄ H ! cc̄ H ! gg H ! `⌫qq
0

q/gt ! b`⌫t ! bqq0 W ! qq0 Z ! qq̄

Encoding a lot of information → a lot of parameters

• Critical to avoid overtraining and ensure generic embeddings


GPT-3: trained on ~200 billion words (estimated cost O(10) million dollars)

• Need huge statistics to train a jet transformer!

• ParT: Dedicated particle transformer, 2M parameters!


New dedicated jet tagging dataset: Jetclass 

• 10 types of jets

• 100M training 

• 5M validation

• 20M test


Extremely useful for benchmarking of 
new algorithms!


JetC lass  Dataset

https://github.com/jet-universe


Amount of data we can store for use in analysis 
limited by bandwidth,  O(10) GB/s to Tier-0 

• 300 ms to decide keep/reject

• Running thousands of “modules”  

on many collision events in parallel 

High Leve l  Tr igger
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Bandwidth (kB/s) = Event rate (kHz)  x  Event size (kB)

November 7th, 2019 A. Bocci  -  Heterogeneous online reconstruction at CMS 4

the CMS Trigger & DAQ

raw data
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event builder
on-demand reconstruc.on

& event selec.on

5 GB/s to Tier-0

> 30’000 CPU cores20 TB RAM

storage manager
transfer system

L1 Trigger
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Level 1 Trigger
● hardware based
● synchronous with LHC

Data Acquisition
● ADC converters
● event builder network

High Level Trigger farm
● software based
● multithreaded jobs

Storage Manager
● distributed 7lesystem
● transfer to Tier 0

O(10) GB/s to Tier-0

750 kHz

O(100) Gb/s



Particle Flow is highest resolution reconstruction at 
HLT. Slow, can’t run on all events! Currently only PF 
on 17% of total


• High resolution, but small rate


HLT:  More  Par t ic le  F low
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Particle Flow is highest resolution reconstruction at 
HLT. Slow, can’t run on all events! Currently only PF 
on 17% of total


• High resolution, but small rate


To handle HL-LHC data rates

• Offload resource-intensive computations to GPU

• Can achieve speed-ups ~x3

• More compute to run PF!
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Particle Flow is highest resolution reconstruction at 
HLT. Slow, can’t run on all events! Currently only PF 
on 17% of total


• High resolution, but small rate


To handle HL-LHC data rates

• Offload resource-intensive computations to GPU

• Can achieve speed-ups ~x3

• More compute to run PF!
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30k cores, single-threaded 
→ ~300 ms available per event 

Each node (16/20 cores) equipped with one GPU

Events from L1 @ 750 kHz

CPU tasks GPU tasks

300 ms

Raw data Raw data

Pixel tracks 


Pixel tracks 
~10 ms

Faster  
on GPU

Pixel tracks

Particle Flow

Free up 
CPU

*Disclaimer:  
Rough estimates  

Data transfer
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30k cores, single-threaded 
→ ~300 ms available per event 

Each node (16/20 cores) equipped with one GPU

Events from L1 @ 750 kHz

CPU tasks GPU tasks

300 ms

Raw data Raw data

Pixel tracks 


Pixel tracks 
~10 ms

Faster  
on GPU

Pixel tracks

Particle Flow

Free up 
CPU

*Disclaimer:  
Rough estimates  

Data transfer



More PF means cleaner SVJ triggering!

• Jet substructure and anomaly detection at HLT 

important!


Transfer data GPU → CPU expensive, can we avoid 
it by doing PF on GPU?

HLT:  More  Par t ic le  F low
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30k cores, single-threaded 
→ ~300 ms available per event 

Each node (16/20 cores) equipped with one GPU

Events from L1 @ 750 kHz
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Raw data Raw data

Pixel tracks 


Pixel tracks 
~10 ms

Faster  
on GPU

Pixel tracks

Particle Flow

Free up 
CPU

*Disclaimer:  
Rough estimates  

Data transfer
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Fig. 1 A simulated tt event from the MLPF dataset with 200 PU interactions. The input tracks are shown in gray, with the trajectory curvature
being defined by the inner and outer h ,f coordinates. Electromagnetic (hadron) calorimeter clusters are shown in blue (orange), with the size
corresponding to cluster energy for visualization purposes. We also show the locations of the generator particles (all types) with red cross markers.
The radii and thus the x,y-coordinates of the tracker, ECAL and HCAL surfaces are arbitrary for visualization purposes.

We also store the PF candidates reconstructed by
DELPHES for comparison purposes. The DELPHES rule-
based PF algorithm is described in detail in Ref. [11], iden-
tifying charged and neutral hadrons based on track and
calorimeter cluster overlaps and energy subtraction. Pho-
tons, electrons and muons are identified by DELPHES based
on the generator particle associated to the corresponding
track or calorimeter cluster. Each event is now fully char-
acterized by the set of generator particles Y = {yi} (target
vectors), the set of detector inputs X = {xi} (input vectors),
with

yi = [PID, pT,E,h ,f ,q] , (1)
xi = [type, pT,EECAL,EHCAL,h ,f ,houter,fouter,q] , (2)

PID 2 {charged hadron,neutral hadron,g,e±,µ±} (3)
type 2 {track,cluster} . (4)

For input tracks, only the type, pT, h , f , houter, fouter, and
q features are filled. Similarly, for input clusters, only the
type, EECAL, EHCAL, h and f entries are filled. Unfilled fea-
tures for both tracks and clusters are set to zero. In future
iterations of MLPF, it may be beneficial to represent input
elements of different type with separate data matrices to im-
prove the computational efficiency of the model.

Functionally, the detector is modelled in simulation by a
function S(Y ) = X that produces a set of detector signals
from the generator-level inputs for an event. Reconstruc-
tion imperfectly approximates the inverse of that function
R ' S

�1(X) = Y . In the following section, we approximate
the reconstruction as set-to-set translation and implement a
baseline MLPF reconstruction using graph neural networks.

arXiv:2101.08578 

Deep Neural Networks as “fast” approximations of 
classical ParticleFlow 

• Inherently parallelizeable, can take advantage of 
GPU acceleration


• High accuracy in high PU environment
 7
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Fig. 4 True and predicted particle multiplicity for MLPF and DELPHES
PF for charged hadrons (upper) and neutral hadrons (lower). Both mod-
els show a high degree of correlation (r) between the generated and
predicted particle multiplicity, with the MLPF model reconstructing
the charged and neutral particle multiplicitly with better resolution (s ).

we observe a similar result for the energy-dependent effi-
ciency and fake rate of neutral hadrons. Both algorithms
exhibit a turn-on at low energies and show a constant be-
haviour at high energies, with MLPF being comparable or
slightly better than the rule-based PF baseline. Furthermore,
we see on Figs. 8 and 9 that the energy, energy (pT) and an-
gular resolution of the MLPF algorithm are generally com-
parable to the baseline for neutral (charged) hadrons.

Fig. 5 Particle identification confusion matrices with gen-level parti-
cles as the ground truth, with the baseline DELPHES PF (upper) MLPF
(lower). The rows have been normalized to unit probability, corre-
sponding to normalizing the dataset according to the generated PID.

Overall, these results demonstrate that formulating PF
reconstruction as a multi-task ML problem of simultane-
ously identifying charged and neutral hadrons in a high-
PU environment and predicting their momentum may offer
comparable or improved physics performance over hand-
written algorithms in the presence of sufficient simulation
samples and careful optimization. The performance charac-
teristics for the baseline and the proposed MLPF model are
summarized in Table 1.

https://arxiv.org/abs/2101.08578
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30k cores, single-threaded (~1 ev/thread, in reality 
hyper-threaded):  

→ ~300 ms available per event 
Each node (16/20 cores) equipped with one GPU

Events from L1 @ 750 kHz

CPU tasks GPU tasks

300 ms

Raw data Raw data

Pixel tracks 


Pixel tracks 
~10 ms

Pixel tracks

Particle Flow

Free up 
CPU

Particle Flow

Data transfer

 
We will (in general) store more of better data 

Dedicated SVJ PF-based triggers

• Autoencoders for anomalous jets
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34

Novel technology for CMS endcap calorimeter:  
52 layers with unprecedented number of readout channels (6M)!

CMS HGCAL TDR

Example: 
High-granularity calorimeter @ HL-LHC

CMS HGCAL TDR 

q

 CMS Endcap High-Granularity Calorimeter (1.5<η<3)

• Unprecedented transverse/longitudinal segmentation 

• Pile-up suppression and forward jet resolution 

 
 
 
 
 
 
 
 
 
 
 
 
 

• 52 layers, 6 million silicon channels, limited output bandwidth

• Operate at -30℃ → need low-power on-ASIC preprocessing
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A.-M. Magnan Event displays of VBF Hgg jets with 140 PU CERN, 21/03/2015 8 / 31

Figure A.1: Display of a VBF jet and a high pT photon in 9 layers of CE-E. The energy of individual reconstructed hits are colour coded on
a logarithmic scale. Text in Section 1.2 describes details of what can be seen.

Forward jet  
(2 charged pions+𝛾)

 Within 1 cm!

http://home.fnal.gov/~chlebana/CMS/TDR-17-007-paper-v5.pdf
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Optimise information output using ML!  Maximise resolution on extremely low power. 
 
 
 
 
 

On ASIC On FPGA

Encoder architecture

4

39 bits available  
for output

Encoder architecture

4

ENCODE DECODE

ECON FastML 2020 
Transfer data to L1

Bottleneck

(lower dim.  

space)

67

On-detec tor :  HGCAL

https://indico.cern.ch/event/924283/contributions/4105329/attachments/2152250/3630590/encoder_asic_fastml2020.pdf


ABCNet:  
Pixel intensity =  particle importance w.r.t most energetic particle in jet, from attention weights


No substructure information given,  learned through attention layers!


Point Cloud Transformers applied to Collider Physics 13

8. Visualization

The SA module defines the relative importance between all points in the set through the

attention weights. We can use this information to identify the regions inside a jet that

have high importance for a chosen particle. To visualize the particle importance, the

HLS4ML LHC jet dataset is used to create a pixelated image of a jet in the transverse

plane. The average jet image of 100k examples in the evaluation set is used. For each

image, a simple preprocessing strategy is applied to align the di↵erent images. First,

the whole jet is translated such that the particle with the highest transverse momentum

in the jet is centered at (0,0). This particle is also used as the reference particle from

where attention weights are shown. Next, the full jet image is rotated, making the

second most energetic particle aligned with the positive y-coordinate. Lastly, the image

is flipped in the x-coordinate in case the third most energetic particle is located on the

negative x-axis, otherwise the image is left as is. These transformations are also used in

other jet image studies such as [34, 18]. The pixel intensity for each jet image is taken

from the attention weights after the softmax operation is applied, expressing the particle

importance with respect to the most energetic particle in the event. A comparison of

the extracted images for each SA layer and for each jet category is shown in Fig. 3 .
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Figure 3. Average jet image for each jet category (columns) and for each self-attention
layer (rows). The pixel intensities represent the overall particle importance compared
to the most energetic particle in the jet.

The di↵erent SA layers are able to extract di↵erent information for each jet. In

particular, the jet substructure is exploited, resulting in an increased relevance to harder

subjets in the case of Z boson, W boson, and top quark initiated jets. On the other

hand, light quark and gluon initiated jets have a more homogeneous radiation pattern,

resulting also in a more homogeneous picture.

ABCNet

https://arxiv.org/abs/2001.05311

