SVJ Workshop: Working Group 1 All-Hadronic Final States

Elias Bernreuther (FNAL), Adrian Carmona (Granada), Fatemeh Elahi (Mainz), Alison Eliot (RAL), Aran Garcia-Bellido (Rochester), Nukulsinh Parmar (Rochester), **Kevin Pedro** (FNAL), Christiane Scherb (Mainz), Pedro Schwaller (Mainz) July 6, 2022

Charge

1) All-hadronic semi-visible jets

Concrete models with benchmarks that give these signatures.

Understand the connection between r_inv and model parameter space.

Improvements to search strategies depending on production mechanism, and as r_inv varies.

Explore the need for separate portal couplings for production versus decay. This topic is the primary focus of the workshop.

Models

• We surveyed the following models*[†]:

o "Cohen" model (<u>arXiv:1503.00009</u>, <u>arXiv:1707.05326</u>)

- o "Schwaller" model (<u>arXiv:1502.05409</u>, <u>arXiv:1803.08080</u>)
- o "Aachen" model (<u>arXiv:1907.04346</u>, <u>arXiv:2006.08639</u>)
- o "Snowmass" model (<u>arXiv:2203.09503</u>)
- Conventions:
 - $SU(N_c^{dark})$ force with scale Λ_{dark}
 - $\circ N_f^{\text{dark}}$ dark quarks χ_i

$$\circ r_{\rm inv} = \langle N_{\rm stable} / (N_{\rm stable} + N_{\rm unstable}) \rangle$$

* Naming choices by KP

[†]All inspired by <u>arXiv:hep-ph/0604261</u>

Model Parameters & r_{inv}

- Summary of parameters that influence r_{inv} in above models:
 - $\circ N_c^{\text{dark}}$: baryon suppression
 - $\circ N_f^{\text{dark}}$: diagonal vs. off-diagonal meson frequency, other symmetries
 - o dark quark mass splitting (relationship of m_{χ_i} , m_{χ_j} , Λ_{dark}): off-diagonal meson suppression
 - o dark hadron mass spectrum ($m_{\pi_{dark}}, m_{\rho_{dark}}$, etc.): baryon suppression, heavier state decays (two-body vs. three-body), relative abundance of pseudoscalar vs. vector mesons
 - o dark G-parity (if any): stability of dark pions
 - **Q** (mediator charges for dark quarks): decay availability (for U(1)' mediators)
 - Mass mechanisms (dark Higgs sector or something else): determines Z' mixing
- See attached document for more details, including individual model surveys

- What is r_{inv} with decays like this? $(2m_{\pi_{dark}} > m_{\rho_{dark}}, \text{ probVector} = 0.58)$
- Proposal: extend definition to

$$r_{\rm inv} = \langle (N_{\rm stable} + f_{\rm inv}N_{\rm partial})/(N_{\rm stable} + N_{\rm partial} + N_{\rm unstable}) \rangle$$

- $\circ N_{\text{partial}}$ are dark hadrons that decay to other dark hadrons and SM particles (as above), while N_{unstable} are dark hadrons that decay just to SM
- $\circ f_{inv}$ is the momentum fraction carried by dark hadrons in "partial" decays; can be computed via integration for 3-body case, but not boost-invariant
 - Compare Pythia output to calculations to see if correction needed
- Lower bound: $r_{inv} ≥ 1 probVector = 0.42$

Kevin Pedro

Open Questions

- 1. Is the list of r_{inv} -influencing parameters complete?
 - a. Is the proposed scheme to extend the definition of rinv to 3-body decays adequate?
- 2. How many details can be simplified to create simplified models?
- 3. Proposed study: are there any major kinematic differences between simplified models and realistic models?
 - a. If so, how can we account for them?
 - b. Which parameters of complete models can be accurately simulated in Pythia?
- 4. How much do the "other considerations" (next slide) influence rinv and related kinematics toward simplified models?
- 5. What is a minimal mediator setup that allows r_inv to be close to any value between 0 and 1?

Other Considerations

- Dark hadron lifetimes: prompt, long-lived, detector-stable
 - 6. Detector-stable particles may still decay outside of detector: presents missing energy, but should they be included in N_{stable} for r_{inv} ?
 - Can we also make a complete list of parameters that influence lifetime? (mediator type, couplings, mass spectra...)
- Dark hadron decay patterns: e.g. flavor content
 - 8. How does this depend on decay portal type?
- Mediator/portal (production/decay):
 - 9. How do N_{stable}, N_{unstable} differ for *s*-channel vs. *t*-channel production, scalar vs. vector mediators?
 - 10. What other mediator scenarios are interesting? e.g. vector *t*-channel mediator, W' (\rightarrow W Z' ?), Higgs...

Conclusions

- Many questions; few answers
 Ripe for further study and publications
- Possible next steps for program:
 - o Pythia studies to extent possible
 - o Further model-building

- Develop set of simplified models categorized by most crucial parameters (e.g. N_c^{dark} ?)
- Experimentalists want to cover as much parameter space as possible
 We are hungry for broad models with # parameters under control
- IANAT (I am not a theorist)
 - Thanks to all in the group for their contributions
 - Any errors here are mine
- ➤ May the dark force be with us all!

Backup