Preliminary results of $K_{\mu 4}^{00}$ decay first observation (conference slides)

A. Korotkova¹ D. Madigozhin¹ (many thanks to Rainer and Brigitte)

¹ Joint Institute for Nuclear Research Dubna

NA48/2 collaboration meeting, 25.02.2022

Outline

- Theoretical framework
- 2 NA48/2 setup
- Selection
- 4 Acceptance
- Residual background
- 6 Signal extraction
- Decay model-related systematic uncertainty
- Result
- Onclusion
- Spare slides

$K^\pm o \pi^0 \pi^0 \mu^\pm u \; (K^{00}_{\mu 4})$ theoretical framework

In general, K_{l4} decay width depends on four form-factors: F, G, R, H and is a function of five Cabibbo-Maksymowicz variables: S_{π} (dipion mass squared), S_{l} (dilepton mass squared) and angles θ_{π} (in the dipion frame), ϕ .

- For $K^{00}_{\mu 4}$, in s-wave approximation for $\pi^0\pi^0$, there are no dependence on $\cos\theta_\pi, \phi$, and only $F \neq 0$, $R \neq 0$.
- Unlike K_{e4}^{00} case, R plays some role due to μ mass;
- Motivation for $K^{00}_{\mu 4}$ measurement: first observation, ChPT test, check of R presence, potential study of $\pi\pi$ rescattering effects in the $F(S_{\pi})$.
- According to lepton universality, experimental $F(S_{\pi}, S_l)$ parameterization from K_{e4}^{00} [J.R. Batley et al. JHEP 08 (2014) 159] may be used for K_{u4}^{00} .
- The only available source of $R(S_{\pi}, S_{l})$ is ChPT calculation [J.Bijnens, G.Colangelo, J.Gasser, Nucl.Phys.B 427, 427 (1994)].
- In our MC we use experimental $F(K_{e4}^{(00)})$ scaled down by about 18% (close to the 1-loop F), theoretical R(1-loop) and zero phase between F and R.
- Other versions were tested for systematics.

NA48/2 beamline (CERN SPS, 2003-2004)

NA48/2 main goal were $K_{3\pi}$ charge asymmetry studies; additional rare decys program.

- Two charged beams, 6% of K^{\pm} , from 400 GeV/c protons on target. Beams central momentum 60 GeV/c, momentum band $\pm 3.8\%$ (rms), width $\approx 1 \text{ cm}$.
- KABES (Kaon Beam Spectrometer), spatial resolution 800 μ m, momentum resolution 1% and time resolution 600 ps.

4 / 28

NA48/2 setup (CERN SPS, 2003-2004)

- Magnetic spectrometer (drift chambers DCH1–DCH4): Spatial resolution $\sim 90~\mu m$ per chamber, momentum resolution $\sigma_p/p = (1.02 \oplus 0.044 \cdot p)\%$ (momentum p in GeV/c).
- ullet Scintillator hodoscope (HOD), time resolution $\sim\!150$ ps.
- Liquid Krypton EM calorimeter (LKr). High granularity, quasi-homogeneous

$$\begin{split} \sigma_{\rm x} &= \sigma_{\rm y} = \left(0.42/\sqrt{E} \oplus 0.06\right) \text{ cm.} \\ \sigma_{\rm E}/E &= \left(3.2/\sqrt{E} \oplus 9.0/E \oplus 0.42\right)\% \text{ (energy E in GeV)}. \end{split}$$

• Hadronic calorimeter, muon system MUV.

<ロ > < 回 > < 回 > < 差 > < 差 > 差 からで

Korotkova, Madigozhin (JINR)

5 / 28

Selection

NA48/2 data collected in 2003-2004.

Signal (S) $K_{\mu4}$ is $K^\pm \to \pi^0 \pi^0 \mu^\pm \nu$. Normalization (N) $K_{3\pi}$ is $K^\pm \to \pi^\pm \pi^0 \pi^0$.

A common trigger chain: L1 trigger using HOD and LKr, followed by L2 trigger using DCH for online momentum calculation.

Combination: 4 isolated photons in time with a KABES track and with a DCH track.

Figure: $K_{3\pi}$ kinematic selection area

Normalization $K^{\pm} \to \pi^{\pm} \pi^{0} \pi^{0}$ channel selection No missing momentum is expected. $K_{3\pi}$ kinematic selection ellipse:

- center:
 - $M(K_{3\pi}) = M_{\kappa}^{PDG}$:
 - $P_t = 5 \text{ MeV}/c$:
- semi-axes:
 - $\Delta M(K_{3\pi}) = 10 \text{ MeV}/c^2$;
 - $\Delta P_t = 20 \text{ MeV}/c$.
- $72.99 \times 10^6~K_{3\pi}$ selected data events.

Korotkova, Madigozhin (JINR) 25.02.2022 6 / 28

$K^\pm o \pi^0 \pi^0 \mu^\pm u$ signal events selection

- Off the $K_{3\pi}$ kinematic ellipse;
- DCH track has associated MUV response;
- M_{miss}^2 assuming $\pi^{\pm} < 0.5 M_{miss}^2 0.0008 \text{ GeV}^2/c^4$;
- $cos(\Theta_I) < 0.6$;
- $S_I > 0.03~{
 m GeV^2}/c^4$ (to reject $\pi^\pm o \mu^\pm
 u$).
- 3718 $K_{\mu 4}$ data candidates selected (any M_{miss}^2).

Acceptances

• Acceptance of the $K^\pm \to \pi^0 \pi^0 \pi^\pm$ normalization channel is (4.477 \pm 0.002)%,

- M_{miss}^2 signal region [-0.002,0.002] GeV²/ c^4 contains 98.2% of selected MC events.
- Acceptance of the $K^\pm o \pi^0 \pi^0 \mu^\pm
 u$ signal is $(0.651 \pm 0.001)\%$,
- Acceptance of the $K^\pm \to \pi^0 \pi^0 \mu^\pm \nu$ signal for the restricted phase space $S_l^{true} > 0.03~{\rm GeV}^2/c^4$ is $(3.453 \pm 0.007)\%$.

25.02.2022

Korotkova, Madigozhin (JINR)

Residual background

Main background: $K^\pm \to \pi^\pm \pi^0 \pi^0$ followed by $\pi^\pm \to \mu\nu$ before MUV with a probability $\approx 10\%$ for $P(\pi^\pm) \approx 10~{\rm GeV}/c$.

Figure: Simulated background with π^{\pm} decay before LKr (normalized from the kaon flux). Background models for $K_{3\pi}$ with late π^{\pm} decay are with arbitrary normalization.

- $K_{3\pi}$ background with π^{\pm} decay before LKr, from MC simulation
- $K_{3\pi}$ background with late π^{\pm} decay or muon emission in a late hadron shower:
 - A data sample is selected as $K_{\mu4}^{00}$ without MUV hits requirement and with $0.3 < E_{LKr}/P_{DCH} < 0.8$ (π^{\pm} shower in LKr).
 - It corresponds to random MUV response (used for systematic uncertainty tests).
 - $K_{3\pi}$ background with late π^{\pm} decay: a weight $w_P \propto \frac{1}{P_{DCH}}$ for each event to take into account the pion decay probability.

$K_{\mu 4}^{00}$ signal extraction fit

- 2437 candidates are found in the signal region.
- Fit in the M_{miss}^2 interval [-0.003,0.006] GeV²/ c^4 , ignoring the signal region to decrease sensitivity to the imperfect MC resolution.
- Data fit by a linear combination of the two background components and the MC signal tails.
- $354 \pm 33_{stat} \pm 62_{syst}$ background events.
- The background-related systematics are determined by varying the way the background is estimated.

() ◆個 > ◆ 達 > ◆ 達 > ・ 達 ・ 釣 Q ()

Korotkova, Madigozhin (JINR) 25.02.2022 10 / 28

Signal versus S_{π}, S_{I}

- The branching ratio is measured for the restricted phase space $S_L^{true} > 0.03 \text{ GeV}^2/c^4$.
- Extrapolation to the full phase space depends on the theory.

ㅁㅏ ◀♬ㅏ ◀ㅌㅏ ◀ㅌㅏ _ ㅌ _ 쒸٩♡

Signal versus S_{π}, S_{I}

Figure: 1D projections comparison for $S_I > 0.03~\mbox{GeV}^2/\mbox{c}^4$

Korotkova, Madigozhin (JINR) 25.02.2022 12 / 28

Acceptance variations due to $K_{\mu4}^{00}$ generator modifications

J.R. Batley et al. JHEP 08 (2014) 159:

The absolute normalization is also measured $F = f \times F(K_{e4})$, $f = 6.079 \pm 0.055$.

 $egin{split} F(\mathcal{K}_{e4}) &= (1+aq^2+bq^4+c\cdot S_I/4m_{\pi^+}^2), q^2 \geq 0 \ F(\mathcal{K}_{e4}) &= (1+d\sqrt{|q^2/(1+q^2)|}+c\cdot S_I/4m_{\pi^+}^2), q^2 \leq 0, \end{split}$ where $q^2 = S_\pi/4m_{\pi^+}^2 - 1.$

- Decay generator was modified by MC events weighting.
- The acceptance spread is taken as systematics.

Korotkova, Madigozhin (JINR)

25.02.2022 13

Preliminary result: Ingredients

$$BR(K_{\mu 4}^{00}) = \frac{N_S}{N_N} \cdot \frac{A_N}{A_S} \cdot K_{trig} \cdot BR(K_{3\pi}^{00}). \tag{1}$$

- Extracted signal $N_S = N_{Sign.~cand.} N_{Bkg} = 2437 (354 \pm 33_{stat}) = 2083 \pm 59_{stat}$ events;
- Signal/Background is $5.89 \pm 0.66_{stat}$;
- Number of normalization events $N_N = 72.99 \times 10^6$;
- Normalization acceptance $A_N = (4.477 \pm 0.002)\%$;
- Signal acceptance for the restricted phase space $A_S^r = (3.453 \pm 0.007)\%$;
- Signal acceptance for the full phase space $A_S = (0.651 \pm 0.001)\%$;
- Trigger correction (extracted with control triggers) $K_{trig} = K_{CHT} \cdot K_{NUT} = (0.998 \pm 0.002) \cdot (1.0007 \pm 0.0007) = 0.999 \pm 0.002;$
- PDG $BR(K_{3\pi}^{00}) = (1.760 \pm 0.023)\%;$

(ロ) (間) (目) (目) (目) (の)

14 / 28

Preliminary result: Central values and errors budget

	Full phase space		$S_l > 0.03 \text{ GeV}^2/c^4$	
$Br(K_{\mu 4})$ central value	$3.45 imes 10^{-6}$		$0.651 imes 10^{-6}$	
	δBR	$\delta BR/BR$	δBR	$\delta BR/BR$
Data stat. error	0.10×10^{-6}	2.85%	0.019×10^{-6}	2.85%
MC stat. error	$0.01 imes 10^{-6}$	0.21%	$0.001 imes10^{-6}$	0.21%
Trigger	$0.01 imes 10^{-6}$	0.18%	$0.001 imes 10^{-6}$	0.18%
Background	0.10×10^{-6}	2.96%	$0.019 imes 10^{-6}$	2.96%
Accidentals	$0.01 imes 10^{-6}$	0.32%	0.002×10^{-6}	0.32%
MUV inefficiency	$0.06 imes 10^{-6}$	1.65%	$0.011 imes10^{-6}$	1.65%
Form Factor modelling	$0.05 imes 10^{-6}$	1.37%	0.001×10^{-6}	0.14%
$BR(K_{3\pi})$ error (external)	0.05×10^{-6}	1.31%	0.009×10^{-6}	1.31%
Total error	$0.17 imes 10^{-6}$	4.83%	$0.030 imes 10^{-6}$	4.64%

- Accidentals obtained from side bands of time distributions;
- MUV inefficiency uncertainty taken as full inefficiency effect.

Preliminary result: Comparison to theory

Theory:

- J. Bijnens, G. Colangelo, J. Gasser, Nucl. Phys. B, 427 (1994) 427:
 - Tree approximation;
 - 1-loop:
 - BCG(1994): 'beyond 1-loop' with measured F from [Rosselet etc. Phys. Rev. D 15 (1977) 574].
- Re-calculated now:
 - $F(K_{e4})$ from NA48/2 (2015);
 - $R_1 = R(1loop)$;
 - 1-loop (F,R) phase;
 - 2020 PDG constants.

Conclusion

- A first observation and branching fraction measurement of $K^{\pm} \to \pi^0 \pi^0 \mu^{\pm} \nu$ decay is performed by NA48/2 experiment at SPS in CERN;
- We observe 2437 signal candidates with an estimated background of $354 \pm 33_{stat} \pm 62_{syst}$ events, Signal/Background ratio is $5.9 \pm 1.4_{tot}$
- Preliminary result for restricted phase space $(S_l > 0.03)$ is $BR(K_{\mu 4}^{00}, S_l > 0.03) = (0.65 \pm 0.019_{stat} \pm 0.024_{syst}) \times 10^{-6} = (0.65 \pm 0.03) \times 10^{-6}$;
- Preliminary full phase space result is $BR(K_{\mu 4}^{00}) = (3.4 \pm 0.10_{stat} \pm 0.13_{syst}) \times 10^{-6} = (3.4 \pm 0.2) \times 10^{-6}$.
- The results are consistent with a contribution of the R form factor, as computed at 1-loop ChPT.

17 / 28

Spare slides

SPARE SLIDES

Korotkova, Madigozhin (JINR)

Theoretical framework: decay width

 $K_{\mu4}^{00}$ matrix element is [J.Bijnens, G.Colangelo, J.Gasser, Nucl.Phys.B 427, 427 (1994)]:

$$T = \frac{G_f}{\sqrt{2}} \cdot V_{us}^* \cdot \underbrace{\overline{u}(p_\nu) \cdot \gamma_\mu \cdot (1 - \gamma_5) \cdot v(p_l)}_{Lepton \ part} \cdot \underbrace{(V_\mu - A_\mu)}_{Hadron \ part}$$
(2)

where

$$V_{\mu} = \frac{-H}{M_{K}^{3}} \varepsilon_{\mu,\nu,\rho,\sigma} L^{\nu} P^{\rho} Q^{\sigma}, \ A_{\mu} = -i \frac{1}{M_{K}} [P_{\mu} F + Q_{\mu} G + L_{\mu} R], \tag{3}$$

 $\varepsilon_{0,1,2,3}{=}1$ and the four-momenta are defined as $P=p_1+p_2,\ Q=p_1-p_2$ (p_1 and p_2 are the two pion momenta) and $L=p_l+p_\nu$. The form factors F,G,R,H are analytic functions of the decay kinematic variables. In general, decay width is a function of five Cabibbo-Maksymowicz variables. But for $K^{00}_{\mu^4}$, in s-wave approximation for $\pi^0\pi^0$, there are no dependence on $\cos\theta_\pi,\phi$, and so G=0,H=0:

$$d\Gamma_3 = \frac{G_f^2 |V_{us}|^2 (1 - z_l)^2 \sigma_\pi X}{2^{11} \pi^5 M_K^5} (I_1 + I_2 (2(\cos \theta_l)^2 - 1) + I_6 \cos \theta_l) dS_\pi dS_l d\cos \theta_l. \tag{4}$$

where
$$I_1 = \frac{1}{4}\{(1+z_l)|F_1|^2 + 2z_l|F_4|^2\}$$
, $I_2 = -\frac{1}{4}(1-z_l)|F_1|^2$, $I_6 = z_lRe(F_1^*F_4)$, $F_1 = X \cdot F$, $F_4 = -(PL)F - S_lR$, $z_l = \frac{m_l^2}{S_l}$, $\sigma_\pi = \sqrt{1 - \frac{4M_\pi^2}{s_\pi}}$, $X = \frac{1}{2}\sqrt{\lambda(M_K^2, S_\pi, S_l)}$, $\lambda(x, y, z) = x^2 + y^2 + z^2 - 2(xy + xz + yz)$. Only three variables $(S_\pi, S_l, \cos\theta_l)$ and two form factors (F, R) matter.

Theoretical framework: form factors

According to lepton universality, $F_s(S_{\pi}, S_l)$ s-wave form factor measured in K_{e4}^{00} may be used for $K_{\mu4}^{00}$ decay MC simulation, while the only available source of $R_s(S_{\pi}, S_l)$ is ChPT calculation.

- We have ChPT 1-loop generator code [BCG(1994)] with F(1loop), R(1loop).
- For the predictions beyong 1-loop (central value), BCG(1994) used $F = 5.59(1 + 0.08q^2)$, where $q^2 = S_{\pi}/4m_{\pi^+}^2 1$ [L.Rosselet et al., Phys. Rev. D15 (1977) 574].
- Additionally, from the NA48/2 K_{e4} analysis [J.R. Batley et al. JHEP 08 (2014) 159] we have the best measurement of F shape:

$$F(K_{e4}) = (1 + aq^2 + bq^4 + c \cdot S_I/4m_{\pi^+}^2), q^2 \ge 0$$

$$F(K_{e4}) = (1 + d\sqrt{|q^2/(1 + q^2)|} + c \cdot S_I/4m_{\pi^+}^2), q^2 \le 0,$$
(5)

20 / 28

where $q^2 = S_{\pi}/4m_{\pi^+}^2 - 1$, $a = 0.149 \pm 0.033 \pm 0.014$, $b = -0.070 \pm 0.039 \pm 0.013$, $c = 0.113 \pm 0.022 \pm 0.007$, $d = -0.256 \pm 0.049 \pm 0.016$.

For systematic studies we take into account the combined (both statistical and systematic) uncertainties of these parameters. Moreover, the absolute value was also measured $F = 6.079F(K_{e4})$.

Nevertheless, for MC production we have used $5F(K_{e4})$ (to be close to the 1-loop F), R(1loop), H=G=0 and zero phase between F and R.

Common selection criteria for signal and normalization channels

NA48/2 data collected in 2003-2004.

Signal (S) K_{u4} is $K^{\pm} \to \mu^{\pm} \nu \pi^0 \pi^0$. Normalization (N) $K_{3\pi}$ is $K^{\pm} \to \pi^{\pm} \pi^0 \pi^0$.

A common trigger chain: L1 trigger using HOD and LKr, followed by L2 trigger using DCH (MBX).

Combination: 4 isolated photons in time with a KABES track and with a DCH track.

Vertex 'charged position' Z_c is taken from the space matching of the KABES track and the DCH track.

- P_{KABES} in [54.67] GeV/c: P_{DCH} in [5.35] GeV/c: $E_{\gamma} > 3$ GeV;
- For π^0 (i = 1, 2):
 - $Z_1 = Z_{AB} = D_{AB} \sqrt{E_A E_B} / m_{-0}$:
 - $Z_2 = Z_{CD} = D_{CD} \sqrt{E_C E_D} / m_{-0}$
- $-1600 \text{ cm} < Z_p = Z_{LKR} (Z_1 + Z_2)/2 < 9000 \text{ cm}$ $(Z_n \text{ is the vertex 'neutral position'});$
- Flunge cut: R_{γ} @DCH1 > 11 cm, assuming $Z_n + 400$ cm decay position;
- $|Z_1 Z_2| < 500$ cm: $|Z_n Z_c| < 600$ cm.

The best combination of each mode in the event has the most compatible Z_1, Z_2, Z_c .

Normalization $K^{\pm} \to \pi^{\pm} \pi^0 \pi^0$ channel selection

No missing momentum is expected.

Figure: $K_{3\pi}$ kinematic selection area

 $K_{3\pi}$ kinematic selection ellipse:

- center:
 - $M(K_{3\pi}) = M_K^{PDG}$;
 - $P_t = 5 \text{ MeV}/c$;
- semi-axes:
 - $\Delta M(K_{3\pi}) = 10 \text{ MeV}/c^2$;
 - $\Delta P_t = 20 \text{ MeV}/c$.

Normalization channel selection output is $N_N=72.99\times 10^6~K_{3\pi}$ reconstructed events.

22 / 28

Signal $K^{\pm} ightarrow \mu^{\pm} u \pi^0 \pi^0$ channel selection

- Off the $K_{3\pi}$ kinematic ellipse;
- Good $K \mu$ tracks matching;
- \bullet $P_{DCH} > 10 \text{ GeV}/c$ for MUV efficiency;
- DCH track is in restricted MUV acceptance with high MUV efficiency;
- DCH track has associated MUV hits in the first two planes;
- $M_{miss}^2(assuming \ \pi^{\pm}) < 0.5 M_{miss}^2 0.0008 \ {\rm GeV}^2/c^4;$
- $cos(\Theta_I) < 0.6$;
- $S_I > 0.03 \text{ GeV}^2/c^4$ to reject $\pi^{\pm} \to \mu^{\pm} \nu$.

3718 $K_{\mu4}$ candidates selected (any M_{miss}^2).

23 / 28

$K_{\mu4}^{00}$ signal extraction procedure

We fit $K_{\mu4}$ data M_{miss}^2 spectrum with with a linear combination of the simulated signal, simulated background and unsimulated background spectra by minimizing the χ^2 :

$$\chi^{2} = \sum_{i=min}^{max} \frac{(Data_{i} - p_{0} \cdot S_{i} - p_{1}((1 - p_{2}) \cdot Bg_{i} + p_{2} \cdot UBg_{i}))^{2}}{\delta Data_{i}^{2} + p_{0}^{2} \cdot \delta S_{i}^{2} + p_{1}^{2}(1 - p_{2})^{2} \cdot \delta Bg_{i}^{2} + p_{1}^{2}p_{2}^{2} \cdot \delta UBg_{i}^{2}},$$
(6)

where i is the M_{miss}^2 bin number; $Data_i$ is the bin content of the data histogram; S_i , Bg_i , UBg_i are the bin contents of the simulated signal, simulated background and unsimulated background model, correspondingly. $\delta Data_i$, δS_i , δBg_i and δUBg_i are their statistical uncertainties, and p_0 , p_1 , p_2 are free parameters of the fit. Prior to fit, the S_i , Bg_i , UBg_i are scaled to make their integrals in the signal region equal to one. An interval of [0,1] is allowed for p_2 values during the fit. In such a way, p_0 represents the best fit MC signal in terms of events amount, p_1 is the total background in the signal region and p_2 is the share of unsimulated background. But we don't consider p_0 parameter (fit of the peak) as a measured signal size, as it may depend on the peak resolution simulation quality. The signal is extracted as a difference between the data histogram content in the signal region and p_1 representing the total background:

$$N_S = \Sigma_j Data_j - p_1, \tag{7}$$

where j bins interval corresponds to the signal region.

For the present result, we avoid the resolution simulation problem by ignoring the signal region in χ^2 calculation. The tails of MC simulated signal are taken into account outside the signal region, that requires an estimation of MC signal using the relation (7) during the fit.

$K_{\mu 4}^{00}$ acceptance vs R form factor contribution

Figure: MC acceptance ingredients for different R contributions

 We change R(1 loop) form factor normalization between 0% and 200% to illustrate different R-sensitivity of

• the full phase space acceptance N^{MC}

$$A_S = rac{N_{Selected}^{NNC}}{N_{Generated}^{MC}(all\ S_l^{true})}$$
 and

• the restricted phase space acceptance

$$A_S^r = \frac{N_{Selected}^{MC}}{N_{Generated}^{MC}(S_I^{true} > 0.03)}.$$

 For our systematic uncertainty, we consider only 20% R variation.

Korotkova, Madigozhin (JINR)

Trigger efficiency

- A common trigger chain for the signal (S) and normalization (N) modes: a first level (L1) trigger using signals from HOD (Q1+Q2) and LKr (NUT), followed by a second level (L2) trigger using DCH (MBX).
- It is possible to measure separately NUT efficiency using the $Q1 \cdot [E_{LKr} > 10 \ GeV] \cdot MBX$ control trigger and the 'charged trigger chain' $CHT = (Q1 + Q2) \cdot MBX$ efficiency using a special control trigger nx > 2||ny > 2 for 2003 and nx > 3||ny > 3 for 2004 data.
- The ratio $K_{trig} = \frac{\mathcal{E}_N}{\mathcal{E}_S}$ is a multiplicative trigger correction to the measured branching ratio. We decompose it to the neutral trigger and charged trigger corrections, that may be measured separately: $K_{trig} = (K_{NUT} = \frac{\mathcal{E}_{NUT}^{NUT}}{\mathcal{E}_{NUT}^{NUT}}) \times (K_{CHT} = \frac{\mathcal{E}_{S_C}^{CHT}}{\mathcal{E}_{S_C}^{CHT}})$.
- Direct \mathcal{E}_S measurement has only 2% precision due to small statistics of the control samples for the rare decay.
- \mathcal{E}_{S}^{CHT} is estimated using MC trigger simulation and taking into account comparison between MC and measured \mathcal{E}_{N}^{CHT} ;
- \mathcal{E}_{S}^{NUT} is recalculated from \mathcal{E}_{N}^{NUT} using MC simulated $(S_{\pi}, Min(E_{\gamma}), Z_{c})$ distributions.

As a result, we estimate the charged trigger correction factor as $K_{CHT}=0.998\pm0.002$ and the neutral trigger correction factor as $K_{NUT}=1.0007\pm0.0007$.

Signal versus S_{π}, S_{I}

Figure: 1D projections comparison for $S_I > 0.03~\mbox{GeV}^2/\mbox{c}^4$

Korotkova, Madigozhin (JINR) 25.02.2022 27 / 28

Signal versus S_{π}, S_{I}

Figure: 1D projections comparison for $S_l > 0.03 \text{ GeV}^2/c^4$