First measurement of $K^\pm o \pi^0 \pi^0 \mu^\pm u$ $(K^{00}_{\mu 4})$ decay

A. $Korotkova^1$ on behalf of the NA48/2 Collaboration

¹NA48/2 Collaboration, CERN

Moriond EW session, 12-19.03.2022

Outline

- Theoretical framework
- 2 NA48/2 setup
- Selection
- 4 Acceptance
- Residual background
- 6 Signal extraction
- Decay model systematic uncertainty
- Result
- Onclusion
- Spare slides

$K^{\pm} ightarrow \pi^0 \pi^0 \mu^{\pm} u (K_{u4}^{00})$ state of the art

 $K \to \pi\pi\mu\nu(K_{l4})$ depends on F, G, R, H form-factors. Cabibbo-Maksymowicz variables: S_{π} (dipion mass squared), S_{l} (dilepton mass squared) and angles θ_{π} (in the dipion frame), θ_{l} (in the dilepton frame), ϕ .

- For $K_{\mu 4}^{00}$, s-wave for $\pi^0 \pi^0$, there are no dependence on $\cos \theta_{\pi}, \phi$, and only F and R contribute.
- Unlike K_{e4}^{00} case, R plays some role due to μ mass.

K _{/4} mode	BR [10 ⁻⁵]	N_{cand}	
K_{e4}^{\pm}	4.26 ± 0.04	1108941	NA48/2 (2012)
K_{e4}^{00}	2.55 ± 0.04	65210	NA48/2 (2014)
$K_{\mu 4}^{\pm}$	1.4 ± 0.9	7	Bisi et al. (1967)
$K_{\mu 4}^{00}$?	0	, ,

 $K^{00}_{\mu4}$: first observation, ChPT test, check of R presence, potential study of $\pi\pi$ rescattering effects in the $F(S_{\pi})$.

$$K_{\mu 4}$$
: huge bkg $K^{\pm} \to \pi \pi (\pi^{\pm} \to \mu^{\pm} \nu)$.

- According to lepton universality, experimental $F(S_{\pi}, S_I)$ parameterization from K_{e4}^{00} [NA48/2 JHEP 08 (2014) 159] may be used for $K_{\mu4}^{00}$.
- The only available source of $R(S_{\pi}, S_l)$ is ChPT calculation [J.Bijnens, G.Colangelo, J.Gasser, Nucl.Phys.B 427 (1994) 427].

NA48/2 beamline (CERN SPS, 2003-2004)

NA48/2 main goal were $K_{3\pi}$ charge asymmetry studies; additional rare decys program.

- Two charged beams:
 - 6% of K[±]
 - $\langle P_K \rangle \approx 60 \text{ GeV}/c$
 - $\Delta P_K/\langle P_K \rangle \approx \pm 3.8\%$
- KABES (Kaon Beam Spectrometer) resolutions:
 - $\sigma(X,Y)\sim 800~\mu\mathrm{m}$
 - $\sigma(P_K)/P_K \sim 1\%$
 - $\sigma(T)\sim 600$ ps

NA48/2 setup (CERN SPS, 2003-2004)

- Magnetic spectrometer (drift chambers DCH1–DCH4):
 - $\sigma(X, Y) \sim 90 \ \mu \text{m}$ per chamber
 - $\sigma(P_{DCH})/P_{DCH} = (1.02 \oplus 0.044 \cdot P_{DCH})\%$ $(P_{DCH} \text{ in GeV}/c)$
- Scintillator hodoscope (HOD):
 - $\sigma(T) \sim 150 \text{ ps}$
- Liquid Krypton EM calorimeter (LKr):
 - $\sigma_{\scriptscriptstyle X} = \sigma_{\scriptscriptstyle Y} = (0.42/\sqrt{E_{\scriptscriptstyle \gamma}} \oplus 0.06)$ cm
 - $\sigma(E_\gamma)/E_\gamma=(3.2/\sqrt{E_\gamma}\oplus 9.0/E_\gamma\oplus 0.42)\%$ $(E_\gamma \text{ in GeV})$
- Hadronic calorimeter, muon system MUV.

4□ > 4ⓓ > 4 ≧ > 4 ≧ > □
●

Korotkova (NA48/2) 12-19.03.2022 5 / 30

Events selection

- Signal $K_{\mu 4}$ is $K^\pm o \pi^0 \pi^0 \mu^\pm
 u$
- Normalization $K_{3\pi}$ is $K^{\pm} \to \pi^{\pm}\pi^{0}\pi^{0}$
- Trigger chain: L1 trigger using HOD and LKr, followed by L2 trigger using DCH for online momentum calculation.
- Event selection: 4 isolated photons consistent with $2\pi^0$ in time-spatial matching with a KABES beam track and a DCH track.

Normalization $K_{3\pi}$ kinematic selection ellipse:

- center:
 - $M(K_{3\pi}) = M_K^{PDG}$
 - $P_t = 5 \text{ MeV}/c$
- semi-axes:
 - $\Delta M(K_{3\pi}) = 10 \text{ MeV}/c^2$
 - $\Delta P_t = 20 \text{ MeV}/c$
- $72.99 \times 10^6~K_{3\pi}$ selected data events.

$K^{\pm} \rightarrow \pi^0 \pi^0 \mu^{\pm} \nu$ signal events selection

- Off the $K_{3\pi}$ kinematic ellipse
- DCH track has associated MUV response

$$M_{miss}^2 = ({f P}_{\mathcal{K}} - {f P}(\pi_1^0) - {f P}(\pi_2^0) - {f P}(\mu^\pm))^2$$

$$M_{miss}^2(\pi^{\pm}) = (\mathbf{P}_K - \mathbf{P}(\pi_1^0) - \mathbf{P}(\pi_2^0) - \mathbf{P}(\pi^{\pm}))^2$$

• $M_{\rm mics}^2(\pi^{\pm}) < 0.5 M_{\rm mics}^2 - 0.0008 \ {\rm GeV}^2/c^4$

$\mathcal{K}^{\pm} ightarrow \pi^0 \pi^0 \mu^{\pm} u$ signal events selection

• $cos(\Theta_I) < 0.6$

8 / 30

$K^{\pm} \rightarrow \pi^0 \pi^0 \mu^{\pm} \nu$ signal events selection

- $S_I = m(\mu\nu)^2 > 0.03 \text{ GeV}^2/c^4$ (to reject $\pi^{\pm} \to \mu^{\pm}\nu$).
- 3718 $K_{\mu 4}$ data candidates selected
- ullet 2437 data candidates in M_{miss}^2 signal region [-0.002,0.002] ${
 m GeV}^2/c^4$
- ullet The MC M_{miss}^2 signal region contains 98.2% of all selected MC events

▶ 4□ ▶ 4 = ▶ 4 = ▶ 9 Q ○

9 / 30

Acceptances

• $K_{\mu 4}^{00}$ signal accepance is

$$A_S = \frac{N_{Selected~in~signal~region}^{MC}}{N_{Generated}^{MC}(all~S_t^{true})} = (0.651 \pm 0.001)\%,$$

• However, for the restricted phase space region $S_{i}^{true} > 0.03 \text{ GeV}^2/c^4$, the signal acceptance is

$$A_S^r = \frac{N_{Selected~in~signal~region}^{MC}}{N_{Generated}^{MC}(S_I^{true} > 0.03)} = (3.453 \pm 0.007)\%.$$

• $K_{3\pi}$ normalization channel acceptance is

$$A_N = rac{N_{Selected}^{MC}}{N_{Generated}^{MC}} = (4.477 \pm 0.002)\%$$

Residual background

- $K^{\pm} \to \pi^{\pm} \pi^{0} \pi^{0}$,
- followed by $\pi^\pm \to \mu \nu$ before MUV with a probability $\approx 10\%$ for $P(\pi^\pm) \approx 10$ GeV/c.

- $K_{3\pi}$ background with π^{\pm} decay before LKr: from MC.
- $K_{3\pi}$ background with late π^{\pm} decay or muon emission in a late hadron shower:
 - Can not be easily simulated
 - Data-driven method of estimation
 - Background-enhansed control sample, selected using E_{LKr} and P_{DCH}

11 / 30

$K_{\mu 4}^{00}$ signal extraction fit

- 2437 candidates in the signal region.
- Fit in the M_{miss}^2 interval [-0.003,0.006] GeV²/ c^4 , ignoring the signal region to decrease sensitivity to the imperfect MC resolution.
- Data fit by a linear combination of background and MC signal tails.
- $354 \pm 33_{stat} \pm 62_{syst}$ background events.
- The background-related systematics are determined by varying the way the background is estimated.

12 / 30

Signal versus S_{π}, S_{I}

- The branching ratio is measured for the restricted phase space $S_L^{true} > 0.03 \text{ GeV}^2/c^4$.
- Extrapolation to the full phase space depends on the theory.

13 / 30

Signal versus S_{π}, S_{I}

Figure: 1D projections comparison for $S_I > 0.03~\mbox{GeV}^2/\mbox{c}^4$

14 / 30

Acceptance variations due to $K^{00}_{\mu4}$ generator modifications

NA48/2 JHEP 08 (2014) 159:

The absolute normalization is also measured $F = f \times F(K_{e4})$, $f = 6.079 \pm 0.055$.

$$F(\mathcal{K}_{e4}) = egin{cases} (1+aq^2+bq^4+c\cdot S_I/4m_{\pi^+}^2) ext{ for } q^2 \geq 0 \ (1+d\sqrt{|q^2/(1+q^2)|}+c\cdot S_I/4m_{\pi^+}^2) ext{ for } q^2 < 0 \end{cases}$$
 where $q^2 = S_\pi/4m_{\pi^+}^2 - 1$.

- Decay generator was modified by MC events weighting.
- The acceptance spread is taken as systematics.

Preliminary result: Ingredients

$$BR(K_{\mu 4}^{00}) = rac{N_S}{N_N} \cdot rac{A_N}{A_S} \cdot K_{trig} \cdot BR(K_{3\pi}^{00}).$$

- Extracted signal $N_S = N_{Sign.\ cand.} N_{Bkg} = 2437 (354 \pm 33_{stat}) = 2083 \pm 59_{stat}$ events; • Signal/Background is $5.89 \pm 0.66_{stat}$;
- Number of normalization events $N_N = 72.99 \times 10^6$;
- Normalization acceptance $A_N = (4.477 \pm 0.002)\%$;
- Signal acceptance for the restricted phase space $A_S^r = (3.453 \pm 0.007)\%$;
- Signal acceptance for the full phase space $A_S = (0.651 \pm 0.001)\%$;
- Trigger correction (extracted with control triggers) $K_{trig} = K_{CHT} \cdot K_{NUT} = (0.998 \pm 0.002) \cdot (1.0007 \pm 0.0007) = 0.999 \pm 0.002;$
- PDG $BR(K_{3\pi}^{00}) = (1.760 \pm 0.023)\%;$

(ロ) (레) (토) (토) (토) (토) **(** 이익은

Korotkova (NA48/2) 12-19.03.2022 16 / 30

Preliminary result: Central values and errors budget

	Full phase space		$S_l > 0.03 \; { m GeV}^2/{ m c}^4$	
$BR(K_{\mu4})$ central value $[10^{-6}]$	3.45		0.651	
	$\delta BR[10^{-6}]$	$\delta BR/BR$	$\delta BR[10^{-6}]$	$\delta BR/BR$
Data stat. error	0.10	2.85%	0.019	2.85%
MC stat. error	0.01	0.21%	0.001	0.21%
Trigger	0.01	0.18%	0.001	0.18%
Background	0.10	2.96%	0.019	2.96%
Accidentals	0.01	0.32%	0.002	0.32%
MUV inefficiency	0.06	1.65%	0.011	1.65%
Form Factor modelling	0.05	1.37%	0.001	0.14%
$BR(K_{3\pi})$ error (external)	0.05	1.31%	0.009	1.31%
Total error	0.17	4.83%	0.030	4.64%

- Accidentals obtained from side bands of time distributions;
- MUV inefficiency uncertainty taken as full inefficiency effect.

Preliminary result: Comparison to theory

Theory:

- J. Bijnens, G. Colangelo, J. Gasser, Nucl. Phys. B, 427 (1994) 427:
 - Tree approximation;
 - 1-loop;
 - BCG(1994): 'beyond 1-loop' with measured F from [Rosselet etc. Phys. Rev. D 15 (1977) 574].
- Re-calculated now:
 - F(K_{e4}) from NA48/2 (2015);
 - $R_1 = R(1loop)$;
 - 1-loop (F,R) phase;
 - 2020 PDG constants.

18 / 30

Conclusion

A first observation and branching fraction measurement of $K^\pm \to \pi^0 \pi^0 \mu^\pm \nu$ decay is performed by NA48/2 experiment at SPS in CERN

- We observe 2437 signal candidates with an estimated background of $354 \pm 33_{stat} \pm 62_{syst}$ events, Signal/Background ratio is $5.9 \pm 1.4_{tot}$
- Preliminary result for restricted phase space ($S_l > 0.03$) is

$$BR(K_{\mu 4}^{00}, S_l > 0.03) = (0.65 \pm 0.019_{stat} \pm 0.024_{syst}) \times 10^{-6} = (0.65 \pm 0.03) \times 10^{-6};$$

Preliminary full phase space result is

$$BR(K_{\mu 4}^{00}) = (3.4 \pm 0.10_{stat} \pm 0.13_{syst}) \times 10^{-6} = (3.4 \pm 0.2) \times 10^{-6}.$$

• The results are consistent with a contribution of the R form factor, as computed at 1-loop ChPT.

Spare slides

SPARE SLIDES

Theoretical framework: decay width

 $K_{\mu4}^{00}$ matrix element is [J.Bijnens, G.Colangelo, J.Gasser, Nucl.Phys.B 427, 427 (1994)]:

$$T = \frac{G_f}{\sqrt{2}} \cdot V_{us}^* \cdot \underbrace{\overline{u}(p_\nu) \cdot \gamma_\mu \cdot (1 - \gamma_5) \cdot v(p_l)}_{Lepton \ part} \cdot \underbrace{(V_\mu - A_\mu)}_{Hadron \ part}$$
(1)

where

$$V_{\mu} = \frac{-H}{M_K^3} \varepsilon_{\mu,\nu,\rho,\sigma} L^{\nu} P^{\rho} Q^{\sigma}, \ A_{\mu} = -i \frac{1}{M_K} [P_{\mu} F + Q_{\mu} G + L_{\mu} R], \tag{2}$$

 $\varepsilon_{0,1,2,3}{=}1$ and the four-momenta are defined as $P=p_1+p_2,\ Q=p_1-p_2$ (p_1 and p_2 are the two pion momenta) and $L=p_l+p_\nu$. The form factors F,G,R,H are analytic functions of the decay kinematic variables. In general, decay width is a function of five Cabibbo-Maksymowicz variables. But for $K^{00}_{\mu^4}$, in s-wave approximation for $\pi^0\pi^0$, there are no dependence on $\cos\theta_\pi,\phi$, and so G=0,H=0:

$$d\Gamma_3 = \frac{G_f^2 |V_{us}|^2 (1 - z_I)^2 \sigma_\pi X}{2^{11} \pi^5 M_K^5} (I_1 + I_2 (2(\cos \theta_I)^2 - 1) + I_6 \cos \theta_I) dS_\pi dS_I d\cos \theta_I.$$
(3)

21 / 30

where
$$I_1 = \frac{1}{4}\{(1+z_l)|F_1|^2 + 2z_l|F_4|^2\}$$
, $I_2 = -\frac{1}{4}(1-z_l)|F_1|^2$, $I_6 = z_lRe(F_1^*F_4)$, $F_1 = X \cdot F$, $F_4 = -(PL)F - S_lR$, $z_l = \frac{m_l^2}{S_l}$, $\sigma_\pi = \sqrt{1 - \frac{4M_\pi^2}{S_\pi}}$, $X = \frac{1}{2}\sqrt{\lambda(M_K^2, S_\pi, S_l)}$, $\lambda(x, y, z) = x^2 + y^2 + z^2 - 2(xy + xz + yz)$. Only three variables $(S_\pi, S_l, \cos\theta_l)$ and two form factors (F, R) matter.

◆ロト→圏ト→恵ト→恵・今日・夏・からへ

Theoretical framework: form factors

According to lepton universality, $F_s(S_{\pi}, S_l)$ s-wave form factor measured in K_{e4}^{00} may be used for $K_{\mu4}^{00}$ decay MC simulation, while the only available source of $R_s(S_{\pi}, S_l)$ is ChPT calculation.

- We have ChPT 1-loop generator code [BCG(1994)] with F(1loop), R(1loop).
- For the predictions beyong 1-loop (central value), BCG(1994) used $F = 5.59(1 + 0.08q^2)$, where $q^2 = S_{\pi}/4m_{\pi^+}^2 1$ [L.Rosselet et al., Phys. Rev. D15 (1977) 574].
- Additionally, from the NA48/2 K_{e4} analysis [J.R. Batley et al. JHEP 08 (2014) 159] we have the best measurement of F shape:

$$F(K_{e4}) = (1 + aq^2 + bq^4 + c \cdot S_I/4m_{\pi^+}^2), q^2 \ge 0$$

$$F(K_{e4}) = (1 + d\sqrt{|q^2/(1 + q^2)|} + c \cdot S_I/4m_{\pi^+}^2), q^2 \le 0,$$
(4)

where $q^2 = S_{\pi}/4m_{\pi^+}^2 - 1$, $a = 0.149 \pm 0.033 \pm 0.014$, $b = -0.070 \pm 0.039 \pm 0.013$, $c = 0.113 \pm 0.022 \pm 0.007$, $d = -0.256 \pm 0.049 \pm 0.016$.

For systematic studies we take into account the combined (both statistical and systematic) uncertainties of these parameters. Moreover, the absolute value was also measured $F = 6.079F(K_{e4})$.

Nevertheless, for MC production we have used $5F(K_{e4})$ (to be close to the 1-loop F), R(1loop), H = G = 0 and zero phase between F and R.

F form factor

Figure: Values near the lines: S_l [GeV²/ c^4]

R form factor

Figure: Values near the lines: S_l [GeV²/ c^4]

Common selection criteria for signal and normalization channels

NA48/2 data collected in 2003-2004.

Signal (S) $K_{\mu4}$ is $K^{\pm} \to \mu^{\pm} \nu \pi^0 \pi^0$. Normalization (N) $K_{3\pi}$ is $K^{\pm} \to \pi^{\pm} \pi^0 \pi^0$.

A common trigger chain: L1 trigger using HOD and LKr, followed by L2 trigger using DCH (MBX).

Combination: 4 isolated photons in time with a KABES track and with a DCH track.

Vertex 'charged position' Z_c is taken from the space matching of the KABES track and the DCH track.

- P_{KABES} in [54,67] GeV/c; P_{DCH} in [5,35] GeV/c; $E_{\gamma} > 3$ GeV;
- For π_i^0 (i = 1, 2):
 - $Z_1 = Z_{AB} = D_{AB} \sqrt{E_A E_B} / m_{\pi^0}$;
 - $Z_2 = Z_{CD} = D_{CD} \sqrt{E_C E_D} / m_{\pi^0}$.
- $-1600 \ cm < Z_n = Z_{LKR} (Z_1 + Z_2)/2 < 9000 \ cm$ (Z_n is the vertex 'neutral position');
- Flunge cut: R_{γ} @DCH1 > 11 cm, assuming $Z_n + 400$ cm decay position;
- $|Z_1 Z_2| < 500$ cm; $|Z_n Z_c| < 600$ cm.

The best combination of each mode in the event has the most compatible Z_1, Z_2, Z_c .

Korotkova (NA48/2) 12-19.03.2022 25 / 30

Normalization $K^{\pm} \to \pi^{\pm} \pi^0 \pi^0$ channel selection

No missing momentum is expected.

Figure: $K_{3\pi}$ kinematic selection area

 $K_{3\pi}$ kinematic selection ellipse:

- center:
 - $M(K_{3\pi}) = M_K^{PDG}$;
 - $P_t = 5 \text{ MeV}/c$;
- semi-axes:
 - $\Delta M(K_{3\pi}) = 10 \text{ MeV}/c^2$;
 - $\Delta P_t = 20 \text{ MeV}/c$.

Normalization channel selection output is $N_N=72.99\times 10^6~K_{3\pi}$ reconstructed events.

Signal $K^\pm o \mu^\pm u \pi^0 \pi^0$ channel selection

- Off the $K_{3\pi}$ kinematic ellipse;
- Good $K \mu$ tracks matching;
- \bullet $P_{DCH} > 10 \text{ GeV}/c$ for MUV efficiency;
- DCH track is in restricted MUV acceptance with high MUV efficiency;
- DCH track has associated MUV hits in the first two planes;
- $M_{miss}^2(assuming \pi^{\pm}) < 0.5 M_{miss}^2 0.0008 \text{ GeV}^2/c^4;$
- $cos(\Theta_I) < 0.6$;
- $S_I > 0.03 \text{ GeV}^2/c^4$ to reject $\pi^{\pm} \to \mu^{\pm} \nu$.

3718 $K_{\mu4}$ candidates selected (any M_{miss}^2).

27 / 30

$K_{\mu4}^{00}$ signal extraction procedure

We fit $K_{\mu4}$ data M_{miss}^2 spectrum with with a linear combination of the simulated signal, simulated background and unsimulated background spectra by minimizing the χ^2 :

$$\chi^{2} = \sum_{i=min}^{max} \frac{(Data_{i} - p_{0} \cdot S_{i} - p_{1}((1 - p_{2}) \cdot Bg_{i} + p_{2} \cdot UBg_{i}))^{2}}{\delta Data_{i}^{2} + p_{0}^{2} \cdot \delta S_{i}^{2} + p_{1}^{2}(1 - p_{2})^{2} \cdot \delta Bg_{i}^{2} + p_{1}^{2}p_{2}^{2} \cdot \delta UBg_{i}^{2}},$$
(5)

where i is the M_{miss}^2 bin number; $Data_i$ is the bin content of the data histogram; S_i , Bg_i , UBg_i are the bin contents of the simulated signal, simulated background and unsimulated background model, correspondingly. $\delta Data_i$, δS_i , δBg_i and δUBg_i are their statistical uncertainties, and p_0 , p_1 , p_2 are free parameters of the fit. Prior to fit, the S_i , Bg_i , UBg_i are scaled to make their integrals in the signal region equal to one. An interval of [0,1] is allowed for p_2 values during the fit. In such a way, p_0 represents the best fit MC signal in terms of events amount, p_1 is the total background in the signal region and p_2 is the share of unsimulated background. But we don't consider p_0 parameter (fit of the peak) as a measured signal size, as it may depend on the peak resolution simulation quality. The signal is extracted as a difference between the data histogram content in the signal region and p_1 representing the total background:

$$N_S = \Sigma_j Data_j - p_1, \tag{6}$$

28 / 30

where j bins interval corresponds to the signal region.

For the present result, we avoid the resolution simulation problem by ignoring the signal region in χ^2 calculation. The tails of MC simulated signal are taken into account outside the signal region, that requires an estimation of MC signal using the relation (6) during the fit.

$K_{\mu 4}^{00}$ acceptance vs R form factor contribution

Figure: MC acceptance ingredients for different R contributions

- We change R(1 loop) form factor normalization between 0% and 200% to illustrate different R-sensitivity of
 - the full phase space acceptance N^{MC}

$$A_S = rac{N_{Selected}^{NNC}}{N_{Generated}^{MC}(all\ S_l^{true})}$$
 and

• the restricted phase space acceptance

$$A_S^r = \frac{N_{Selected}^{MC}}{N_{Generated}^{MC}(S_I^{true} > 0.03)}.$$

 For our systematic uncertainty, we consider only 20% R variation.

29 / 30

Trigger efficiency

- A common trigger chain for the signal (S) and normalization (N) modes: a first level (L1) trigger using signals from HOD (Q1+Q2) and LKr (NUT), followed by a second level (L2) trigger using DCH (MBX).
- It is possible to measure separately NUT efficiency using the $Q1 \cdot [E_{LKr} > 10 \ GeV] \cdot MBX$ control trigger and the 'charged trigger chain' $CHT = (Q1 + Q2) \cdot MBX$ efficiency using a special control trigger nx > 2||ny > 2 for 2003 and nx > 3||ny > 3 for 2004 data.
- The ratio $K_{trig} = \frac{\mathcal{E}_N}{\mathcal{E}_S}$ is a multiplicative trigger correction to the measured branching ratio. We decompose it to the neutral trigger and charged trigger corrections, that may be measured separately: $K_{trig} = (K_{NUT} = \frac{\mathcal{E}_{NUT}^{NUT}}{\mathcal{E}_{NUT}^{NUT}}) \times (K_{CHT} = \frac{\mathcal{E}_{S_C}^{CHT}}{\mathcal{E}_{S_C}^{CHT}})$.
- Direct \mathcal{E}_S measurement has only 2% precision due to small statistics of the control samples for the rare decay.
- \mathcal{E}_{S}^{CHT} is estimated using MC trigger simulation and taking into account comparison between MC and measured \mathcal{E}_{N}^{CHT} ;
- \mathcal{E}_{S}^{NUT} is recalculated from \mathcal{E}_{N}^{NUT} using MC simulated $(S_{\pi}, Min(E_{\gamma}), Z_{c})$ distributions.

As a result, we estimate the charged trigger correction factor as $K_{CHT} = 0.998 \pm 0.002$ and the neutral trigger correction factor as $K_{NUT} = 1.0007 \pm 0.0007$.