Beyond Jarlskog: Playing with Flavor Invariants

Based on:

1. Q. Bonnefoy (DESY), E. Gendy (UHH), CG and J. Ruderman (NYU) arXiv: 2112.03889 "Beyond Jarlskog: 699 invariants for CP violation in SMEFT".

+ follow up paper to appear soon

2. Q. Bonnefoy (DESY), CG, J. Kley (DESY) to appear later this week: "The shift-invariant orders of an ALP".

Outline

The collective nature of CPV: Real vs. Imaginary
 The (flavour-)invariant measures of CPV
 Beyond Jarlskog: the 699 (minimal) CPV invariants of SMEFT 6
 Beyond Jarlskog: the 13 invariants of ALP shift-symmetry breaking
 The collective nature of shift-symmetry breaking
 $R G$ invariance of the invariants

Note 1: I'll consider only heavy/decoupling new physics

Note 2: I'll assume that $S U(2) x U(1)$ is linearly realised above the weak scale, i.e. SMEFT rather than HEFT. Our construction can be generalised but we haven't gone through this exercise (yet). I'll also assume that possible B and L violating effects are pushed to a high scale irrelevant for our discussion.

Does new physics break CP?

- Unlike B \& L numbers, CP is not an accidental symmetry of SM_{4}
- But its violation is "screened" by the CKM selection rules (see next slides)
- BSM CPV effects can be $\mathrm{O}(1)$ in most loop-level FCNC processes

$\begin{aligned} & h e^{2 i \sigma}=A_{\mathrm{NP}}\left(B^{0} \rightarrow \bar{B}^{0}\right) / A_{\mathrm{SM}}\left(B^{0} \rightarrow \bar{B}^{0}\right) \\ & \nwarrow \uparrow \text { NP parameters } \end{aligned}$			$\frac{C_{i j}^{2}}{\Lambda^{2}}\left(\bar{q}_{i, L} \gamma_{\mu} q_{j, L}\right)^{2}$		$h \simeq \frac{\left\|C_{i j}\right\|^{2}}{\left\|V_{t i}^{*} V_{t j}\right\|^{2}}\left(\frac{4.5 \mathrm{TeV}}{\Lambda}\right)^{2}$		
Couplings	NP loop order	Sensitivity for Summer 2019 [TeV]		Phase I Sensitivity [TeV]		Phase II Sensitivity [TeV]	
		B_{d} mixing	B_{s} mixing	B_{d} mixing	B_{s} mixing	B_{d} mixing	B_{s} mixing
$\left\|C_{i j}\right\|=\left\|V_{t i} V_{t j}^{*}\right\|$	tree level	9	13	17	18	20	21
(CKM-like)	one loop	0.7	1.0	1.3	1.4	1.6	1.7
$\left\|C_{i j}\right\|=1$	tree level	1×10^{3}	3×10^{2}	2×10^{3}	4×10^{2}	2×10^{3}	5×10^{2}
(no hierarchy)	one loop	80	20	2×10^{2}	30	2×10^{2}	40

Charles et al. '20

- On the other hand, there are already strong (indirect) constraints, e.g., EDM
- We need a map to explore CPV effects:
- What are the BSM sources of CPV?
- What could be their sizes?
- What should be the structure of CPV to allow new physics still accessible at colliders?

CPV in SM_{4}

CPV comes from mixing among quarks and the resulting couplings to W

$$
\begin{aligned}
& \mathcal{L}_{\text {mix }}=\frac{e}{\sqrt{2} \sin \theta_{w}}\left[W_{\mu}^{+} \bar{u} V \gamma^{\mu}\left(\frac{1-\gamma_{5}}{2}\right) d+W_{\mu}^{-} \bar{d} V^{\dagger} \gamma^{\mu}\left(\frac{1-\gamma_{5}}{2}\right) u\right] \\
& \quad \frac{\mathrm{CP}}{\sqrt{2} \sin \theta_{w}}\left[W_{\mu}^{+} \bar{u}\left(V^{\dagger}\right)^{T} \gamma^{\mu}\left(\frac{1-\gamma_{5}}{2}\right) d+W_{\mu}^{-} \bar{d} V^{T} \gamma^{\mu}\left(\frac{1-\gamma_{5}}{2}\right) u\right]
\end{aligned}
$$

Phases in CKM break CP!

Are Phases a Sign of CPV?

Only after exhausting all flavour symmetries!

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
\frac{72-21 i}{325} & \frac{4}{13} & -\frac{12 i}{13} \\
-\frac{12}{13} & \frac{576+168 i}{1625} & \frac{49-168 i}{65} \\
-\frac{96-28 i}{325} & -\frac{57}{65} & -\frac{24 i}{65}
\end{array}\right)
$$

Are Phases a Sign of CPV?

Only after exhausting all flavour symmetries!

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
\frac{72-21 i}{325} & \frac{4}{13} & -\frac{12 i}{13} \\
-\frac{12}{13} & \frac{576+168 i}{1025} & \frac{49-188 i}{65} \\
-\frac{69-28 i}{325} & -\frac{57}{65} & -\frac{24 i}{65}
\end{array}\right)
$$

Are Phases a Sign of CPV?

Only after exhausting all flavour symmetries!

$$
\begin{gathered}
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
\frac{72-21 i}{325} & \frac{4}{13} & -\frac{12 i}{13} \\
-\frac{12}{13} & \frac{576+168 i}{1625} & \frac{49-168 i}{65} \\
-\frac{96-28 i}{325} & -\frac{57}{65} & -\frac{24 i}{65}
\end{array}\right) \\
\text { II } \\
\qquad \begin{array}{c}
\text { phases absorbed by redefining quark fields }
\end{array} \\
\begin{array}{ccc}
\left(\begin{array}{ccc}
\frac{3-4 i}{5} & 0 & 0 \\
0 & \frac{4-3 i}{5} \\
0 & 0 & \frac{3-4 i}{5}
\end{array}\right)\left(\begin{array}{ccc}
\frac{3}{13} & \frac{4}{13} & \frac{12}{13} \\
-\frac{12}{13} & \frac{24}{65} & \frac{7}{65} \\
-\frac{4}{65} & -\frac{24}{65}
\end{array}\right)\left(\begin{array}{ccc}
\left(\frac{4+3 i}{5}\right. & 0 & 0 \\
0 & \frac{3+4 i}{5} & 0 \\
0 & 0 & \frac{4-3 i}{5}
\end{array}\right)
\end{array}
\end{gathered}
$$

Are Phases a Sign of CPV?

Only after exhausting all flavour symmetries!

$$
\begin{gathered}
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
\frac{72-21 i}{325} & \frac{4}{13} & -\frac{12 i}{13} \\
-\frac{12}{13} & \frac{576+168 i}{1625} & \frac{49-168 i}{65} \\
-\frac{96-28 i}{325} & -\frac{57}{65} & -\frac{24 i}{65}
\end{array}\right) \\
\text { II } \\
\qquad \begin{array}{c}
\text { phases absorbed by redefining quark fields }
\end{array} \\
\begin{array}{ccc}
\left(\begin{array}{ccc}
\frac{3-4 i}{5} & 0 & 0 \\
0 & \frac{4-3 i}{5} \\
0 & 0 & \frac{3-4 i}{5}
\end{array}\right)\left(\begin{array}{ccc}
\frac{3}{13} & \frac{4}{13} & \frac{12}{13} \\
-\frac{12}{13} & \frac{24}{65} & \frac{7}{65} \\
-\frac{4}{65} & -\frac{24}{65}
\end{array}\right)\left(\begin{array}{ccc}
\left(\frac{4+3 i}{5}\right. & 0 & 0 \\
0 & \frac{3+4 i}{5} & 0 \\
0 & 0 & \frac{4-3 i}{5}
\end{array}\right)
\end{array}
\end{gathered}
$$

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
\frac{2172-5004 i}{8125} & -\frac{1784+432 i}{8125} & -\frac{2427+5196 i}{8125} \\
-\frac{3747+3996 i}{8125} & \frac{3324+912 i}{8125} & \frac{4772-1164 i}{8125} \\
-\frac{308+144 i}{1105} & -\frac{4389+2052 i}{5525} & \frac{1848+864 i}{5525}
\end{array}\right)
$$

Are Phases a Sign of CPV?

Only after exhausting all flavour symmetries!

$$
\begin{gathered}
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
\frac{72-21 i}{325} & \frac{4}{13} & -\frac{12 i}{13} \\
-\frac{12}{13} & \frac{576+168 i}{1625} & \frac{49-168 i}{65} \\
-\frac{96-28 i}{325} & -\frac{57}{65} & -\frac{24 i}{65}
\end{array}\right) \\
\text { II } \\
\qquad \begin{array}{c}
\text { phases absorbed by redefining quark fields }
\end{array} \\
\begin{array}{ccc}
\left(\begin{array}{ccc}
\frac{3-4 i}{5} & 0 & 0 \\
0 & \frac{4-3 i}{5} & 0 \\
0 & 0 & \frac{3-4 i}{5}
\end{array}\right)\left(\begin{array}{ccc}
\frac{3}{13} \\
-\frac{12}{13} & \frac{12}{13} & \frac{12}{65} \\
-\frac{4}{13} & -\frac{57}{65} & \frac{24}{65}
\end{array}\right)\left(\begin{array}{ccc}
\frac{4+3 i}{5} & 0 & 0 \\
0 & \frac{3+4 i}{5} & 0 \\
0 & 0 & \frac{4-3 i}{5}
\end{array}\right)
\end{array}
\end{gathered}
$$

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
\frac{2172-5004 i}{8125} & -\frac{1784+432 i}{8125} & -\frac{2427+5196 i}{8125} \\
-\frac{3747+3996 i}{815} & \frac{3324+912 i}{8125} & \frac{4772-1164 i}{8125} \\
-\frac{308+144 i}{1105} & -\frac{4389+2052 i}{5525} & \frac{1848+864 i}{5525}
\end{array}\right)
$$

II

$$
\left(\begin{array}{ccc}
-\frac{176+468 i}{625} & -\frac{9-12 i}{25} & 0 \\
\frac{351-132 i}{625} & \frac{16+12 i}{25} & 0 \\
0 & 0 & \frac{77+36 i}{85}
\end{array}\right)\left(\begin{array}{ccc}
\frac{3}{13} & \frac{4}{13} & \frac{12}{13} \\
-\frac{12}{13} & \frac{24}{65} & \frac{7}{65} \\
-\frac{4}{13} & -\frac{57}{65} & \frac{24}{65}
\end{array}\right)
$$

Are Phases a Sign of CPV?

Only after exhausting all flavour symmetries!

$$
\begin{gathered}
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
\frac{72-21 i}{325} & \frac{4}{13} & -\frac{12 i}{13} \\
\frac{-12}{13} & \frac{576+168 i}{1625} & \frac{49-168 i}{65} \\
-\frac{96-28 i}{325} & -\frac{57}{65} & -\frac{24 i}{65}
\end{array}\right) \\
\text { II } \\
\qquad \begin{array}{ccc}
\left(\begin{array}{ccc}
\frac{3-4 i}{5} & 0 & 0 \\
0 & \frac{4-3 i}{5} & 0 \\
0 & 0 & \frac{3-4 i}{5}
\end{array}\right)
\end{array}\left(\begin{array}{ccc}
\frac{3}{13} & \frac{4}{13} & \frac{12}{13} \\
-\frac{12}{13} & \frac{24}{65} \\
-\frac{4}{13} & \frac{77}{65} & \frac{24}{65}
\end{array}\right) \\
\text { phases absorbed by redefining quark fields }
\end{gathered}
$$

no complex phase after appropriate phase shifts of quark fields

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
\frac{2172-5004 i}{8125} & -\frac{1784+432 i}{8125} & -\frac{2427+5196 i}{8125} \\
-\frac{3747+3996 i}{8125} & \frac{3324+912 i}{8125} & \frac{4772-1164 i}{8125} \\
-\frac{308+144 i}{1105} & -\frac{4389+2052 i}{5525} & \frac{1848+864 i}{5525}
\end{array}\right)
$$

II

$$
\begin{gathered}
\left(\begin{array}{ccc}
-\frac{176+468 i}{625} & -\frac{9-12 i}{25} & 0 \\
\frac{351-132 i}{625} & \frac{16+12 i}{25} & 0 \\
0 & 0 & \frac{77+36 i}{85}
\end{array}\right)\left(\begin{array}{ccc}
\frac{3}{13} & \frac{4}{13} & \frac{12}{13} \\
-\frac{12}{13} & \frac{24}{65} & \frac{7}{65} \\
-\frac{4}{13} & -\frac{57}{65} & \frac{24}{65}
\end{array}\right) \\
\text { if } m_{u}=m_{\mathrm{c}}
\end{gathered}
$$

enlarged U(2) flavour symmetry
that can be used to remove phase in CKM

Are Phases a Sign of CPV?

Only after exhausting all flavour symmetries!

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
\frac{72-21 i}{325} & \frac{4}{13} & -\frac{12 i}{13} \\
-\frac{12}{13} & \frac{576+168 i}{1625} & \frac{49-168 i}{65} \\
-\frac{96-28 i}{325} & -\frac{57}{65} & -\frac{24 i}{65}
\end{array}\right)
$$

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
\frac{2172-5004 i}{8125} & -\frac{1784+432 i}{8125} & -\frac{2427+5196 i}{8125} \\
-\frac{3747+3996 i}{8125} & \frac{3324+912 i}{8125} & \frac{4772-1164 i}{8125} \\
-\frac{308+144 i}{1105} & -\frac{4389+2052 i}{5525} & \frac{1848+864 i}{5525}
\end{array}\right)
$$

$$
\begin{gathered}
\left(\begin{array}{ccc}
-\frac{176+468 i}{625} & -\frac{9-12 i}{25} & 0 \\
\frac{351-132 i}{625} & \frac{16+12 i}{25} & 0 \\
0 & 0 & \frac{77+36 i}{85}
\end{array}\right)\left(\begin{array}{ccc}
\frac{3}{13} & \frac{4}{13} & \frac{12}{13} \\
-\frac{12}{13} & \frac{24}{65} & \frac{7}{65} \\
-\frac{4}{13} & -\frac{57}{65} & \frac{24}{65}
\end{array}\right) \\
\text { if } \mathrm{m}_{\mathrm{u}}=\mathrm{m}_{\mathrm{c}}
\end{gathered}
$$

enlarged U(2) flavour symmetry
that can be used to remove phase in CKM

$\mathrm{CPV} \leftrightarrow \exists$ phase in Lagrangian parameters

The SM4 Collective CPV

The well-known KM counting
$Y_{u}(9 R+9 I)$

$Y_{d}(9 R+9 I)$$\Rightarrow$| $S U(3)_{Q}$ | $S U(3)_{u}$ | $S U(3)_{d}$ | $U(1)_{u}$ | $U(1)_{d}$ | $U(1)_{B}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | $\overline{3}$ | 1 | 1 | 0 | 0 |
| 3 | 1 | $\overline{3}$ | 0 | 1 | 0 |
| $3 R+5 I$ | $3 R+5 I$ | $3 R+5 I$ | ${ }^{1 I}$ | ${ }_{1 I}$ | ${ }_{1 I}$ |

The SM4 Collective CPV

The well-known KM counting

	$S U(3)_{Q}$	$S U(3){ }_{u}$	$S U(3){ }_{d}$	$U(1)_{u}$	$U(1)_{d}$	$U(1)_{B}$	
$Y_{u}(9 R+9 I)$	3	$\overline{3}$	1	1	0	0	physical
$Y_{d}(9 R+9 I)$	3	1	$\overline{3}$	0	1	0	$9 R+1 I$
	$3 R+51$	$3 R+5 I$	$3 R+5 I$	$1{ }^{1}$	$1{ }^{1}$	效	

The SM4 Collective CPV

The well-known KM counting

	$S U(3)_{Q}$	$S U(3){ }_{u}$	$S U(3)_{d}$	$U(1)_{u}$	$U(1)_{d}$	$U(1)_{B}$
$Y_{u}(9 R+9 I)$	3	$\overline{3}$	1	1	0	0
$Y_{d}(9 R+9 I)$	3	1	$\overline{3}$	0	1	0
	$3 R+5 I$	$3 R+5 I$	$3 R+5 I$	1 I	11	放

- The position of this physical phase is (flavour)-basis dependent, e.g.
- Up-basis: $Y_{u}=$ diag, $Y_{d}=V_{\text {скм }}$.diag
- Down-basis: $Y_{u}=\mathrm{V}_{\text {СКМ. }}^{\dagger}$ diag, $Y_{d}=$ diag
- many other choices of flavour bases

The SM4 Collective CPV

The well-known KM counting

$\begin{aligned} & Y_{u}(9 R+9 I) \\ & Y_{d}(9 R+9 I) \end{aligned}$	$S U(3)_{Q}$	$S U(3)_{u}$	$S U(3)_{d}$	$U(1)_{u}$	$U(1)_{d}$	$U(1)_{B}$
	3	$\overline{3}$	1	1	0	0
	3	1	$\overline{3}$	0	1	0
	$3 R+5 I$	$3 R+5 I$	$3 R+5 I$	${ }_{1 I}$	${ }_{1 I}$)

- The position of this physical phase is (flavour)-basis dependent, e.g.
- Up-basis: $Y_{u}=d i a g, Y_{d}=V_{C K M}$.diag
- Down-basis: $Y_{u}=V_{C K M}^{\dagger}$.diag, $Y_{d=d i a g}$
- many other choices of flavour bases
standard parametrisation (particular choice of flavour basis)

$$
\begin{aligned}
V_{\mathrm{CKM}} & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
c_{12} c_{13} \\
-c_{23} s_{12}-c_{12} s_{13} s_{23} 3^{i \delta \delta \mathrm{CKM}} & c_{12} c_{23}-c_{13} s_{12} s_{13} s_{233} s^{i \delta \delta_{\text {CKM }}} & s_{13} e^{-i \delta_{\text {CKM }}} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta_{\mathrm{CKM}}} & -c_{12} s_{23}-c_{23} s_{12} s_{13} e^{i \delta_{\mathrm{CKM}}} & c_{13} c_{23}
\end{array}\right)
\end{aligned}
$$

Jarlskog Invariant

The SM CPV order

- The lowest order flavour invariant sensitive to CPV

$$
J_{4}=\operatorname{Im} \operatorname{Tr}\left(\left[Y_{u} Y_{u}^{\dagger}, Y_{d} Y_{d}^{\dagger}\right]^{3}\right)
$$

- Explicitly

$$
\begin{aligned}
J_{4}= & \underbrace{\mathcal{O}\left(\lambda^{6}\right)}_{\mathcal{O} c_{12} s_{12} c_{13}^{2} s_{13} c_{23} s_{23}} \underbrace{\left(y_{c}^{2}-y_{u}^{2}\right)\left(y_{t}^{2}-y_{u}^{2}\right)\left(y_{t}^{2}-y_{c}^{2}\right)\left(y_{s}^{2}-y_{d}^{2}\right)\left(y_{b}^{2}-y_{d}^{2}\right)\left(y_{b}^{2}-y_{s}^{2}\right)} \underbrace{\sin \delta} \\
\text { Wolfenstein parametrisation } \quad V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right) & \lambda \sim 0.22
\end{aligned}
$$

- Even if $\delta \sim O(1)$, large suppression effects due to collective nature of CPV
- Important property: CP is conserved iff $\mathrm{J}_{4}=0$ (neglecting $\theta_{Q C D}$ for now)

Jarlskog Invariant

The SM CPV order

- The lowest order flavour invariant sensitive to CPV

$$
J_{4}=\operatorname{Im} \operatorname{Tr}\left(\left[Y_{u} Y_{u}^{\dagger}, Y_{d} Y_{d}^{\dagger}\right]^{3}\right)
$$

- Explicitly

$$
\begin{array}{r}
J_{4}=\underbrace{6 c_{12} s_{12} c_{13}^{2} s_{13} c_{23} s_{23}}_{\mathcal{O}\left(\lambda^{6}\right)} \underbrace{\left(y_{c}^{2}-y_{u}^{2}\right)\left(y_{t}^{2}-y_{u}^{2}\right)\left(y_{t}^{2}-y_{c}^{2}\right)\left(y_{s}^{2}-y_{d}^{2}\right)\left(y_{b}^{2}-y_{d}^{2}\right)\left(y_{b}^{2}-y_{s}^{2}\right)}_{\mathcal{O}\left(\lambda^{30}\right)} \underbrace{\sin \delta} \\
\text { Wolfenstein parametrisation } \quad V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
\left.1-\lambda^{0}\right) \\
-\lambda & \lambda & A \lambda^{3}(\rho-i \eta) \\
A \lambda^{3}(1-\rho-i \eta) & 1-\lambda^{2} / 2 & A \lambda^{2} \\
-A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right) \\
\lambda \sim 0.22
\end{array}
$$

- Even if $\delta \sim O(1)$, large suppression effects due to collective nature of CPV
- Important property: CP is conserved iff $\mathrm{J}_{4}=0$ (neglecting $\theta_{Q C D}$ for now)
exercise 1: check that indeed J_{4} vanishes on the two examples of previous slide (one need $\mathrm{mu}=\mathrm{mc}$ for the second one!)

Jarlskog Invariant

The SM CPV order

- The lowest order flavour invariant sensitive to CPV

$$
J_{4}=\operatorname{Im} \operatorname{Tr}\left(\left[Y_{u} Y_{u}^{\dagger}, Y_{d} Y_{d}^{\dagger}\right]^{3}\right)
$$

- Explicitly

$$
\begin{array}{r}
J_{4}=\underbrace{6 c_{12} s_{12} c_{13}^{2} s_{13} c_{23} s_{23}}_{\mathcal{O}\left(\lambda^{6}\right)} \underbrace{\left(y_{c}^{2}-y_{u}^{2}\right)\left(y_{t}^{2}-y_{u}^{2}\right)\left(y_{t}^{2}-y_{c}^{2}\right)\left(y_{s}^{2}-y_{d}^{2}\right)\left(y_{b}^{2}-y_{d}^{2}\right)\left(y_{b}^{2}-y_{s}^{2}\right)}_{\mathcal{O}\left(\lambda^{30}\right)} \underbrace{\sin \delta} \\
\text { Wolfenstein parametrisation } \quad V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
\left.1-\lambda^{0}\right) \\
-\lambda & \lambda & A \lambda^{3}(\rho-i \eta) \\
A \lambda^{3}(1-\rho-i \eta) & 1-\lambda^{2} / 2 & A \lambda^{2} \\
-A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right) \\
\lambda \sim 0.22
\end{array}
$$

- Even if $\delta \sim 0(1)$, large suppression effects due to collective nature of CPV
- Important property: CP is conserved iff $\mathrm{J}_{4}=0$ (neglecting $\theta_{\text {QcD }}$ for now)
exercise 1: check that indeed J_{4} vanishes on the two examples of previous slide (one need $m u=m c$ for the second one!) exercise 2: check that for $N_{F}=2, J_{4}$ always vanishes

BSM CPV is also a Collective Effect

The example of electron EDM

- "Imaginary" Yukawa coupling gives rise to eEDM through Barr-Zee diagram

$$
\begin{gathered}
\mathcal{L}=y h \bar{\psi} \psi \\
y_{u}=\frac{\sqrt{2} m_{u}}{v}\left(1+C_{\left.u H v^{2} / \Lambda^{2}\right)}\right.
\end{gathered}
$$

$$
\frac{d_{e}}{e}=-\frac{1}{48 \pi^{2}} \frac{v m_{e} m_{u}}{m_{h}^{2}} \frac{\operatorname{Im}\left(C_{u H}\right)}{\Lambda^{2}} F_{1}\left(\frac{m_{u}^{2}}{m_{h}^{2}}, 0\right)
$$

BSM CPV is also a Collective Effect

The example of electron EDM

- "Imaginary" Yukawa coupling gives rise to eEDM through Barr-Zee diagram

$$
y_{u}=\frac{\sqrt{2} m_{u}}{v}\left(1+C_{u H} v^{2} / \Lambda^{2}\right) \quad \frac{d_{e}}{e}=-\frac{1}{48 \pi^{2}} \frac{v m_{e} m_{u}}{m_{h}^{2}} \frac{\operatorname{Im}\left(C_{u H}\right)}{\Lambda^{2}}-\frac{C_{1}}{F_{1}}\left(\frac{m_{u}^{2}}{m_{h}^{2}}, 0\right)
$$

- The Yukawa can be made real by chiral rotation: $\psi \rightarrow e^{i \theta \gamma^{5}} \psi$
- The "phase" will appear in the mass
- The CPV effect is captured by Im (y ${ }^{\dagger} \cdot \mathrm{m}$), which is invariant under chiral rotation

Trivial here, but can get complicated: flavour indices, links to UV parameters...

Dim-6 Yukawa’s Contribution to EDMs

CP doesn’t say Wilson coefficients are real

$$
\begin{aligned}
& \mathcal{L}=Y_{u} \bar{Q} \tilde{H} U+C_{u H}|H|^{2} \bar{Q} \tilde{H} U \\
& 3 \times 3 \text { complex } \\
& \text { (9R+9I) } \\
& \text { 3x3 complex } \\
& \text { (9R+9I) } \\
& g_{h u u}^{i j} h \bar{u}_{i} u_{j} \\
& Y_{u}^{i j}+3 v^{2} C_{u H}^{i j}
\end{aligned}
$$

One can choose $\mathrm{U}(3){ }_{\mathrm{Q}} \mathrm{xU}(3)$ u transformations to make C_{uH} (or ghuu) *real*

$$
\text { CPV effects } \stackrel{!}{\leftrightarrow} \text { Im CuH }
$$

Phases can be moved to mass matrices - even in mass basis, \exists residual $\mathrm{U}(1)$'s to move phase around (flavour basis fully specified by the location of the phase in the CKM matrix)

Dim-6 Yukawa’s Contribution to EDMs

CP doesn't say Wilson coefficients are real

$$
\mathcal{L}=\underset{\substack{3 \times 3 \text { complex } \\(9 \mathrm{R}+91)}}{Y_{u}} \bar{Q} \tilde{H} U+\underset{\substack{3 \times 3 \text { complex } \\(9 \mathrm{R}+91)}}{C_{u H}}|H|^{2} \bar{Q} \tilde{H} U
$$

$$
\underbrace{g_{h u u}^{i j}}_{Y_{u}^{i j}+3 v^{2} C_{u H}^{i j}} h \bar{u}_{i} u_{j}
$$

One can choose $\mathrm{U}(3){ }_{\mathrm{Q}} \mathrm{xU}(3) \mathrm{u}$ transformations to make C_{uH} (or ghuu) ${ }^{*}$ real ${ }^{*}$

$$
\text { CPV effects } \stackrel{!}{\leftrightarrow} \text { Im CuH }
$$

Phases can be moved to mass matrices - even in mass basis, \exists residual $\mathrm{U}(1)$'s to move phase around (flavour basis fully specified by the location of the phase in the CKM matrix)

At two loops and $1 / \Lambda^{2}$ order, Barr-Zee diagrams depends only on three phases captured by three invariants

(only diagonal phases can contribute at 2-loops because no FCNC in SM)

$$
\frac{d_{e}}{e} \propto \frac{\alpha y_{e}}{16 \pi^{3}}\left(a I_{1}+b I_{2}+c I_{3}\right) \quad \text { with } \quad \begin{aligned}
& I_{n}=\operatorname{Im} \operatorname{Tr}\left(Y_{u}^{\dagger}\left(Y_{u} Y_{u}^{\dagger}\right)^{n} C_{u H}\right) \\
& \text { a, b, c functions of } Y_{u} \text { only }
\end{aligned}
$$

Dim-6 Yukawa’s Contribution to EDMs

CP doesn’t say Wilson coefficients are real

$$
\mathcal{L}=\underset{\substack{3 \times 3 \text { complex } \\(9 \mathrm{R}+9 \mathrm{l})}}{Y_{u}} \bar{Q} \tilde{H} U+\underset{\substack{3 \times 3 \text { complex } \\(9 \mathrm{R}+91)}}{C_{u H}}|H|^{2} \bar{Q} \tilde{H} U
$$

$$
\underbrace{g_{h u u}^{i j}}_{Y_{u}^{i j}+3 v^{2} C_{u H}^{i j}} h \bar{u}_{i} u_{j}
$$

One can choose $\mathrm{U}(3){ }_{\mathrm{Q}} \mathrm{xU}(3)$ u transformations to make C_{uH} (or ghuu) *real*

$$
\text { CPV effects } \stackrel{!}{\leftrightarrow} \text { Im CuH }
$$

Phases can be moved to mass matrices - even in mass basis, ョ residual U(1)'s to move phase around (flavour basis fully specified by the location of the phase in the CKM matrix)

At two loops and $1 / \Lambda^{2}$ order, Barr-Zee diagrams depends only on three phases captured by three invariants

(only diagonal phases can contribute at 2-loops because no FCNC in SM)

$$
\frac{d_{e}}{e} \propto \frac{\alpha y_{e}}{16 \pi^{3}}\left(a I_{1}+b I_{2}+c I_{3}\right) \quad \text { with } \quad \begin{aligned}
& I_{n}=\operatorname{Im} \operatorname{Tr}\left(Y_{u}^{\dagger}\left(Y_{u} Y_{u}^{\dagger}\right)^{n} C_{u H}\right) \\
& \text { a, b, c functions of } Y_{u} \text { only }
\end{aligned}
$$

At higher loops, more phases can appear.

- How many?
- How many constraints should we impose to ensure CP is conserved?

Dim-6 Yukawa’s Contribution to EDMs

CP doesn't say Wilson coefficients are real

$$
\mathcal{L}=\underset{\substack{3 \times 3 \text { complex } \\(9 \mathrm{R}+91)}}{Y_{u}} \bar{Q} \tilde{H} U+\underset{\substack{3 \times 3 \text { complex } \\(9 \mathrm{R}+91)}}{C_{u H}}|H|^{2} \bar{Q} \tilde{H} U
$$

$$
\underbrace{g_{h u u}^{i j}}_{Y_{u}^{i j}+3 v^{2} C_{u H}^{i j}} h \bar{u}_{i} u_{j}
$$

One can choose $\mathrm{U}(3){ }_{\mathrm{Q}} \mathrm{xU}(3) \mathrm{u}$ transformations to make C_{uH} (or $\mathrm{ghuu}^{\text {) }}$ *real ${ }^{*}$

$$
\text { CPV effects } \stackrel{!}{\leftrightarrow} \text { Im CuH }
$$

Phases can be moved to mass matrices - even in mass basis, \exists residual $U(1)$'s to move phase around (flavour basis fully specified by the location of the phase in the CKM matrix)

At two loops and $1 / \Lambda^{2}$ order, Barr-Zee diagrams depends only on three phases captured by three invariants

(only diagonal phases can contribute at 2-loops because no FCNC in SM)

$$
\frac{d_{e}}{e} \propto \frac{\alpha y_{e}}{16 \pi^{3}}\left(a I_{1}+b I_{2}+c I_{3}\right) \quad \text { with } \quad \begin{aligned}
& I_{n}=\operatorname{Im} \operatorname{Tr}\left(Y_{u}^{\dagger}\left(Y_{u} Y_{u}^{\dagger}\right)^{n} C_{u H}\right) \\
& \text { a, b, c functions of } Y_{u} \text { only }
\end{aligned}
$$

At higher loops, more phases can appear.

- How many?
- How many constraints should we impose to ensure CP is conserved?

Beyond Jarlskog

Necessary and sufficient conditions for CPV

$$
\mathcal{A}=\mathcal{A}^{(4)}+\mathcal{A}^{(6)}+\ldots \Rightarrow\left|\mathcal{A}^{(4)}\right|^{2}+2 \operatorname{Re}\left(\mathcal{A}^{(4)} \mathcal{A}^{(6) *}\right)
$$

Beyond Jarlskog

Necessary and sufficient conditions for CPV

$$
\mathcal{A}=\mathcal{A}^{(4)}+\mathcal{A}^{(6)}+\left.\ldots \Rightarrow \mathcal{A}^{(4)}\right|^{2}+2 \operatorname{Re}\left(\mathcal{A}^{(4)} \mathcal{A}^{(6) *}\right)
$$

Beyond Jarlskog

Necessary and sufficient conditions for CPV

Beyond Jarlskog

Necessary and sufficient conditions for CPV

How many conditions?
Any relation with the number of phases that can appear in Lsm6?

SM6

Basis of dim-6 operators, aka Warsaw basis

$$
\mathcal{L}_{S M E F T}=\mathcal{L}_{S M}^{(4)}+\sum_{n \geq 5} \frac{c_{n}}{\Lambda^{n-4}} \mathcal{O}^{(n)}
$$

59 types of operators. 2499 independent Wilson coefficients (1350 real and 1149 imaginary).

SM_{6}

Basis of dim-6 operators, aka Warsaw basis

$$
\mathcal{L}_{S M E F T}=\mathcal{L}_{S M}^{(4)}+\sum_{n \geq 5} \frac{c_{n}}{\Lambda^{n-4}} \mathcal{O}^{(n)}
$$

59 types of operators. 2499 independent Wilson coefficients (1350 real and 1149 imaginary).

1. How many new sources of CPV?
2. Which ones can appear at BSM leading order $\left(1 / \Lambda^{2}\right)$?

- Not because a parameter is $O\left(1 / \Lambda^{2}\right)$ that it can contribute at leading order in any physical observable! We'll see indeed that there are general non-interference theorems -

3. What are the collective breaking patterns

 associated to these new sources of CPV?4. Where should we look for CPV?

Beyond Jarlskog: Building SM6 invariants

Playing with new fermion bilinear interactions first

- In the Warsaw basis, Manohar et al. counted 7 Hermitian ($6 R+31$) and 12 generic bilinear ($9 R+91$) operators for a total of 129 phases (and 150 real parameters)

	5: $\psi^{2} H^{3}+$ h.c.		6: $\psi^{2} X H+$ h.c.
	$Q_{\text {eH }}$	$\left(H^{\dagger} H\right)\left(\bar{l}_{p} e_{r} H\right)$	$Q_{\text {eW }}, Q_{\text {eB }}$
	$Q_{u H}$	$\left(H^{\dagger} H\right)\left(\bar{q}_{p} u_{r} \widetilde{H}\right)$	$Q_{u G}, Q_{u W}, Q_{u B}$
	$Q_{\text {dH }}$	$\left(H^{\dagger} H\right)\left(\bar{q}_{p} d_{r} H\right)$	$Q_{d G}, Q_{d W}, Q_{d B}$

	$7: \psi^{2} H^{2} D$	
	$Q_{H l}^{(1)}, Q_{H l}^{(3)}$	$\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{l}_{p} \gamma^{\mu} l_{r}\right),\left(H^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} H\right)\left(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r}\right)$
	$Q_{H q}^{(1)}, Q_{H q}^{(3)}$	$\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{q}_{p} \gamma^{\mu} q_{r}\right),\left(H^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} H\right)\left(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r}\right)$
	$Q_{\text {Hu }}$	$\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{u}_{p} \gamma^{\mu} u_{r}\right)$
	$Q_{H d}$	$\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{d}_{p} \gamma^{\mu} d_{r}\right)$
generic	$Q_{\text {Hud }}$	$i\left(\widetilde{H}^{\dagger} D_{\mu} H\right)\left(\bar{u}_{p} \gamma^{\mu} d_{r}\right)$

$S U(3)_{Q}$	$S U(3)_{u}$	$S U(3)_{d}$	$S U(3)_{L}$	$S U(3)_{e}$
1	1	1	3	$\overline{3}$
3	$\overline{3}$	1	1	1
3	1	$\overline{3}$	1	1

1	1	1	$8+1$	1
1	1	1	1	$8+1$
$8+1$	1	1	1	1
1	$8+1$	1	1	1
1	1	$8+1$	1	1
1	3	$\overline{3}$	1	1

- In the limit $\mathrm{m}_{v}=0$, lepton numbers in each family are conserved. The WC not invariant under these U(1)'s can never show up at linear order in any amplitude: $129 \rightarrow 102$ phases (and $150 \rightarrow 123$ real parameters) - see later for more details

Beyond Jarlskog: Building SM6 invariants

Examples of invariants from with bilinear operators

- For each operators, e.g. the dim-6 Yukawa operators, we can build a series of CP-odd invariants:

$$
I_{u_{1} \ldots d_{k}}=\operatorname{Im} \operatorname{Tr}\left(Y_{u}^{\dagger}\left(Y_{u} Y_{u}^{\dagger}\right)^{u_{1}}\left(Y_{d} Y_{d}^{\dagger}\right)^{d_{1}} \ldots\left(Y_{u} Y_{u}^{\dagger}\right)^{u_{k}}\left(Y_{d} Y_{d}^{\dagger}\right)^{d_{k}} C_{u H}\right)
$$

- Of course, they are not all independent:

$$
\text { e.g., for } 3 \text { families, } \quad I_{3}=\operatorname{Tr}\left(Y_{u} Y_{u}^{\dagger}\right) I_{2}+\frac{1}{2}\left(\operatorname{Tr}\left(\left(Y_{u} Y_{u}^{\dagger}\right)^{2}\right)-\operatorname{Tr}^{2}\left(Y_{u} Y_{u}^{\dagger}\right)\right) I_{1}
$$

- Only need to consider only a finite set of invariants:

Cayley-Hamilton: $\quad A^{3}=A^{2} \operatorname{Tr}(A)-\frac{1}{2} A\left[\operatorname{Tr}(A)^{2}-\operatorname{Tr}\left(A^{2}\right)\right]+\frac{1}{6}\left[\operatorname{Tr}(A)^{3}-3 \operatorname{Tr}\left(A^{2}\right) \operatorname{Tr}(A)+2 \operatorname{Tr}\left(A^{3}\right)\right] \mathbb{I}_{3 \times 3}$

$$
\rightarrow \text { enough to consider } \begin{gathered}
\operatorname{Tr}\left(X_{u}^{a} X_{d}^{b} X_{u}^{c} X_{d}^{d} C\right) \\
\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}=0,1,2, \mathrm{a} \neq \mathrm{b}, \mathrm{c} \neq \mathrm{d}
\end{gathered} \quad X_{u / d}=Y_{u / d} Y_{u / d}^{\dagger}
$$

Beyond Jarlskog: Minimal Basis

Transfer matrix of maximal rank

$$
\left(\begin{array}{c}
I_{1} \\
I_{2} \\
\ldots \\
I_{n}
\end{array}\right)=\left(\begin{array}{l}
T^{R} T^{I}
\end{array}\right)\left(\begin{array}{c}
\operatorname{Re} C_{1} \\
\operatorname{Re} C_{2} \\
\ldots \\
\operatorname{Re} C_{p} \\
\operatorname{Im} C_{1} \\
\ldots \\
\operatorname{Im} C_{q}
\end{array}\right)
$$

transfer matrix that depends
only on Y_{u} and Y_{d}

Beyond Jarlskog: Minimal Basis

Transfer matrix of maximal rank

$$
\left(\begin{array}{c}
I_{1} \\
I_{2} \\
\ldots \\
I_{n}
\end{array}\right)=\left(\begin{array}{l}
T^{R} T^{I}
\end{array}\right)\left(\begin{array}{c}
\operatorname{Re} C_{1} \\
\operatorname{Re} C_{2} \\
\ldots \\
\operatorname{Re} C_{p} \\
\operatorname{Im} C_{1} \\
\ldots \\
\operatorname{Im} C_{q}
\end{array}\right)
$$

transfer matrix that depends only on Y_{u} and Y_{d}

The problem boils down to find what is the maximal rank of the transfer matrix in general and also when $\mathrm{J}_{4}=0$

Beyond Jarlskog: Minimal Basis

Transfer matrix of maximal rank

Seems a simple exercise to compute the rank!
But the invariants are real monsters when computed explicitly in a particular flavour basis
(up to $97 \approx 5 \times 10^{6}$ of terms for some of the invariants)
Hopeless to analytically compute ranks.
Numerically tricky too \rightarrow compute ranks for rational matrices

Beyond Jarlskog: Minimal Basis

Transfer matrix of maximal rank

Seems a simple exercise to compute the rank!
But the invariants are real monsters when computed explicitly in a particular flavour basis
(up to $97 \approx 5 \times 10^{6}$ of terms for some of the invariants)
Hopeless to analytically compute ranks.
Numerically tricky too \rightarrow compute ranks for rational matrices
Force Quit Applications

Beyond Jarlskog: Minimal Basis

Transfer matrix of maximal rank

Seems a simple exercise to compute the rank!
But the invariants are real monsters when computed explicitly in a particular flavour basis
(up to $97 \approx 5 \times 10^{6}$ of terms for some of the invariants)
Hopeless to analytically compute ranks.
Numerically tricky too \rightarrow compute ranks for rational matrices

Beyond Jarlskog: Minimal Basis

Transfer matrix of maximal rank

Seems a simple exercise to compute the rank!
But the invariants are real monsters when computed explicitly in a particular flavour basis (up to $97 \approx 5 \times 10^{6}$ of terms for some of the invariants)

Hopeless to analytically compute ranks.
Numerically tricky too \rightarrow compute ranks for rational matrices

	Type of op.	\# of ops	\# real	\# im.	\# CP-odd invariants
	Yukawa	3	27	27	21
	Dipoles	8	72	72	60
	current-current	8	51	30	21
	all bilinears	19	150	129	102

Beyond Jarlskog: Minimal Basis

Transfer matrix of maximal rank

Seems a simple exercise to compute the rank!
But the invariants are real monsters when computed explicitly in a particular flavour basis
(up to $97 \approx 5 \times 10^{6}$ of terms for some of the invariants)
Hopeless to analytically compute ranks.
Numerically tricky too \rightarrow compute ranks for rational matrices

Type of op.	\# of ops	\# real	\# im.	\# CP-odd invariants
Y Yukawa	3	27	27	21
. Dipoles	8	72	72	60
\bigcirc current-current	8	51	30	21
all bilinears	19	150	(129)	(102)

Note that there are fewer CP-odd invariants than phases
Not all the phases can appear in observables - not interference theorems

Non-Interference

Conservation of individual family lepton numbers

Let us see it in a fixed basis, e.g.

$$
Y_{u}=\operatorname{diag}\left(y_{u}, y_{c}, y_{t}\right) \quad Y_{d}=V_{\mathrm{CKM}} \operatorname{diag}\left(y_{d}, y_{s}, y_{b}\right) \quad Y_{e}=\operatorname{diag}\left(y_{e}, y_{\mu}, y_{\tau}\right)
$$

In the lepton sector, this choice breaks the $U(3)_{L} \times U(3)_{e}$ of the free Lagrangian down to the $U(1)^{3}$ described by the transformation

$$
(L, e) \rightarrow \operatorname{diag}\left(e^{i \delta_{1}}, e^{i \delta_{2}}, e^{i \delta_{3}}\right)(L, e)
$$

At dimension 6, operators containing leptons are charged under this symmetry, e.g.

$$
\mathcal{O}_{H e}=\frac{1}{\Lambda^{2}} C_{H e, m n}\left(H^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} H\right) \bar{e}_{m} \gamma^{\mu} e_{n} \quad C_{H e, m n}=\left(\begin{array}{ccc}
c_{11} & c_{12} & c_{13} \\
c_{12}^{*} & c_{22} & c_{23} \\
c_{13}^{*} & c_{23}^{*} & c_{33}
\end{array}\right) \xrightarrow{U(1)^{3}}\left(\begin{array}{cc}
c_{12} e^{i\left(\delta_{2}-\delta_{1}\right)} & c_{13} e^{i\left(\delta_{3}-\delta_{1}\right)} \\
c_{12}^{*} e^{-i\left(\delta_{2}-\delta_{1}\right)} & c_{22} \\
c_{13}^{*} e^{-i\left(\delta_{3}-\delta_{1}\right)} & c_{23}^{*} e^{-i\left(\delta_{3}-\delta_{2}\right)}
\end{array} c_{23} e^{i\left(\delta_{3}-\delta_{2}\right)} c_{33}\right)
$$

The off-diagonal elements cannot enter into observables at linear order!

Non-Interference

Conservation of individual family lepton numbers

	Type of op.	\# of ops	\# real	\# im.	inv. under $U(1)_{L_{i}}-U(1)_{L_{j}}$ \# real \# im.		\# CP-odd invariants
	Yukawa	3	27	27	21	21	21
	Dipoles	8	72	72	60	60	60
	current-current	8	51	30	42	21	21
	all bilinears	19	150	129	123	(102)	(102)

Minimal sets can be built explicitly

- not a unique choice -

Minimal Sets for Fermion Bilinear Operators

\(\left.\begin{array}{l|c|c}Wilson coefficient \& Number of phases \& Minimal set

\hline C_{e} \equiv\left\{\begin{array}{l}C_{e H}

C_{e W}

C_{e B}\end{array}\right. \& 3 \& \left\{L_{0}\left(C_{e} Y_{e}^{\dagger}\right) L_{1}\left(C_{e} Y_{e}^{\dagger}\right) L_{2}\left(C_{e} Y_{e}^{\dagger}\right)\right\}\end{array}\right]\)\begin{tabular}{l}
$C_{u H}$

$C_{u} \equiv\left\{\begin{array}{l}C_{u G} \\
C_{u W} \\
C_{u B}\end{array}\right.$

$C_{d} \equiv\left\{\begin{array}{l}C_{d H} \\ C_{d G} \\ C_{d W} \\ C_{d B}\end{array}\right.$
$\left.\begin{array}{l}L_{0000}\left(C_{u} Y_{u}^{\dagger}\right) L_{1000}\left(C_{u} Y_{u}^{\dagger}\right) L_{0100}\left(C_{u} Y_{u}^{\dagger}\right) \\ L_{1100}\left(C_{u} Y_{u}^{\dagger}\right) L_{0110}\left(C_{u} Y_{u}^{\dagger}\right) L_{2200}\left(C_{u} Y_{u}^{\dagger}\right) \\ L_{0220}\left(C_{u} Y_{u}^{\dagger}\right) L_{1220}\left(C_{u} Y_{u}^{\dagger}\right) L_{0122}\left(C_{u} Y_{u}^{\dagger}\right)\end{array}\right\}$
$C_{H u d}$

\hline$C_{H L}^{(1,3)}, C_{H e}$
\end{tabular}

$$
L_{a b c d}(\tilde{C}) \equiv \operatorname{Im} \operatorname{Tr}\left(X_{u}^{a} X_{d}^{b} X_{u}^{c} X_{d}^{d} \tilde{C}\right)
$$

Minimal vs Maximal Basis

Transfer matrix of maximal rank: interference with CKM phase

- If $\mathrm{J}_{4}=0$, we can find 102 independent invariants \Rightarrow minimal basis of invariants.

"CP is conserved iff J_{4} and the invariants of a minimal basis are all vanishing"

- If $\mathrm{J}_{4} \neq 0$, we can actually build more independent invariants! Not surprising, because CPeven BSM can interfere with CP-odd SM. But what was maybe unexpected is that we can build more than 102 (independent) invariants that are larger than $\mathrm{J}_{4} \rightarrow$ maximal basis of invariants.

$$
\begin{gathered}
\text { dim (maximal basis) }=\text { number of physical (real and imaginary) parameters } \\
\text { that can interfere with SM } \\
\text { and thus can show up in observables at leading } O\left(1 / \Lambda^{2}\right)
\end{gathered}
$$

Scaling of Collective CPV BSM Effects

The new invariants don't suffer from the same suppression factors

- The invariants can be evaluated in e.g. the up-flavour basis:
\bigcirc

$$
I_{n}=\operatorname{Im} \operatorname{Tr}\left(Y_{t}^{\dagger}\left(Y_{u} Y_{t}^{\prime}\right)^{n} C_{u t f}\right)
$$

$$
\begin{aligned}
& I_{n}=y_{u}^{2 n+1} \eta_{u}+y_{c}^{2 n+1} \eta_{c}+y_{t}^{2 n+1} \eta_{t} \\
& \mathcal{O}\left(\lambda^{16 n+8}\right) \quad \mathcal{O}\left(\lambda^{8 n+4}\right) \quad \mathcal{O}\left(\lambda^{0}\right)
\end{aligned}
$$

© $I_{1,1}=c_{13} c_{23} s_{13} s_{\delta}\left(y_{b}^{2}-c_{12}^{2} y_{d}^{2}-s_{12}^{2} y_{s}^{2}\right) y_{t} \rho_{u t}+\ldots \quad I_{1,1}=\operatorname{Im} \operatorname{Tr}\left(y_{t}^{t}\left(Y_{u} Y_{t}^{t}\right)\left(y_{d} Y_{d}^{\dagger}\right) C_{u t}\right)$

$$
\mathcal{O}\left(\lambda^{3}\right) \quad \mathcal{O}\left(\lambda^{6}\right)
$$

Scaling of Collective CPV BSM Effects

\# independent invariants at $\mathrm{O}\left(\mathrm{\lambda}^{\mathrm{n}}\right)$ for the quark bilinear operators

Models of Flavours

MFV, first

- Other constraints from CP-even observables: totally flavour generic/anarchic dim-6 operators are severely constrained. How additional flavour structure will affect the orders of CPV computed above in the generic case?
- Let's first stick to the canonical flavour "model": Minimal Flavour Violation

$$
c_{u H}=a Y_{u}+b\left(Y_{u} Y_{u}^{\dagger}\right) Y_{u}+c\left(Y_{d} Y_{d}^{\dagger}\right) Y_{u}+\ldots
$$

Generic Flavour
MFV

$$
\begin{aligned}
& \text { Rank } 1 \rightarrow \mathcal{O}\left(\lambda^{0}\right) \\
& \text { Rank } 2 \rightarrow \mathcal{O}\left(\lambda^{4}\right) \\
& \text { Rank } 3 \rightarrow \mathcal{O}\left(\lambda^{8}\right)
\end{aligned}
$$

Rank $1 \rightarrow \mathcal{O}\left(\lambda^{0}\right)$
Rank $2 \rightarrow \mathcal{O}\left(\lambda^{8}\right)$
Rank $3 \rightarrow \mathcal{O}\left(\lambda^{18}\right)$

CPV Orders in Alignment Models

Froggatt-Nielsen-type \& U(2)³ Flavour Structure

- Another popular flavour structure is alignment inherited e.g. from $\mathrm{U}(1)_{\text {FN }}$ symmetry
- The $\mathrm{U}(1)$ charges of the quarks will imprint a particular scaling of the dim. 6 WC :

$$
Y u=\left(\begin{array}{ccc}
\lambda^{8} & \lambda^{5} & \lambda^{3} \\
\lambda^{7} & \lambda^{4} & \lambda^{2} \\
\lambda^{5} & \lambda^{2} & 1
\end{array}\right) \quad Y d=\left(\begin{array}{ccc}
\lambda^{7} & \lambda^{6} & \lambda^{6} \\
\lambda^{6} & \lambda^{5} & \lambda^{5} \\
\lambda^{4} & \lambda^{3} & \lambda^{3}
\end{array}\right) \quad C_{u H}=\text { generic }=\left(\begin{array}{ccc}
\lambda^{8} & \lambda^{5} & \lambda^{3} \\
\lambda^{7} & \lambda^{4} & \lambda^{2} \\
\lambda^{5} & \lambda^{2} & 1
\end{array}\right)
$$

4-Fermi Operators

4F invariants from bilinear invariants

- In the Warsaw basis, Manohar et al. also counted the free-parameters in 4F operators: 1014 phases. As before, not all these phases can show up at leading order when the neutrino masses are taken to vanish: only 597 survive (adding to the 102 bilinear ones and J_{4} for a total of 700 phases)
e.g.

$$
C_{Q u Q d} \bar{Q} u \bar{Q} d
$$

$S U(3)_{Q}$	$S U(3)_{u}$	$S U(3)_{d}$
$1+3+6$	$\overline{3}$	$\overline{3}$

- One can build two types of 4 F -invariants out of the bilinear invariants:

$$
\begin{gathered}
\text { A-type } \\
\operatorname{Im}(\underbrace{\left.M_{i j}^{u H} M_{k l}^{d H} C_{i j k l}^{Q u Q d}\right)}
\end{gathered}
$$

matrices built out of Yu and Yd that to form bilinear invariants, e.g., $\operatorname{Im} \operatorname{Tr}\left(M^{u H} C_{u H}\right)$
An explicit basis of 597 invariants for the 4F operators can be built (see bonus slides)

4-Fermi Operators

\# independent invariants at $O\left(\lambda^{n}\right)$ for some 4F operators

Theta QCD

Can we build new invariants using $\Theta_{Q c D}$?

	$S U(3)_{Q_{L}}$	$U(1)_{Q_{L}}$	$S U(3)_{u_{R}}$	$U(1)_{u_{R}}$	$S U(3)_{d_{R}}$	$U(1)_{d_{R}}$
Q_{L}	$\mathbf{3}$	1	$\mathbf{1}$	0	$\mathbf{1}$	0
u_{R}	$\mathbf{1}$	0	$\mathbf{3}$	1	$\mathbf{1}$	0
d_{R}	$\mathbf{1}$	0	$\mathbf{1}$	0	$\mathbf{3}$	1
Y_{u}	$\mathbf{3}$	1	$\overline{\mathbf{3}}$	-1	$\mathbf{1}$	0
Y_{d}	$\mathbf{3}$	1	$\mathbf{1}$	0	$\overline{\mathbf{3}}$	-1
$e^{i \theta_{Q C D}}$	$\mathbf{1}$	6	$\mathbf{1}$	-3	$\mathbf{1}$	-3

- Given that $\bar{\theta}=\theta-\arg \operatorname{det}\left(Y_{u} Y_{d}\right)$ is a flavour invariant, no new SM_{4} invariant can be constructed
- In SM_{6}, in principle, new structure can emerge

$$
\operatorname{Im}\left(e^{-i \theta_{Q C D}} \epsilon^{A B C} \epsilon^{a b c} Y_{u, A a} Y_{u, B b} C_{u H, C c} \operatorname{det} Y_{d}\right)
$$

- Probably highly suppressed in the perturbative regime of QCD $\left(e^{-8 \pi^{2} / g_{s}^{2}} \sim \lambda^{37}\right)$
- Relevant at low scale?

ALP shift-symmetry

ALP=Goldstone boson \rightarrow shift-symmetry

$$
a \rightarrow a+\epsilon f \quad \mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{2}\left(\partial_{\mu} a\right)\left(\partial^{\mu} a\right)+\frac{\partial_{\mu} a}{f} \sum_{\psi \in \mathrm{SM}} \bar{\psi} \bar{c}_{\psi} \gamma^{\mu} \psi+\mathcal{O}\left(\frac{1}{f^{2}}\right)
$$

ALP shift-symmetry

ALP=Goldstone boson \rightarrow shift-symmetry

$$
a \rightarrow a+\epsilon f \quad \mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{2}\left(\partial_{\mu} a\right)\left(\partial^{\mu} a\right)+\frac{\partial_{\mu} a}{f} \sum_{\psi \in \mathrm{SM}} \bar{\psi}_{\substack{ \\c_{\psi}}} \gamma^{\mu} \psi+\mathcal{O}\left(\frac{1}{f^{2}}\right)
$$

But shift-symmetry cannot be exact (PQ as approximate symmetry) What are the allowed couplings of an ALP after (soft) breaking of shift-symmetry?

ALP shift-symmetry

ALP=Goldstone boson \rightarrow shift-symmetry

$$
\boldsymbol{a} \rightarrow \boldsymbol{a}+\boldsymbol{\epsilon} \boldsymbol{\mathcal { L }} \quad \mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{2}\left(\partial_{\mu} a\right)\left(\partial^{\mu} a\right)+\frac{\partial_{\mu} a}{f} \sum_{\psi \in \mathrm{SM}}^{\substack{\text { hermitian matrices } \\ \text { (26 CP-even and } 13 \text { CP-odd couplings) }}} \bar{\psi} c_{\psi} \gamma^{\mu} \psi+\mathcal{O}\left(\frac{1}{f^{2}}\right)
$$

But shift-symmetry cannot be exact (PQ as approximate symmetry) What are the allowed couplings of an ALP after (soft) breaking of shift-symmetry?

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{2}\left(\partial_{\mu} a\right)\left(\partial^{\mu} a\right)-\frac{a}{f}\left(\bar{Q}{\underset{\substack{\text { generic matrices } \\ \tilde{Y}_{u} \\ \text { (27 CP-even and } 25 \text { CP-odd couplings) }}}{ } \tilde{Q} u+\overline{Y_{d}} H d+\bar{L} \tilde{Y}_{e}}_{\tilde{S}_{d}} H e+\text { h.c. }\right)
$$

What is the power counting of these new couplings?
What are the conditions to recover a shift-symmetry?

Conditions for shift-symmetry

Conditions to enforce ALP shift-symmetry

$$
\begin{gathered}
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{2}\left(\partial_{\mu} a\right)\left(\partial^{\mu} a\right)+\frac{\partial_{\mu} a}{f} \sum_{\psi \in \mathrm{SM}} \bar{\psi} c_{c_{y} \gamma^{\mu}} \psi+\mathcal{O}\left(\frac{1}{f^{2}}\right)^{\psi \rightarrow e^{-\pi_{0, t}}{ }^{\prime} \psi} \mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{2}\left(\partial_{\mu} a\right)\left(\partial^{\mu} a\right)-\frac{a}{f}\left(\bar{Q} \tilde{Y}_{u} \tilde{H} u+\bar{Q} \tilde{Y}_{d} H d+\bar{L} \tilde{Y}_{e} H e+\text { h.c. }\right) \\
\tilde{Y}_{u, d}=i\left(Y_{u, d} c_{u, d}-c_{Q} Y_{u, d}\right), \quad \tilde{Y}_{e}=i\left(Y_{e} c_{e}-c_{L} Y_{e}\right)
\end{gathered}
$$

Conditions for shift-symmetry

Conditions to enforce ALP shift-symmetry
$\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{2}\left(\partial_{\mu} a\right)\left(\partial^{\mu} a\right)+\frac{\partial_{\mu} a}{f} \sum_{\psi \in \mathrm{SM}} \bar{\psi} c_{\psi} \gamma^{\mu} \psi+\mathcal{O}\left(\frac{1}{f^{2}}\right)^{\psi \rightarrow e^{-i \epsilon_{\psi} \alpha a / f} \psi} \quad \mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{2}\left(\partial_{\mu} a\right)\left(\partial^{\mu} a\right)-\frac{a}{f}\left(\bar{Q} \tilde{Y}_{u} \tilde{H} u+\bar{Q} \tilde{Y}_{d} H d+\bar{L} \tilde{Y}_{e} H e+\right.$ h.c. $)$

$$
\tilde{Y}_{u, d}=i\left(Y_{u, d} c_{u, d}-c_{Q} Y_{u, d}\right), \quad \tilde{Y}_{e}=i\left(Y_{e} c_{e}-c_{L} Y_{e}\right)
$$

Numbers of physical parameters

$U(1)_{B}$ and $U(1)_{\text {Li }}$ conserved currents
$\partial_{\mu} a J^{\mu}$ added to Lagrangian
3*6-1=17
2*6-3=9

Conditions for shift-symmetry

Conditions to enforce ALP shift-symmetry

$$
\begin{gathered}
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{2}\left(\partial_{\mu} a\right)\left(\partial^{\mu} a\right)+\frac{\partial_{\mu} a}{f} \sum_{\psi \in \mathrm{SM}} \bar{\psi} c_{\psi} \gamma^{\mu} \psi+\mathcal{O}\left(\frac{1}{f^{2}}\right) \stackrel{\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{2}\left(\partial_{\mu} a\right)\left(\partial^{\mu} a\right)-\frac{a}{f}\left(\bar{Q} \tilde{Y}_{u} \tilde{H}_{u} u+\bar{Q} \tilde{Y}_{d} H d+\bar{L} \tilde{Y}_{e} H e+\mathrm{h} . c .\right)}{\tilde{Y}_{u, d}=i\left(Y_{u, d} c_{u, d}-c_{Q} Y_{u, d}\right), \quad \tilde{Y}_{e}=i\left(Y_{e} c_{e}-c_{L} Y_{e}\right)}
\end{gathered}
$$

Numbers of physical parameters

Flavour invariant conditions for shift-symmetry

The conditions for shift-symmetry can be written in an invariant way

- Lepton sector

$$
X_{x}=Y_{x} Y_{x}^{\dagger}
$$

$$
\operatorname{Re} \operatorname{Tr}\left(X_{e}^{0,1,2} \tilde{Y}_{e} Y_{e}^{\dagger}\right)=0 \quad 3 \text { invariants }
$$

- Quark sector

$$
\begin{aligned}
& I_{u}^{(1)}=\operatorname{Re} \operatorname{Tr}\left(\tilde{Y}_{u} Y_{u}^{\dagger}\right), \quad I_{u}^{(2)}=\operatorname{Re} \operatorname{Tr}\left(X_{u} \tilde{Y}_{u} Y_{u}^{\dagger}\right), \quad I_{u}^{(3)}=\operatorname{Re} \operatorname{Tr}\left(X_{u}^{2} \tilde{Y}_{u} Y_{u}^{\dagger}\right), \\
& I_{d}^{(1)}=\operatorname{Re} \operatorname{Tr}\left(\tilde{Y}_{d} Y_{d}^{\dagger}\right), \quad I_{d}^{(2)}=\operatorname{Re} \operatorname{Tr}\left(X_{d} \tilde{Y}_{d} Y_{d}^{\dagger}\right), \quad I_{d}^{(3)}=\operatorname{Re} \operatorname{Tr}\left(X_{d}^{2} \tilde{Y}_{d} Y_{d}^{\dagger}\right), \\
& I_{u d}^{(1)}=\operatorname{Re} \operatorname{Tr}\left(X_{d} \tilde{Y}_{u} Y_{u}^{\dagger}+X_{u} \tilde{Y}_{d} Y_{d}^{\dagger}\right), \\
& I_{u d, u}^{(2)}=\operatorname{Re} \operatorname{Tr}\left(X_{u}^{2} \tilde{Y}_{d} Y_{d}^{\dagger}+\left\{X_{u}, X_{d}\right\} \tilde{Y}_{u} Y_{u}^{\dagger}\right) \text {, } \\
& I_{u d, d}^{(2)}=\operatorname{Re} \operatorname{Tr}\left(X_{d}^{2} \tilde{Y}_{u} Y_{u}^{\dagger}+\left\{X_{u}, X_{d}\right\} \tilde{Y}_{d} Y_{d}^{\dagger}\right) \text {, } \\
& I_{u d}^{(3)}=\operatorname{Re} \operatorname{Tr}\left(X_{d} X_{u} X_{d} \tilde{Y}_{u} Y_{u}^{\dagger}+X_{u} X_{d} X_{u} \tilde{Y}_{d} Y_{d}^{\dagger}\right) \\
& I_{u d}^{(4)}=\operatorname{Im} \operatorname{Tr}\left(\left[X_{u}, X_{d}\right]^{2}\left(\left[X_{d}, \tilde{Y}_{u} Y_{u}^{\dagger}\right]-\left[X_{u}, \tilde{Y}_{d} Y_{d}^{\dagger}\right]\right)\right)
\end{aligned}
$$

4 entangled conditions
between up and down sectors
\Rightarrow collective nature
one algebraic relation \Rightarrow only 10 independent invariants
13 flavour invariants all linear in \widetilde{Y} (CP ensure that all but lud vanish)

RG invariance

The set of invariants is closed under RG

$$
\begin{aligned}
& \dot{I}_{e}^{(1)}=2 \gamma_{e} I_{e}^{(1)}+6 I_{e}^{(2)}+2 \operatorname{Tr}\left(X_{e}\right)\left(I_{e}^{(1)}+3\left(I_{d}^{(1)}-I_{u}^{(1)}\right)\right), \\
& \left.i_{e}^{(2)}\right) 4 \gamma_{e} I_{e}^{(2)}+9 I_{e}^{(3)}+2 \operatorname{Tr}\left(X _ { e } ^ { 2 } \left(I_{e}^{(1)}+3\left(I_{d}^{(1)}-I_{u}^{(1)}\right),\right.\right. \\
& i_{e}^{(3)}=6 \gamma_{e} I_{e}^{(3)}+12 I_{e}^{(4)}+2 \operatorname{Tr}\left(X_{e}^{3}\right)\left(I_{e}^{(1)}+3\left(I_{d}^{(1)}-I_{u}^{(1)}\right)\right) \\
& I_{u}^{(1)}=2 \gamma_{u} I_{u}^{(1)}+6 I_{u}^{(2)}-3 I_{u d}^{(1)}-2 \operatorname{Tr}\left(X_{u}\right)\left(I_{e}^{(1)}+3\left(I_{d}^{(1)}-I_{u}^{(1)}\right)\right), \\
& I_{u}^{(2)}=4 \gamma_{u} I_{u}^{(2)}+9 I_{u}^{(3)}-3 I_{d u, u}^{(2)}-2 \operatorname{Tr}\left(X_{u}^{2}\right)\left(I_{e}^{(1)}+3\left(I_{d}^{(1)}-I_{u}^{(1)}\right)\right), \\
& I_{u}^{(3)}=6 \gamma_{u} I_{u}^{(3)}+12 I_{u}^{(4)}-3 I_{u}^{\prime}-2 \operatorname{Tr}\left(X_{u}^{3}\right)\left(I_{e}^{(1)}+3\left(I_{d}^{(1)}-I_{u}^{(1)}\right)\right), \\
& I_{d}^{(1)}=2 \gamma_{d} I_{d}^{(1)}+6 I_{d}^{(2)}-3(1)+2 \operatorname{Tr}\left(X_{d}\right)\left(I_{e}^{(1)}+3\left(I_{d}^{(1)}-I_{u}^{(1)}\right)\right), \\
& I_{d}^{(2)}=4 \gamma_{d} I_{d}^{(2)}+9 I_{d}^{(3)}-3 I_{u d, d}^{(2)}+2 \operatorname{Tr}\left(X_{d}^{2}\right)\left(I_{e}^{(1)}+3\left(I_{d}^{(1)}-I_{u}^{(1)}\right)\right), \\
& I_{d}^{(3)}=6 \gamma_{d} I_{d}^{(3)}+12 I_{I}^{(4)}-3 I_{d}^{\prime}+2 \operatorname{Tr}\left(X_{d}^{3}\right)\left(I_{e}^{(1)}+3\left(I_{d}^{(1)}-I_{u}^{(1)}\right)\right), \\
& I_{u d}^{(1)}=2\left(\gamma_{u}+\gamma_{d}\right) I_{u d}^{(1)}, \\
& I_{u d, u}^{(2)}=\left(4 \gamma_{u}+2 \gamma_{d}\right) I_{u d u}^{(2)}+3 I_{u}^{\prime}-6 I_{u d}^{(3)}-2 \operatorname{Tr}\left(X_{u} X_{d} X_{u}\right)\left(I_{e}^{(1)}+3\left(I_{d}^{(1)}-I_{u}^{(1)}\right)\right), \\
& I_{u d, d}^{(2)}=\left(4 \gamma_{d}+2 \gamma_{u}\right) I_{u d d}^{(2)}+3 I_{d}^{\prime}-6 I_{u d}^{(3)}+2 \operatorname{Tr}\left(X_{d} X_{u} X_{d}\right)\left(I_{e}^{(1)}+3\left(I_{d}^{(1)}-I_{u}^{(1)}\right)\right), \\
& I_{u d}^{(3)}=4\left(\gamma_{u}+\gamma_{d}\right) I_{u d}^{(3)}, \\
& I_{u d}^{(4)}=6\left(\gamma_{u}+\gamma_{d}+\frac{1}{2} \operatorname{Tr}\left(X_{u}+X_{d}\right)\right) I_{u d}^{(4)}-\operatorname{Im} \operatorname{Tr}\left(\left[X_{u}, X_{d}\right]^{3}\right)\left(I_{u}^{(1)}+I_{d}^{(1)}\right) .
\end{aligned}
$$

$$
\begin{aligned}
\gamma_{e} & =-\frac{15}{4} g_{1}^{2}-\frac{9}{4} g_{2}^{2}+\operatorname{Tr}\left(X_{e}+3\left(X_{u}+X_{d}\right)\right) \\
\gamma_{u} & \equiv-\frac{17}{12} g_{1}^{2}-\frac{9}{4} g_{2}^{2}-8 g_{3}^{2}+\operatorname{Tr}\left(X_{e}+3\left(X_{u}+X_{d}\right)\right) \\
\gamma_{d} & \equiv-\frac{5}{12} g_{1}^{2}-\frac{9}{4} g_{2}^{2}-8 g_{3}^{2}+\operatorname{Tr}\left(X_{e}+3\left(X_{u}+X_{d}\right)\right)
\end{aligned}
$$

RG invariance

The set of invariants is closed under RG

```
i}\mp@subsup{i}{e}{(1)}=2\mp@subsup{\gamma}{e}{}\mp@subsup{I}{e}{(1)}+6\mp@subsup{I}{e}{(2)}+2\operatorname{Tr}(\mp@subsup{X}{e}{})(\mp@subsup{I}{e}{(1)}+3(I\mp@subsup{I}{d}{(1)}-\mp@subsup{I}{u}{(1)}))
i}\mp@subsup{i}{e}{(2)}=4\mp@subsup{V}{e}{\prime}\mp@subsup{I}{e}{(2)}+9\mp@subsup{I}{e}{(3)}+2\operatorname{Tr}(\mp@subsup{X}{e}{2})(\mp@subsup{I}{e}{(1)}+3(\mp@subsup{I}{d}{(1)}-\mp@subsup{I}{u}{(1)}))
i}\mp@subsup{i}{e}{(3)}=6\mp@subsup{\gamma}{e}{}\mp@subsup{I}{e}{(3)}+12I\mp@subsup{I}{e}{(4)}+2\operatorname{Tr}(\mp@subsup{X}{e}{3})(\mp@subsup{I}{e}{(1)}+3(\mp@subsup{I}{d}{(1)}-\mp@subsup{I}{u}{(1)})
I
i
I
i
I
i
\mp@subsup{I}{ud}{(1)}=2(\mp@subsup{\gamma}{u}{}+\mp@subsup{\gamma}{d}{})\mp@subsup{I}{ud}{(1)},
\mp@subsup{I}{ud,u}{(2)}=(4\mp@subsup{\gamma}{u}{}+2\mp@subsup{\gamma}{d}{})\mp@subsup{I}{ud,u}{(2)}+3\mp@subsup{I}{u}{\prime}-6\mp@subsup{I}{ud}{(3)}-2\operatorname{Tr}(\mp@subsup{X}{u}{}\mp@subsup{X}{d}{}\mp@subsup{X}{u}{})(\mp@subsup{I}{e}{(1)}+3(\mp@subsup{I}{d}{(1)}-\mp@subsup{I}{u}{(1)})),
I
\mp@subsup{\dot{u}}{ud}{(3)}=4(\mp@subsup{\gamma}{u}{}+\mp@subsup{\gamma}{d}{})I|d
i}\mp@subsup{\dot{I}}{ud}{(4)}=6(\mp@subsup{\gamma}{u}{}+\mp@subsup{\gamma}{d}{}+\frac{1}{2}\operatorname{Tr}(\mp@subsup{X}{u}{}+\mp@subsup{X}{d}{}))\mp@subsup{I}{ud}{(4)}-\operatorname{Im}\operatorname{Tr}([\mp@subsup{X}{u}{},\mp@subsup{X}{d}{}\mp@subsup{]}{}{3})(\mp@subsup{I}{u}{(1)}+\mp@subsup{I}{d}{(1)})
```

$$
\begin{aligned}
\gamma_{e} & =-\frac{15}{4} g_{1}^{2}-\frac{9}{4} g_{2}^{2}+\operatorname{Tr}\left(X_{e}+3\left(X_{u}+X_{d}\right)\right) \\
\gamma_{u} & \equiv-\frac{17}{12} g_{1}^{2}-\frac{9}{4} g_{2}^{2}-8 g_{3}^{2}+\operatorname{Tr}\left(X_{e}+3\left(X_{u}+X_{d}\right)\right) \\
\gamma_{d} & \equiv-\frac{5}{12} g_{1}^{2}-\frac{9}{4} g_{2}^{2}-8 g_{3}^{2}+\operatorname{Tr}\left(X_{e}+3\left(X_{u}+X_{d}\right)\right)
\end{aligned}
$$

closed set except for:

$$
\begin{aligned}
& I_{e}^{(4)}=\operatorname{Re} \operatorname{Tr}\left(X_{e}^{3} \tilde{Y}_{e} Y_{e}^{\dagger}\right) \\
& I_{u}^{\prime}=\operatorname{Re} \operatorname{Tr}\left(\left(X_{u} X_{d} X_{u}+\left\{X_{d}, X_{u}^{2}\right\}\right) \tilde{Y}_{u} Y_{u}^{\dagger}+X_{u}^{3} \tilde{Y}_{d} Y_{d}^{\dagger}\right) \\
& I_{d}^{\prime}=I_{u}^{\prime}(u \leftrightarrow d)
\end{aligned}
$$

RG invariance

The set of invariants is closed under RG

```
\mp@subsup{\dot{I}}{e}{(1)}=2\mp@subsup{\gamma}{e}{\prime}\mp@subsup{I}{e}{(1)}+6\mp@subsup{I}{e}{(2)}+2\operatorname{Tr}(\mp@subsup{X}{e}{})(\mp@subsup{I}{e}{(1)}+3(\mp@subsup{I}{d}{(1)}-\mp@subsup{I}{u}{(1)})),
\mp@subsup{\dot{I}}{e}{(2)}=4\mp@subsup{\gamma}{e}{\prime}\mp@subsup{I}{e}{(2)}+9\mp@subsup{I}{e}{(3)}+2\operatorname{Tr}(\mp@subsup{X}{e}{2})(\mp@subsup{I}{e}{(1)}+3(\mp@subsup{I}{d}{(1)}-\mp@subsup{I}{u}{(1)})),
\mp@subsup{\dot{I}}{e}{(3)}=6\mp@subsup{\gamma}{e}{\prime}\mp@subsup{I}{e}{(3)}+12I\mp@subsup{I}{e}{(4)}+2\operatorname{Tr}(\mp@subsup{X}{e}{3})(\mp@subsup{I}{e}{(1)}+3(\mp@subsup{I}{d}{(1)}-\mp@subsup{I}{u}{(1)}))
I}\mp@subsup{u}{}{(1)}=2\mp@subsup{\gamma}{u}{}\mp@subsup{I}{u}{(1)}+6\mp@subsup{I}{u}{(2)}-3\mp@subsup{I}{ud}{(1)}-2\operatorname{Tr}(\mp@subsup{X}{u}{})(\mp@subsup{I}{e}{(1)}+3(\mp@subsup{I}{d}{(1)}-\mp@subsup{I}{u}{(1)}))
\mp@subsup{I}{u}{(2)}=4\mp@subsup{\gamma}{u}{}\mp@subsup{I}{u}{(2)}+9\mp@subsup{I}{u}{(3)}-3\mp@subsup{I}{ud,u}{(2)}-2\operatorname{Tr}(\mp@subsup{X}{u}{2})(\mp@subsup{I}{e}{(1)}+3(\mp@subsup{I}{d}{(1)}-\mp@subsup{I}{u}{(1)})),
I
\mp@subsup{\dot{I}}{d}{(1)}=2\mp@subsup{\gamma}{d}{}\mp@subsup{I}{d}{(1)}+6\mp@subsup{I}{d}{(2)}-\mp@subsup{3}{ud}{(1)}+2\operatorname{Tr}(\mp@subsup{X}{d}{})(\mp@subsup{I}{e}{(1)}+3(\mp@subsup{I}{d}{(1)}-\mp@subsup{I}{u}{(1)})),
\mp@subsup{I}{d}{(2)}=4\mp@subsup{\gamma}{d}{}\mp@subsup{I}{d}{(2)}+9I\mp@subsup{I}{d}{(3)}-3\mp@subsup{I}{ud,d}{(2)}+2\operatorname{Tr}(\mp@subsup{X}{d}{2})(\mp@subsup{I}{e}{(1)}+3(\mp@subsup{I}{d}{(1)}-\mp@subsup{I}{u}{(1)})),
\mp@subsup{\dot{I}}{d}{(3)}=6\mp@subsup{\gamma}{d}{}\mp@subsup{I}{d}{(3)}+12\mp@subsup{I}{d}{(4)}-3\mp@subsup{I}{d}{\prime}}+2\operatorname{Tr}(\mp@subsup{X}{d}{3})(\mp@subsup{I}{e}{(1)}+3(\mp@subsup{I}{d}{(1)}-\mp@subsup{I}{u}{(1)}))
\mp@subsup{\dot{I}}{ud}{(1)}=2(\mp@subsup{\gamma}{u}{}+\mp@subsup{\gamma}{d}{})\mp@subsup{I}{ud}{(1)},
\mp@subsup{I}{ud,u}{(2)}=(4\mp@subsup{\gamma}{u}{}+2\mp@subsup{\gamma}{d}{})I|ud,u}(2)+3\mp@subsup{I}{u}{\prime}-6\mp@subsup{I}{ud}{(3)}-2\operatorname{Tr}(\mp@subsup{X}{u}{}\mp@subsup{X}{d}{}\mp@subsup{X}{u}{})(\mp@subsup{I}{e}{(1)}+3(\mp@subsup{I}{d}{(1)}-\mp@subsup{I}{u}{(1)}))
I
\mp@subsup{\dot{I}}{ud}{(3)}=4(\mp@subsup{\gamma}{u}{}+\mp@subsup{\gamma}{d}{})\mp@subsup{I}{ud}{(3)},
\mp@subsup{I}{ud}{(4)}=6(\mp@subsup{\gamma}{u}{}+\mp@subsup{\gamma}{d}{}+\frac{1}{2}\operatorname{Tr}(\mp@subsup{X}{u}{}+\mp@subsup{X}{d}{}))\mp@subsup{I}{ud}{(4)}-\operatorname{Im}\operatorname{Tr}([\mp@subsup{X}{u}{},\mp@subsup{X}{d}{}\mp@subsup{]}{}{3})(\mp@subsup{I}{u}{(1)}+\mp@subsup{I}{d}{(1)}).
```

$$
\begin{aligned}
\gamma_{e} & =-\frac{15}{4} g_{1}^{2}-\frac{9}{4} g_{2}^{2}+\operatorname{Tr}\left(X_{e}+3\left(X_{u}+X_{d}\right)\right) \\
\gamma_{u} & \equiv-\frac{17}{12} g_{1}^{2}-\frac{9}{4} g_{2}^{2}-8 g_{3}^{2}+\operatorname{Tr}\left(X_{e}+3\left(X_{u}+X_{d}\right)\right) \\
\gamma_{d} & \equiv-\frac{5}{12} g_{1}^{2}-\frac{9}{4} g_{2}^{2}-8 g_{3}^{2}+\operatorname{Tr}\left(X_{e}+3\left(X_{u}+X_{d}\right)\right)
\end{aligned}
$$

closed set except for:

$$
\begin{aligned}
& I_{e}^{(4)}=\operatorname{Re} \operatorname{Tr}\left(X_{e}^{3} \tilde{Y}_{e} Y_{e}^{\dagger}\right) \\
& I_{u}^{\prime}=\operatorname{Re} \operatorname{Tr}\left(\left(X_{u} X_{d} X_{u}+\left\{X_{d}, X_{u}^{2}\right\}\right) \tilde{Y}_{u} Y_{u}^{\dagger}+X_{u}^{3} \tilde{Y}_{d} Y_{d}^{\dagger}\right) \\
& I_{d}^{\prime}=I_{u}^{\prime}(u \leftrightarrow d)
\end{aligned}
$$

but Caley-Hamilton eq. tells us that these 3 invariants are actually linear combinations of the our original set
shift-invariance conditions are closed under RG

Non-pertubative condition

$\theta_{\text {qcd }}$ again

$$
-\frac{C_{g} g_{3}^{2}}{16 \pi^{2}} \frac{a}{f} \operatorname{Tr}\left(G_{\mu \nu} \tilde{G}^{\mu \nu}\right)
$$

breaks shift-invariance non-perturbatively (instanton effects) (in the operator basis where fermion couplings are derivative)

Non-pertubative condition
 $\theta_{\text {qcd }}$ again

$$
-\frac{C_{g} g_{3}^{2}}{16 \pi^{2}} \frac{a}{f} \operatorname{Tr}\left(G_{\mu \nu} \tilde{G}^{\mu \nu}\right) \quad \begin{aligned}
& \text { breaks shift-invariance non-perturbatively (instanton effects) } \\
& \text { (in the operator basis where fermion couplings are derivative) }
\end{aligned}
$$

$$
I_{g} \equiv C_{g}+\operatorname{Im} \operatorname{Tr}\left(Y_{u}^{-1} \tilde{Y}_{u}+Y_{d}^{-1} \tilde{Y}_{d}\right)=0
$$

is the basis independent condition for the shift-invariance to be maintained at the non-perturbative level

Non-pertubative condition
 $\theta_{\text {qcd }}$ again

$$
-\frac{C_{g} g_{3}^{2}}{16 \pi^{2}} \frac{a}{f} \operatorname{Tr}\left(G_{\mu \nu} \tilde{G}^{\mu \nu}\right) \quad \begin{aligned}
& \text { breaks shift-invariance non-perturbatively (instanton effects) } \\
& \text { (in the operator basis where fermion couplings are derivative) }
\end{aligned}
$$

$$
I_{g} \equiv C_{g}+\operatorname{Im} \operatorname{Tr}\left(Y_{u}^{-1} \tilde{Y}_{u}+Y_{d}^{-1} \tilde{Y}_{d}\right)=0
$$

is the basis independent condition for the shift-invariance to be maintained at the non-perturbative level

It can be shown again that this condition is RG invariant

$$
\mu \frac{d I_{g}}{d \mu}=0 \quad \text { whenever shift-symmetry holds }\left(l_{g}=l_{i}=0 \text { for } \mathrm{i}=1 \ldots 13\right)
$$

Conclusions

EDM constraints don't exclude all sources of CPV

- CPV is a collective effect.
- CP is not an accidental symmetry but CPV is accidentally small in SM_{4}.
- Many new possible sources of CPV at dim-6 level.
- Shift-symmetry of an ALP reduces to Jarlskog-like invariant conditions
- ALP shift-symmetry is surprisingly closed connected to CP-symmetry

We now have a proper map to explore BSM effects systematically

Conclusions

EDM constraints don't exclude all sources of CPV

- CPV is a collective effect.
- CP is not an accidental symmetry but CPV is accidentally small in SM_{4}.
- Many new possible sources of CPV at dim-6 level.
- Shift-symmetry of an ALP reduces to Jarlskog-like invariant conditions
- ALP shift-symmetry is surprisingly closed connected to CP-symmetry

We now have a proper map to explore BSM effects systematically

BONUS

Minimal Set

\# parameters for the different types of operators

	Type of op.	\# of ops	\# real	\# im.	$\begin{gathered} \text { inv. under } U(1)_{L_{i}}-U(1)_{L_{j}} \\ \text { \# real } \quad \# \mathrm{im} . \end{gathered}$	
	Yukawa	3	27	27	21	21
	Dipoles	8	72	72	60	60
	current-current	8	51	30	42	21
	all bilinears	19	150	129	123	102
$\begin{gathered} \overrightarrow{0} \\ \text { I } \\ \text { H } \\ 4 \end{gathered}$	LLLL	5	171	126	99	54
	RRRR	7	255	195	186	126
	LLRR	8	360	288	246	174
	LRRL	1	81	81	27	27
	LRLR	4	324	324	216	216
	all 4-Fermi	25	1191	1014	774	597
all			1341	1143	897	699

\# primary sources of CPV

CPV for Degenerate Spectrum

- As noticed already in SM_{4}, degenerate spectra (equal mass, zero or maximal mixing angle) have different CPV counting than generic case

	Parameter values	Flavor symmetries of the SM_{4} Lagrangian
$\begin{aligned} & m_{u} \neq m_{c} \neq m_{t} \\ & m_{d} \neq m_{s} \neq m_{b} \end{aligned}$	Generic $V_{\text {CKM }}$	$U(1)_{B}$
	$\begin{aligned} & \left\|V_{\mathrm{CKM}, i_{0} j_{0}}\right\|=1, V_{\mathrm{CKM}, i_{0}}=V_{\mathrm{CKM}, i_{0} j}=0 \\ & i \neq i_{0}, j \neq j_{0} \end{aligned}$	$U(1)^{2}$
	$\begin{aligned} & \left\|V_{\mathrm{CKM}, i_{1} j_{1}}\right\|=\left\|V_{\mathrm{CKM}, i_{2} j_{2}}\right\|=\left\|V_{\mathrm{CKM}, i_{3} j_{3}}\right\|=1 \quad \text { for } \begin{array}{l} i_{1} \neq i_{2} \neq i_{3} \\ j_{1} \neq j_{2} \neq j_{3} \end{array} \\ & V_{\mathrm{CKM}, i_{j}=0 \text { elsewhere }} \end{aligned}$	$U(1)^{3}$
$\begin{aligned} & m_{u} \neq m_{c}=m_{t} \\ & m_{d} \neq m_{s} \neq m_{b} \end{aligned}$	Generic $V_{\text {CKM }}$ (see Eq. (4.16))	$U(1)_{B}$
	$\begin{aligned} & \left\|V_{\mathrm{CKM}, i_{0} j_{0}}\right\|=1, V_{\mathrm{CKM}, i_{0}}=V_{\mathrm{CKM}, i_{0} j}=0 \\ & i \neq i_{0}, j \neq j_{0} \end{aligned}$	$U(1)^{2}$
	$\begin{aligned} & \left\|V_{\mathrm{CKM}, i_{1} j_{1}}\right\|=\left\|V_{\mathrm{CKM}, i_{2} j_{2}}\right\|=\left\|V_{\mathrm{CKM}, i_{3} j_{3}}\right\|=1 \text { for } \begin{array}{l} i_{1} \neq i_{2} \neq i_{3} \\ j_{1} \neq j_{2} \neq j_{3} \end{array} \\ & V_{\mathrm{CKM}, i_{j}=0 \text { elsewhere }} \end{aligned}$	$U(1)^{3}$
$\begin{aligned} & m_{u} \neq m_{c} \neq m_{t} \\ & m_{d}=m_{s} \neq m_{b} \end{aligned}$	Same as the previous case with $V_{\text {CKM }} \leftrightarrow V_{\text {CKM }}^{\dagger}$	
$\begin{aligned} & m_{u} \neq m_{c}=m_{t} \\ & m_{d}=m_{s} \neq m_{b} \end{aligned}$	Generic $V_{\text {CKM }}$	$U(1)^{2}$
	$\begin{aligned} & \left\|V_{\mathrm{CKM}, 11}\right\|=\left\|V_{\mathrm{CKM}, 22}\right\|=\left\|V_{\mathrm{CKM}, 33}\right\|=1 \\ & V_{\mathrm{CKM}, i j}=0 \text { elsewhere } \end{aligned}$	$U(1)^{3}$
	$\begin{aligned} & \left\|V_{\mathrm{CKM}, 13}\right\|=\left\|V_{\mathrm{CKM}, 22}\right\|=\left\|V_{\mathrm{CKM}, 31}\right\|=1 \\ & V_{\mathrm{CKM}, i j}=0 \text { elsewhere } \end{aligned}$	$U(2) \times U(1)$
$m_{u}=m_{c}=m_{t}$	$m_{d} \neq m_{s} \neq m_{b}$	$U(1)^{3}$
	$m_{d}=m_{s} \neq m_{b}$	$U(2) \times U(1)$
	$m_{d}=m_{s}=m_{b}$	$U(3)$
$m_{d}=m_{s}=m_{b}$	$m_{u} \neq m_{c} \neq m_{t}$	$U(1)^{3}$
	$m_{u} \neq m_{c}=m_{t}$	$U(2) \times U(1)$
	$m_{u}=m_{c}=m_{t}$	$U(3)$

maximal rank of transfer matrix for different flavour symmetries of the Yukawa matrices

Minimal Sets for 4-Fermi Operators

Wilson coefficient	Number of phases	Minimal set
$C_{L L}, C_{e e}$	0	\varnothing
$C_{\text {Le }}$	3	$\left\{B_{0}^{0}\left(C_{L L E \bar{e}}\right) B_{0}^{1}\left(C_{L L E \bar{e}}\right) B_{0}^{2}\left(C_{L L E \bar{e}}\right)\right\}$
$C_{Q e}$		$\left\{\begin{array}{ll} A_{0}^{1100}\left(C_{Q Q e e}\right) & A_{1}^{1100}\left(C_{Q Q e e}\right) \end{array} A_{2}^{1100}\left(C_{Q Q e e}\right)\right.$
$C_{\text {ed }}$		Same with $C_{Q Q e e} \rightarrow C_{\text {eeĩd }}$ (exchanging upper with lower indices and with $\left.Y_{e} \leftrightarrow Y_{e}^{\dagger}\right)$
$C_{\text {eu }}$	9	Same with $C_{Q Q e e} \rightarrow C_{\text {eeĩü }}$ (exchanging upper with lower indices and with $\left.Y_{e} \leftrightarrow Y_{e}^{\dagger}\right)$
$C_{L Q}^{(1,3)}$		
$C_{L d}$		Same with $C_{L Q}^{(1,3)} \rightarrow C_{L L \bar{d} \bar{d}}$
$C_{L u}$		$\text { Same with } C_{L Q}^{(1,3)} \rightarrow C_{L L \bar{u} \bar{u}}$
$C_{L e q u}^{(1,3)}$	27	
		$\left\{\begin{array}{lll}A_{0110}^{0}\left(C_{L e Q u ̄}^{u}\right) & A_{0110}^{1}\left(C_{L e \bar{Q}}\right) & A_{0110}^{2}\left(C_{L e Q u ̄}^{u}\right.\end{array}\right\}$
$C_{\text {Leda }}$		Same with $C_{L e \bar{Q} \tilde{u}} \rightarrow C_{\text {Leĩd }}$ and $A_{\text {bcde }}^{a} \rightarrow A_{\text {ecdb }}^{a}$

Wilson coefficient	Number of phases	Minimal set
$C_{Q Q}^{(1,3)}$	18	
$C_{u u}$	18	
$C_{d d}$	18	
$C_{Q u}^{(1,8)}$	36	
$C_{Q d}^{(1,8)}$	36	

Wilson coefficient	Number of phases	Minimal set
$C_{u d}^{(1,8)}$	36	
$C_{Q u Q d}^{(1,8)}$	81	

4-Fermi Operators
 Minimal and maximal bases

- As for the bilinears, one can construct a minimal basis of invariants:
"CP is conserved iff J_{4} and the invariants of a minimal basis are all vanishing"
- The dimension of the minimal basis is always equal to the number of physical phases associated to an operator: QQQQ $\rightarrow 18$, QuQd $\rightarrow 81$, LLuu $\rightarrow 36 / 9$ (w/wo neutrino masses)
- But the real coefficients also contribute to CPV: the dimension of the maximal basis is equal to the total number of parameters associated to an operator: QQQQ $\rightarrow 45$, QuQd \rightarrow 162, LLuu $\rightarrow 81 / 27$ (w/wo neutrino masses) ...

