Beyond Jarlskog: Playing with Flavor Invariants

Based on:

 Q. Bonnefoy (DESY), E. Gendy (UHH), CG and J. Ruderman (NYU) arXiv: 2112.03889 "Beyond Jarlskog: 699 invariants for CP violation in SMEFT".
 + follow up paper to appear soon
 Q. Bonnefoy (DESY), CG, J. Kley (DESY)
 to appear later this week: "The shift-invariant orders of an ALP".

Christophe Grojean

DESY (Hamburg) & Humboldt University (Berlin) (christophe.grojean@desy.de)

Outline

The collective nature of **CPV**: Real vs. Imaginary The (flavour-)invariant measures of CPV Beyond Jarlskog: the 699 (minimal) CPV invariants of SMEFT₆ The collective nature of shift-symmetry breaking RG invariance of the invariants

Note 1: I'll consider only heavy/decoupling new physics **Note 2**: I'll assume that SU(2)xU(1) is linearly realised above the weak scale, i.e. SMEFT rather than HEFT. Our construction can be generalised but we haven't gone through this exercise (yet). I'll also assume that possible B and L violating effects are pushed to a high scale irrelevant for our discussion.

- Beyond Jarlskog: the 13 invariants of ALP shift-symmetry breaking

Does new physics break CP?

- We need a map to explore GPV effects:
 - What are the BSM sources of CPV?
 - What could be their sizes?

loop	Sensitivity for	or Summer 2019 [TeV]	Phase I Sens	sitivity [TeV]	Phase II Ser	sitivity [TeV]
rder	B_d mixing	B_s mixing	B_d mixing	B_s mixing	B_d mixing	B_s mixing
e level	9	13	17	18	20	21
e loop	0.7	1.0	1.3	1.4	1.6	1.7
e level	1×10^3	3×10^2	2×10^3	4×10^2	2×10^3	5×10^2
e loop	80	20	2×10^2	30	2×10^2	40

CPV in **SM**₄ CPV comes from mixing among quarks and the resulting couplings to W

$$\mathcal{L}_{\text{mix}} = \frac{e}{\sqrt{2}\sin\theta_w} \left[W^+_{\mu} \bar{u} V \gamma^{\mu} \left(\frac{1-\gamma_5}{2} \right) d + W^-_{\mu} \bar{d} V^{\dagger} \gamma^{\mu} \left(\frac{1-\gamma_5}{2} \right) u \right]$$
$$\int \mathsf{CP}$$
$$\frac{e}{\sqrt{2}\sin\theta_w} \left[W^+_{\mu} \bar{u} \left(V^{\dagger} \right)^T \gamma^{\mu} \left(\frac{1-\gamma_5}{2} \right) d + W^-_{\mu} \bar{d} V^T \gamma^{\mu} \left(\frac{1-\gamma_5}{2} \right) u \right]$$

Phases in CKM break CP!

	/	72 - 21i	4	$\underline{12i}$	\mathbf{N}
	/	325	13	13	
V_{output} —		12	576 + 168i	49 - 168i	
$V_{\rm CKM} =$		$-\overline{13}$	1625	65	
		-96-28i	57	$\underline{} 24i$	
		$\overline{}325$	$-\overline{65}$	65	/

$$V_{\text{CKM}} = \begin{pmatrix} \frac{72-21i}{325} & \frac{4}{13} & -\frac{12i}{13} \\ -\frac{12}{13} & \frac{576+168i}{1625} & \frac{49-168i}{65} \\ -\frac{96-28i}{325} & -\frac{57}{65} & -\frac{24i}{65} \end{pmatrix}$$

$$\begin{pmatrix} \frac{3-4i}{5} & 0 & 0\\ 0 & \frac{4-3i}{5} & 0\\ 0 & 0 & \frac{3-4i}{5} \end{pmatrix} \begin{pmatrix} \frac{3}{13} & \frac{4}{13} & \frac{12}{13}\\ -\frac{12}{13} & \frac{24}{65} & \frac{7}{65}\\ -\frac{4}{13} & -\frac{57}{65} & \frac{24}{65} \end{pmatrix} \begin{pmatrix} \frac{4+3i}{5} & 0 & 0\\ 0 & \frac{3+4i}{5} & 0\\ 0 & 0 & \frac{4-3i}{5} \end{pmatrix}$$

no complex phase after appropriate phase shifts of quark fields

no complex phase after appropriate phase shifts of quark fields

V_{α} —	$\left(\begin{array}{c} \frac{2172-5}{8125} \\ 3747+ \end{array}\right)$	$5 - \frac{-1}{812}$	25 - 8125
$V_{\rm CKM} =$	$\begin{pmatrix} -\frac{812}{812} \\ -\frac{308+}{110} \end{pmatrix}$	$144i$ _ $4389+2$	2052i $1848+864$

no complex phase after appropriate phase shifts of quark fields

no complex phase after appropriate phase shifts of quark fields

if m_u=m_c, enlarged U(2) flavour symmetry that can be used to remove phase in CKM

no complex phase after appropriate phase shifts of quark fields

if m_u=m_c, enlarged U(2) flavour symmetry that can be used to remove phase in CKM

$CPV \leftrightarrow \exists$ phase in Lagrangian parameters

 \dagger

	$SU(3)_Q$	$SU(3)_u$	$SU(3)_d$	$U(1)_u$	$U(1)_d$	$U(1)_B$
$Y_u (9R + 9I)$	3	$\overline{3}$	1	1	0	0
$Y_d (9R + 9I)$	3	1	$\overline{3}$	0	1	0
	3R + 5I	3R + 5I	3R + 5I	1 I	1 I	1 I

 \dagger

		$SU(3)_Q$	$SU(3)_u$	$SU(3)_d$	$U(1)_u$	$U(1)_d$	$U(1)_B$		
$\begin{array}{l}Y_u (9R+9I)\\Y_d (9R+9I)\end{array}$		3	3	1	1	0	0		$\frac{physic}{9R+1R}$
$Y_d (9R+9I)$		3	1	$\overline{3}$	0	1	0		9R + 1I
	—	3R+5I	3R + 5I	3R + 5I	1 <i>I</i>	1 I	11	Ľ	
				0 D $+$ 1 E	T				

9R + 17I

		$SU(3)_Q$	$SU(3)_u$	$SU(3)_d$	$U(1)_u$	$U(1)_d$	$U(1)_B$		
$\begin{array}{l}Y_u \ (9R+9I)\\Y_d \ (9R+9I)\end{array}$		3	$\overline{3}$	1	1	0	0		physica
$Y_d (9R+9I)$		3	1	$\overline{3}$	0	1	0		9R + 1I
	-	3R+5I	3R + 5I	3R + 5I	1 I	1 I	11	_	L

- The position of this physical phase is (flavour)-basis dependent, e.g.
 - Up-basis: Y_u =diag, Y_d = V_{CKM}.diag
 - Down-basis: $Y_u = V_{CKM}$.diag, $Y_d = diag$
 - many other choices of flavour bases

9R + 17I

	k	$SU(3)_Q$	$SU(3)_u$	SU
$\begin{array}{c} Y_u \left(9R + 9I\right) \\ Y_d \left(9R + 9I\right) \end{array}$		3	$\overline{3}$	
$Y_d (9R+9I)$		3	1	
		3R+5I	3R+5I	31

- The position of this physical phase is (flavour)-basis dependent, e.g.
 - Up-basis: Y_u =diag, Y_d = V_{CKM}.diag
 - Down-basis: $Y_u = V_{CKM}$.diag, $Y_d = diag$
 - many other choices of flavour bases

9R + 17I

standard parametrisation $J_4 \equiv \operatorname{Im} \operatorname{Tr} \left[Y_u Y_u^{\dagger}, Y_d Y_d^{\dagger} \right] = 6(y_t^2 - y_c^2)(y_t^2 - y_u^2)(y_c^2 - y_u^2)(y_b^2 - y_s^2)(y_b^2 - y_d^2)(y_s^2 - y_d^2)\mathcal{J}$ $V_{\rm CKM} = \begin{pmatrix} 1 & 0 & 0 \\ s_{12}c_{12}s_{13}c_{13}^{2}s_{23}c_{23} \\ 0 & c_{23} & s_{23} \\ 0 & -s_{22} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{12}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $s_{13}e^{-i\delta_{\rm CKM}}$ $c_{13}s_{12}$ $c_{12}c_{13}$ $-c_{23}s_{12} - c_{12}s_{13}s_{23}e^{i\delta_{\rm CKM}}$ $c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta_{\rm CKM}}$ _ $c_{13}s_{23}$ $s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{\rm CKM}}$ $-c_{12}s_{23} - c_{23}s_{12}s_{13}e^{i\delta_{\rm CKM}}$ $c_{13}c_{23}$

Jarlskog Invariant The SM CPV order

The lowest order flavour invariant sensitive to CPV

$$J_4 = \operatorname{ImTr}\left(\left[\right] \right]$$

Explicitly

$$J_{4} = \underbrace{6c_{12}s_{12}c_{13}^{2}s_{13}c_{23}s_{23}}_{\mathcal{O}\left(\lambda^{6}\right)} \underbrace{\left(y_{t}^{2}-y_{u}^{2}\right)\left(y_{t}^{2}-y_{c}^{2}\right)\left(y_{s}^{2}-y_{d}^{2}\right)\left(y_{b}^{2}-y_{d}^{2}\right)\left(y_{b}^{2}-y_{s}^{2}\right)}_{\mathcal{O}\left(\lambda^{0}\right)} \underbrace{\mathcal{O}\left(\lambda^{0}\right)}_{\mathcal{O}\left(\lambda^{0}\right)} \underbrace{\mathcal{O}\left(\lambda^{0}\right)}_{\mathcal{O}\left(\lambda^{3}(1-\rho-i\eta)\right)} = \underbrace{\mathcal{O}\left(\lambda^{2}-y_{d}^{2}\right)\left(y_{b}^{2}-y_{d}^{2}\right)\left(y_{b}^{2}-y_{d}^{2}\right)\left(y_{b}^{2}-y_{d}^{2}\right)}_{\mathcal{O}\left(\lambda^{0}\right)} \underbrace{\mathcal{O}\left(\lambda^{0}\right)}_{\mathcal{O}\left(\lambda^{0}\right)} = \underbrace{\mathcal{O}\left(\lambda^{2}-y_{d}^{2}\right)\left(y_{b}^{2}-y_{d}^{2}-y_{d}^{2}\right)\left(y_{b}^{2}-y_{d}^{2}-y_{d}^{2}\right)\left(y_{b}^{2}-y_{d}^{2}-y_{d}^{2}$$

- Even if $\delta \sim O(1)$, large suppression effects due to collective nature of CPV
- Important property: CP is conserved iff $J_4=0$ (neglecting θ_{QCD} for now)

$[Y_u Y_u^{\dagger}, Y_d Y_d^{\dagger}]^3)$

Jarlskog Invariant The SM CPV order

The lowest order flavour invariant sensitive to CPV

$$J_4 = \operatorname{ImTr}\left(\left[-\frac{1}{2} \right] \right)$$

Explicitly

$$J_{4} = \underbrace{6c_{12}s_{12}c_{13}^{2}s_{13}c_{23}s_{23}}_{\mathcal{O}}\underbrace{\left(y_{c}^{2}-y_{u}^{2}\right)\left(y_{t}^{2}-y_{u}^{2}\right)\left(y_{t}^{2}-y_{c}^{2}\right)\left(y_{s}^{2}-y_{d}^{2}\right)\left(y_{b}^{2}-y_{d}^{2}\right)\left(y_{b}^{2}-y_{s}^{2}\right)}_{\mathcal{O}}\underbrace{\sin\delta}_{\mathcal{O}}\underbrace{\left(\lambda^{6}\right)}_{\mathcal{O}}\underbrace{\mathcal{O}}\left(\lambda^{0}\right)}_{\mathcal{O}\left(\lambda^{0}\right)}$$
Wolfenstein parametrisation
$$V_{\text{CKM}} = \begin{pmatrix}1-\lambda^{2}/2 & \lambda & A\lambda^{3}(\rho-i\eta)\\ -\lambda & 1-\lambda^{2}/2 & A\lambda^{2}\\ A\lambda^{3}(1-\rho-i\eta) & -A\lambda^{2} & 1\end{pmatrix} + \mathcal{O}(\lambda^{4}) \qquad \lambda \sim 0.22$$

- Even if $\delta \sim O(1)$, large suppression effects due to collective nature of CPV
- Important property: CP is conserved iff $J_4=0$ (neglecting θ_{QCD} for now)

$[Y_u Y_u^{\dagger}, Y_d Y_d^{\dagger}]^3$

exercise 1: check that indeed J₄ vanishes on the two examples of previous slide (one need mu=mc for the second one!)

Jarlskog Invariant The SM CPV order

The lowest order flavour invariant sensitive to CPV

$$J_4 = \operatorname{ImTr}\left(\left[-\frac{1}{2} \right] \right)$$

Explicitly

$$J_{4} = \underbrace{6c_{12}s_{12}c_{13}^{2}s_{13}c_{23}s_{23}}_{\mathcal{O}\left(\lambda^{6}\right)} \underbrace{\left(y_{t}^{2} - y_{u}^{2}\right)\left(y_{t}^{2} - y_{c}^{2}\right)\left(y_{s}^{2} - y_{d}^{2}\right)\left(y_{b}^{2} - y_{d}^{2}\right)\left(y_{b}^{2} - y_{s}^{2}\right)\sin\delta}_{\mathcal{O}\left(\lambda^{0}\right)}$$

$$Wolfenstein parametrisation \quad V_{\text{CKM}} = \begin{pmatrix}1 - \lambda^{2}/2 & \lambda & A\lambda^{3}(\rho - i\eta)\\ -\lambda & 1 - \lambda^{2}/2 & A\lambda^{2}\\ A\lambda^{3}(1 - \rho - i\eta) & -A\lambda^{2} & 1\end{pmatrix} + \mathcal{O}(\lambda^{4}) \qquad \lambda \sim 0.22$$

- Even if $\delta \sim O(1)$, large suppression effects due to collective nature of CPV
- Important property: CP is conserved iff $J_4=0$ (neglecting θ_{QCD} for now)

exercise 1: check that indeed J₄ vanishes on the two examples of previous slide (one need mu=mc for the second one!) **exercise 2**: check that for $N_F=2$, J_4 always vanishes

$[Y_u Y_u^{\dagger}, Y_d Y_d^{\dagger}]^3)$

BSM CPV is also a Collective Effect The example of electron EDM

$$\mathcal{L} = y h \bar{\psi} \psi$$

$$y_u = \frac{\sqrt{2}m_u}{v} \left(1 + C_{uH}v^2/\Lambda^2\right)$$

Λ^{Z}

Brod, Haisch, Zupan '13

BSM CPV is also a Collective Effect $\mathcal{L} = \mathcal{L}_{SM} + \frac{C_{uH}}{\Lambda^2} |H|^2 \bar{Q}_L u_R \tilde{H}$ The example of electron EDM

- The Yukawa can be made real by chiral rotation:
- The "phase" will appear in the mass

Trivial here, but can get complicated: flavour indices, links to UV parameters...

"Imaginerv" Et the concepting gives rise to eEDM through Barr-Zee diagram

The CPV effect is captured by Im (y[†]·m), which is invariant under chiral rotation

Dim-6 Yukawa's Contribution to EDMs CP doesn't say Wilson coefficients are real $\mathcal{L} = \underbrace{Y_u \bar{Q} \tilde{H} U}_{3x3 \text{ complex}} + \underbrace{C_{uH} |H|^2 \bar{Q} \tilde{H} U}_{3x3 \text{ complex}} \qquad \blacksquare \qquad \underbrace{g_{huu}^{ij} h \bar{u}_i u_j}_{Y_u^{ij} + 3v^2 C_{uH}^{ij}}$

(9R+9I)

(9R+9I)

One can choose U(3)_QxU(3)_U transformations to make C_{uH} (or g_{huu}) *real* **CPV** effects \leftrightarrow Im C_{uH} Phases can be moved to mass matrices — even in mass basis, \exists residual U(1)'s to move phase around (flavour basis fully specified by the location of the phase in the CKM matrix)

Dim-6 Yukawa's Contribution to EDMs CP doesn't say Wilson coefficients are real $\mathcal{L} = Y_u \bar{Q} \tilde{H} U + C_{uH} |H|^2 \bar{Q} \tilde{H} U$ 3x3 complex 3x3 complex

(9R+9I)

(9R+9I)

One can choose U(3)_QxU(3)_U transformations to make C_{uH} (or g_{huu}) *real*

CPV effects \leftrightarrow Im CuH

Phases can be moved to mass matrices — even in mass basis, \exists residual U(1)'s to move phase around (flavour basis fully specified by the location of the phase in the CKM matrix)

At two loops and $1/\Lambda^2$ order, **Barr-Zee grag** and A = 0 depends only on three phases captured by **three invariants** (only diagonal phases can contribute at 2-loops because no FCNC in SM)

$$\frac{d_e}{e} \propto \frac{\alpha y_e}{16\pi^3} \left(a I_1 + b I_2 \right)$$

DM

 $I_n = \operatorname{Im} \operatorname{Tr} \left(Y_u^{\dagger} \left(Y_u Y_u^{\dagger} \right)^n C_{uH} \right)$ with $I_2 + c I_3$ a, b, c functions of Y_u only

Dim-6 Yukawa's Contribution to EDMs CP doesn't say Wilson coefficients are real $\bar{Q}\tilde{H}U \qquad \blacklozenge \qquad g_{huu}^{ij}h\bar{u}_{i}u_{j}$ $Y_{u}^{ij}+3v^{2}C_{uH}^{ij}$ 3x3 complex 3x3 complex

$$\mathcal{L} = Y_u \bar{Q} \tilde{H} U + C_{uH} |H|^2 \bar{Q}$$

(9R+9I)

(9R+9I)

One can choose U(3)_QxU(3)_U transformations to make C_{uH} (or g_{huu}) *real*

Phases can be moved to mass matrices — even in mass basis, \exists residual U(1)'s to move phase around (flavour basis fully specified by the location of the phase in the CKM matrix)

At two loops and 1/A² order, Barr-Zee giagram depends only on three phases captured by three invariants (only diagonal phases can contribute at 2-loops because no FCNC in SM)

At higher loops, more phases can appear.

- How many?

DM

CPV effects \leftrightarrow Im CuH

$(r_2 + c I_3)$	with	$I_n = \operatorname{Im} \operatorname{Tr} \left(Y_u^{\dagger} \left(Y_u Y_u^{\dagger} \right)^n C_{uH} \right)$
$2 \pm c I 3)$	VVILII	a, b, c functions of Y _u only

• How many constraints should we impose to ensure CP is conserved?

Dim-6 Yukawa's Contribution to EDMs CP doesn't say Wilson coefficients are real $g_{huu}^{ij} h \bar{u}_i u_j$ $Y_u^{ij} + 3v^2 C_{uH}^{ij}$ $\bar{Q}HU$ 3x3 complex 3x3 complex

$$\mathcal{L} = Y_u \bar{Q} \tilde{H} U + C_{uH} |H|^2 \bar{Q}$$

(9R+9I)

(9R+9I)

One can choose U(3)_QxU(3)_U transformations to make C_{uH} (or g_{huu}) *real*

Phases can be moved to mass matrices — even in mass basis, \exists residual U(1)'s to move phase around (flavour basis fully specified by the location of the phase in the CKM matrix)

At two loops and $1/\Lambda^2$ order, **Barr-Zee grag** and A = 0 depends only on three phases captured by three invariants (only diagonal phases can contribute at 2-loops because no FCNC in SM)

$$\frac{d_e}{e} \propto \frac{\alpha y_e}{16\pi^3} \left(a I_1 + b I_2 \right)$$

At higher loops, more phases can appear.

- How many?

DМ

CPV effects \leftrightarrow Im Curr

$(r_2 + c I_3)$	with	$I_n = \operatorname{Im} \operatorname{Tr} \left(Y_u^{\dagger} \left(Y_u Y_u^{\dagger} \right)^n C_{uH} \right)$
$2 \pm c I 3)$	VVILII	a, b, c functions of Y _u only

• How many constraints should we impose to ensure CP is conserved?

 $CP \leftrightarrow C_{uH}$ real matrix

 $\mathcal{A} = \mathcal{A}^{(4)} + \mathcal{A}^{(6)} + \ldots \Rightarrow |\mathcal{A}^{(4)}|^2 + 2\operatorname{Re}\left(\mathcal{A}^{(4)}\mathcal{A}^{(6)*}\right)$

CP iff $J_4=0$

 $\mathcal{A} = \mathcal{A}^{(4)} + \mathcal{A}^{(6)} + \ldots \Rightarrow \left(\mathcal{A}^{(4)} |^2 \right) + 2\operatorname{Re}\left(\mathcal{A}^{(4)} \mathcal{A}^{(6)*} \right)$

CP iff J₄=0

 $\mathcal{A} = \mathcal{A}^{(4)} + \mathcal{A}^{(6)} + \dots \Rightarrow \left(\mathcal{A}^{(4)}|^2\right) + 2\operatorname{Re}\left(\mathcal{A}^{(4)}\mathcal{A}^{(6)*}\right)$ CP iff J₄=0 & ???

CP iff $J_4=0$

 $\mathcal{A} = \mathcal{A}^{(4)} + \mathcal{A}^{(6)} + \ldots \Rightarrow \left(\mathcal{A}^{(4)}|^2\right) + 2\operatorname{Re}\left(\mathcal{A}^{(4)}\mathcal{A}^{(6)*}\right)$ CP iff J₄=0 & ???

How many conditions?

Any relation with the number of phases that can appear in L_{SM6}?

SM₆ Basis of dim-6 operators, aka Warsaw basis

$1: X^3$		2	$: H^6$		$3: H^4 D^2$			$5: \psi^2 H^3 + \text{h.c.}$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_H	$(H^{\dagger}H)^3$	$Q_{H\square}$	(H^{\dagger})	$^{\dagger}H)\Box(H^{\dagger}H)$		Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			Q_{HD}	$\left(H^{\dagger}D_{\mu}\right)$	$H\Big)^* \left(H^{\dagger}I\right)$	$D_{\mu}H\big)$	Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$	
Q_W	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$							Q_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$	
$Q_{\widetilde{W}}$	$\epsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$									
	$4: X^2 H^2$		$6:\psi^2 X E$	I + h.c.			,	$7:\psi^2 H^2 H^2$	D	
Q_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu}$	$(e_r)\tau^I H W$	7Ι μν	$Q_{Hl}^{(1)}$		$(H^{\dagger}i\overleftarrow{I}$	$\vec{O}_{\mu}H)(\bar{l}_p\gamma^{\mu}l_r)$	
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p\sigma^\mu$	$^{\mu u}e_r)HB_{\mu}$	ν	$Q_{Hl}^{(3)}$		$(H^{\dagger}i\overleftrightarrow{D}$	$(\bar{l}_{\mu}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
Q_{HW}	$H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu})$	$(T^A u_r) \widetilde{H}$ ($G^{A}_{\mu u}$	Q_{He}		$(H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{D}_{\mu}H)(\overline{e}_p\gamma^{\mu}e_r)$	
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu u}$	$(u_r)\tau^I \widetilde{H} V$	$V^{I}_{\mu u}$	$Q_{Hq}^{(1)}$		$(H^{\dagger}i\overleftarrow{L}$	$\vec{D}_{\mu}H)(\bar{q}_p\gamma^{\mu}q_r)$	
Q_{HB}	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^\mu$	$^{\iota\nu}u_r)\widetilde{H}B_{ ho}$	ιν	$Q_{Hq}^{(3)}$		$(H^{\dagger}i\overleftrightarrow{D}$	${}^{I}_{\mu}H)(\bar{q}_{p} au^{I}\gamma^{\mu}q_{r})$	
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu})$	$T^A d_r) H 0$	$G^{A}_{\mu u}$	Q_{Hu}		$(H^{\dagger}i\overleftarrow{L}$	$\partial_{\mu}H)(\bar{u}_p\gamma^{\mu}u_r)$	
Q_{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu u}$	$(d_r) \tau^I H W$	$V^{I}_{\mu u}$	Q_{Hd}		$(H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{D}_{\mu}H)(\overline{d}_p\gamma^{\mu}d_r)$	
$Q_{H\widetilde{W}B}$	$H^{\dagger}\tau^{I}H\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^\mu$	$^{\iota\nu}d_r)HB_{\mu}$	ιν	Q_{Hud} +	h.c.	$i(\widetilde{H}^{\dagger}L$	$(\bar{u}_p \gamma^\mu d_r)$	
	$8:(\bar{L}L)(\bar{L}L)$		8:($(\bar{R}R)(\bar{R}R)$)		8:	$(\bar{L}L)(\bar{R}H)$	<i>R</i>)	
Q_{ll}	$(ar{l}_p\gamma_\mu l_r)(ar{l}_s\gamma^\mu l_t)$	Q_{e}	ee (\bar{e}	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s)$	$\gamma^{\mu}e_t)$	Q_{le}	($(\bar{l}_p \gamma_\mu l_r)(\bar{e}$	$_{s}\gamma^{\mu}e_{t})$	
$Q_{qq}^{(1)}$	$(ar{q}_p\gamma_\mu q_r)(ar{q}_s\gamma^\mu q_t)$	Q_i	(\bar{u}_{j})	$_p\gamma_\mu u_r)(ar u_s)$	$_{s}\gamma^{\mu}u_{t})$	Q_{lu}	($(\bar{l}_p \gamma_\mu l_r)(\bar{u}_p)$	$_{s}\gamma^{\mu}u_{t})$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{a}	(\bar{d})	$(\bar{d}_p\gamma_\mu d_r)(\bar{d}_s)$	$\gamma^{\mu}d_t)$	Q_{ld}	($(\bar{l}_p \gamma_\mu l_r) (\bar{d}_p \gamma_\mu l_r)$	$\bar{s}_s \gamma^\mu d_t)$	
$Q_{lq}^{(1)}$	$(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)$	Q_{ϵ}	(\bar{e}_{j})	$_p\gamma_\mu e_r)(\bar{u}_s$	$\gamma^{\mu}u_t)$	Q_{qe}	($(\bar{q}_p \gamma_\mu q_r) (\bar{e}$	$ar{z}_s \gamma^\mu e_t)$	
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ϵ}	(\bar{e})	$(\bar{d}_p \gamma_\mu e_r) (\bar{d}_s)$	$\gamma^{\mu}d_t)$	$Q_{qu}^{(1)}$	($\bar{q}_p \gamma_\mu q_r)(\bar{u}$	$u_s \gamma^\mu u_t)$	
		$Q_u^{(}$	(\bar{u}^{1})	$(\bar{d}_s)_p \gamma_\mu u_r) (\bar{d}_s)_r$	$_{s}\gamma^{\mu}d_{t})$	$Q_{qu}^{(8)}$	$(\bar{q}_p\gamma)$	$(\bar{u}_{\mu}T^{A}q_{r})(\bar{u}_{r})$	$u_s \gamma^\mu T^A u_t)$	
		$Q_u^{(}$	$\overset{(8)}{\scriptstyle ad} \left(\bar{u}_p \gamma_\mu \right)$	(\bar{d}_s)	$_{s}\gamma^{\mu}T^{A}d_{t})$	$Q_{qd}^{(1)}$	($\bar{q}_p \gamma_\mu q_r) (d$	$ar{l}_s \gamma^\mu d_t)$	
						$Q_{qd}^{(8)}$	$(\bar{q}_p\gamma$	$(\mu T^A q_r)(d$	$ar{l}_s \gamma^\mu T^A d_t)$	
	$8:(ar{L}R)(A$	$\bar{R}L) +$	h.c.	8:(1)	$(\bar{L}R)(\bar{L}R)$ -	+ h.c.				
	Q_{ledq} (\bar{l})	$(\bar{d}_p^j e_r)(\bar{d}_p^j)$	(q_{tj})	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r)\epsilon_j$	$_{jk}(\bar{q}_s^k d_t)$				
	·			(α)	$\bar{q}_n^j T^A u_r) \epsilon_j$	$_{ik}(\bar{q}^k_sT^Ad_t$)			

$(l_p^j e_r)(d_s q_{tj})$	Q_{quqd}	$(q_p^j u_r) \epsilon_{jk} (q_s^n d_t)$
	$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \epsilon_{jk} (\bar{q}_s^k T^A d_t)$
	$Q_{lequ}^{(1)}$	$(ar{l}_p^j e_r) \epsilon_{jk} (ar{q}_s^k u_t)$
	$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \epsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM}^{(4)} + \sum_{n \ge 5} \frac{c_n}{\Lambda^{n-4}} \mathcal{O}^{(n)}$$

59 types of operators. 2499 independent Wilson coefficients (1350 real and 1149 imaginary).

SM₆ Basis of dim-6 operators, aka Warsaw basis

	$1: X^{3}$		H^6		$3: H^4D^2$				$5:\psi^2 H^3 + \text{h.c.}$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_H ($(H^{\dagger}H)^3$	$Q_{H\square}$	(H^{\dagger})	$(H^{\dagger}H)\Box(H^{\dagger}H)$		Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$		
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A u}_{\mu} G^{B ho}_{ u} G^{C\mu}_{ ho}$	I		Q_{HD}	$(H^{\dagger}D_{\mu})$	$H\Big)^* \left(H^{\dagger}I\right)$	$D_{\mu}H\bigr) = Q$	Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$		
	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$						Ģ	Q_{dH}	$(H^{\dagger}H)(\bar{q}_p d_r H)$		
$Q_{\widetilde{W}}$	$\epsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$							-			
	$4: X^2 H^2$	($\delta:\psi^2 X H$	I + h.c.			$7:\psi$	${}^{2}H^{2}I$	D		
Q_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu u})$	$e_r)\tau^I H$	$W^{I}_{\mu u}$	$Q_{Hl}^{(1)}$		$H^{\dagger}i\overleftarrow{I}$	$\vec{D}_{\mu}H)(\bar{l}_p\gamma^{\mu}l_r)$		
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p\sigma^\mu$	$(\nu e_r)HI$	$B_{\mu u}$	$Q_{Hl}^{(3)}$	(H	$T^{\dagger}i\overleftrightarrow{D}$	${}^{I}_{\mu}H)(\bar{l}_{p} au^{I}\gamma^{\mu}l_{r})$		
Q_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu})$	$T^A u_r) \hat{E}$	${ ilde I}G^A_{\mu u}$	Q_{He}	(1	$H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{\rho}_{\mu}H)(\overline{e}_{p}\gamma^{\mu}e_{r})$		
$Q_{H\widetilde{W}}$	$H^{\dagger}H \widetilde{W}^{I}_{\mu\nu} W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu})$	$u_r)\tau^I \widetilde{H}$	$W^I_{\mu u}$	$Q_{Hq}^{(1)}$	(1	$H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{D}_{\mu}H)(\overline{q}_p\gamma^{\mu}q_r)$		
Q_{HB}	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^\mu$	$^{\nu}u_r)\widetilde{H}$.	$B_{\mu u}$	$Q_{Hq}^{(3)}$	(H	$^{\dagger}i\overleftrightarrow{D}$	${}^{I}_{\mu}H)(ar{q}_{p} au^{I}\gamma^{\mu}q_{r})$		
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu})$	$T^A d_r) H$	$IG^A_{\mu u}$	Q_{Hu}	(H	$I^{\dagger}i\overleftarrow{D}$	$(\bar{u}_p \gamma^\mu u_r)$		
Q_{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu})$	$d_r)\tau^I H$	$W^{I}_{\mu u}$	Q_{Hd}	(H	$H^{\dagger}i\overleftarrow{D}$	$(\bar{d}_p \gamma^\mu d_r)$		
$Q_{H\widetilde{W}B}$	$H^{\dagger}\tau^{I}H\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^\mu$	$^{\nu}d_{r})H$	$B_{\mu u}$	Q_{Hud} +	h.c. $i($	$\widetilde{H}^{\dagger}D$	$(\bar{u}_p \gamma^\mu d_r)$		
	$8:(ar{L}L)(ar{L}L)$		8:(.	$\bar{R}R)(\bar{R}.$	R)		$8:(ar{L}L$	$)(\bar{R}R)$	2)		
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	(\bar{e}_{j})	$_p\gamma_\mu e_r)($	$\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(ar{l}_p\gamma_\mu$	$l_r)(\bar{e}$	$_{s}\gamma^{\mu}e_{t})$		
$Q_{qq}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar q_s \gamma^\mu q_t)$	Q_{uu}	(\bar{u}_p)	$_{p}\gamma_{\mu}u_{r})($	$ar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p\gamma_\mu$	$l_r)(\bar{u})$	$_{s}\gamma^{\mu}u_{t})$		
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$) Q_{dd}	(\bar{d}_{p})	$_p\gamma_\mu d_r)($	$ar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\overline{l}_p \gamma_\mu$	$l_r)(\overline{d}$	$s_s \gamma^\mu d_t)$		
$Q_{lq}^{(1)}$	$(\bar{l}_p\gamma_\mu l_r)(\bar{q}_s\gamma^\mu q_t)$	Q_{eu}	$(ar{e}_{p})$	$_{p}\gamma_{\mu}e_{r})(e_{r})$	$\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(ar{q}_p \gamma_\mu$	$q_r)(\bar{e}$	$(s_s \gamma^\mu e_t)$		
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	(\bar{e}_{p})	$_p\gamma_\mu e_r)(e_r)$	$ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar{q}_p\gamma_\mu$	$q_r)(\bar{u}$	$(v_s \gamma^\mu u_t)$		
		$Q_{ud}^{(1)}$	$(ar{u}_{p})$	$_p\gamma_\mu u_r)($	$\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A)$	$q_r)(\bar{u}$	$\gamma_{s}\gamma^{\mu}T^{A}u_{t})$		
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu)$	$T^A u_r)($	$\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu$	$q_r)(\bar{d}$	$(\bar{l}_s\gamma^\mu d_t)$		
						$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A)$	$q_r)(\bar{d}$	$\bar{d}_s \gamma^\mu T^A d_t)$		
	$8:(ar{L}R)($	$\bar{R}L) + h$	ı.C.	8:	$(\bar{L}R)(\bar{L}R)$ -	+ h.c.					
	Q_{ledq} (i	$(\bar{d}_p^j e_r)(\bar{d}_s q)$	q_{tj}) ζ	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r)\epsilon_j$	$_{jk}(\bar{q}_s^k d_t)$					
			4	$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \epsilon_j$	$_{jk}(\bar{q}_s^kT^Ad_t$)				
			G	$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \epsilon_j$	$_k(\bar{q}_s^k u_t)$					
				(3)	<i></i>	,					

 $Q_{lequ}^{(3)} \left[(\bar{l}_p^j \sigma_{\mu\nu} e_r) \epsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t) \right]$

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM}^{(4)} + \sum_{n \ge 5} \frac{c_n}{\Lambda^{n-4}} \mathcal{O}^{(n)}$$

59 types of operators. 2499 independent Wilson coefficients (1350 real and 1149 imaginary).

How many new sources of CPV?
 Which ones can appear at BSM leading order (1/Λ²)?

 Not because a parameter is O(1/Λ²) that it can contribute at leading order in any physical observable!

 We'll see indeed that there are general non-interference theorems —

 What are the collective breaking patterns associated to these new sources of CPV?
 Where should we look for CPV?

Beyond Jarlskog: Building SM₆ invariants Playing with new fermion bilinear interactions first

(9R+9I) operators for a total of 129 phases (and 150 real parameters)

	$5: \psi^2 H^3 + h.c.$			$6:\psi^2 XH + \text{h.c.}$		
S S S	Q_{eH}	$(H^{\dagger}H)(\overline{l}_{p}e_{r}H)$		Q_{eW}, Q_{eB}		
generic matrices	Q_{uH}	(H	$(\bar{q}_p u_r \tilde{H})(\bar{q}_p u_r \tilde{H})$	Q_{uG} , Q_{uW} , Q_{uB}		
ge Ma	Q_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$		Q_{dG}, Q_{dW}, Q_{dB}		
	$7:\psi^2 H^2 D$					
Hermitian matrices	$Q_{Hl}^{(1)}, Q_{Hl}^{(3)}$		$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r}), (H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$			
	Q_{He}		$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$			
	$Q_{Hq}^{(1)}, Q_{Hq}^{(3)}$		$\left((H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r}), (H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r}) \right)$			
	Q_{Hu}		$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$			
	Q_{Hd}		$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$			
generic Q_{Hud}			$i(\widetilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$			

 \bullet (and 150 \rightarrow 123 real parameters) — see later for more details

In the Warsaw basis, Manohar et al. counted 7 Hermitian (6R+3I) and 12 generic bilinear

$SU(3)_Q$	$SU(3)_u$	$SU(3)_d$	$SU(3)_L$	$SU(3)_e$
1	1	1	3	3
3	$\overline{3}$	1	1	1
3	1	$\overline{3}$	1	1
1	1	1	8 + 1	1
1	1	1	1	8 + 1
8 + 1	1	1	1	1
1	8 + 1	1	1	1
1	1	8 + 1	1	1
1	3	$\overline{3}$	1	1

In the limit $m_v=0$, lepton numbers in each family are conserved. The WC not invariant under these U(1)'s can never show up at linear order in any amplitude: $129 \rightarrow 102$ phases

Beyond Jarlskog: Building SM₆ invariants Examples of invariants from with bilinear operators

invariants:

$$I_{u_1\dots d_k} = \operatorname{Im} \operatorname{Tr} \left(Y_u^{\dagger} \left(Y_u Y_u^{\dagger} \right)^{u_1} \left(Y_d Y_d^{\dagger} \right)^{d_1} \dots \left(Y_u Y_u^{\dagger} \right)^{u_k} \left(Y_d Y_d^{\dagger} \right)^{d_k} C_{uH} \right)$$

Of course, they are not all independent:

e.g., for 3 families, $I_3 = \text{Tr}(Y_u Y_u^{\dagger}) I$

Only need to consider only a finite set of invariants:

 $\operatorname{Tr}\left(X_{i}^{o}\right)$ \rightarrow enough to consider a,b,c,d=

For each operators, e.g. the dim-6 Yukawa operators, we can build a series of CP-odd

$$I_2 + \frac{1}{2} \left(\operatorname{Tr} \left(\left(Y_u \ Y_u^{\dagger} \right)^2 \right) - \operatorname{Tr}^2 \left(Y_u \ Y_u^{\dagger} \right) \right) I_1$$

Cayley-Hamilton: $A^3 = A^2 \operatorname{Tr}(A) - \frac{1}{2}A \left[\operatorname{Tr}(A)^2 - \operatorname{Tr}(A^2)\right] + \frac{1}{6} \left[\operatorname{Tr}(A)^3 - 3\operatorname{Tr}(A^2)\operatorname{Tr}(A) + 2\operatorname{Tr}(A^3)\right] \mathbb{I}_{3\times 3}$

$$a_{u}X_{d}^{b}X_{u}^{c}X_{d}^{d}C$$
)
=0,1,2, a≠b,c≠d $X_{u/d} = Y_{u/d} Y_{u/d}^{\dagger}$

Still too many invariants, not all independent from each other

transfer matrix that depends only on Y_u and Y_d

 $\begin{pmatrix} I_1 \\ I_2 \\ \cdots \\ I_n \end{pmatrix} = (T^R \ T^I) \begin{pmatrix} \operatorname{Re}C_1 \\ \operatorname{Re}C_2 \\ \cdots \\ \operatorname{Re}C_p \\ \operatorname{Im}C_1 \\ \cdots \\ \operatorname{Im}C_q \end{pmatrix}$

$$\left(\begin{array}{c}I_1\\I_2\\\ldots\\I_n\end{array}\right) = (1)$$

transfer matrix that depends only on Y_{u} and Y_{d}

The problem boils down to find what is the maximal rank of the transfer matrix in general and also when $J_4=0$

Seems a simple exercise to compute the rank! But the invariants are real monsters when computed explicitly in a particular flavour basis (up to 9⁷≈5x10⁶ of terms for some of the invariants) Hopeless to analytically compute ranks. Numerically tricky too → compute ranks for rational matrices

Seems a simple exercise to compute the rank! But the invariants are real monsters when computed explicitly in a particular flavour basis (up to $9^7 \approx 5 \times 10^6$ of terms for some of the invariants) Hopeless to analytically compute ranks. Numerically tricky too \rightarrow compute ranks for rational matrices

Force Quit Applications Your system has run out of application memory. To avoid problems with your computer, quit any applications you are not using. Calendar Google Chrome Mail Mathematica (not res Mattermost Preview 🥑 Safari Skype TextEdit

	94.1 MB
	159.9 MB
	1021.2 MB
sponding)	118.36 GB
	98.0 MB
	38.9 MB
	261.9 MB
	130.7 MB
	79 7 MR
Resume	Force Quit

Beyond Jarlskog: Minimal Basis Transfer matrix of maximal rank

Seems a simple exercise to compute the rank! But the invariants are real monsters when computed explicitly in a particular flavour basis (up to 9⁷≈5x10⁶ of terms for some of the invariants) Hopeless to analytically compute ranks. Numerically tricky too → compute ranks for rational matrices

Beyond Jarlskog: Minimal Basis Transfer matrix of maximal rank

But the invariants are real monsters when computed explicitly in a particular flavour basis Hopeless to analytically compute ranks.

	Type of op.	# of ops	# real	# im.	# CP-odd invariants
ars	Yukawa	3	27	27	21
bilinears	Dipoles	8	72	72	60
bi	current-current	8	51	30	21
	all bilinears	19	150	129	102

- Seems a simple exercise to compute the rank! (up to $9^7 \approx 5 \times 10^6$ of terms for some of the invariants)
- Numerically tricky too \rightarrow compute ranks for rational matrices

Beyond Jarlskog: Minimal Basis Transfer matrix of maximal rank

	Type of op.	# of ops	# real	# im.	# CP-odd invariants
ars	Yukawa	3	27	27	21
bilinears	Dipoles	8	72	72	60
bi	current-current	8	51	30	21
	all bilinears	19	150	(129)	102

- Seems a simple exercise to compute the rank! But the invariants are real monsters when computed explicitly in a particular flavour basis (up to $9^7 \approx 5 \times 10^6$ of terms for some of the invariants) Hopeless to analytically compute ranks.
 - Numerically tricky too \rightarrow compute ranks for rational matrices

- Note that there are fewer CP-odd invariants than phases
- Not all the phases can appear in observables not interference theorems

Non-Interference Conservation of individual family lepton numbers

Let us see it in a fixed basis, e.g.

$$Y_u = \operatorname{diag}(y_u, y_c, y_t) \quad Y_d = V_{\mathrm{CKM}}$$

In the lepton sector, this choice breaks the $U(3)_L \times U(3)_e$ of the free Lagrangian down to the $U(1)^3$ described by the transformation

$$\mathcal{O}_{He}(\underline{L},\underline{e}) \xrightarrow{1}{\Lambda^2} C_{He} \operatorname{diag}(\underline{H}^{i\delta_1} \overleftarrow{D}_{\mu}^{i\delta_1} \overleftarrow{D}_{\mu}^{i\delta_3}) (\underline{L}_n e) \mathcal{O}(1/\Lambda^2)$$

At dimension 6, operators containing leptons are charged under this symmetry, e.g.

The off-diagonal elements cannot enter into observables at linear order! $c_{12}^{*}e^{-i(\delta_3-\delta_1)}$ $c_{22}^{*}e^{-i(\delta_3-\delta_2)}$

 $\mathcal{O}(1/\Lambda^2)$

 $A \operatorname{diag}(y_d, y_s, y_b) \qquad Y_e = \operatorname{diag}(y_e, y_\mu, y_\tau)$ $\mathcal{O}(1/\Lambda^2)$

Non-Interference $O(1/\Lambda^2)$ Conservation of individual family lepton numbers

	Type of op.	# of ops	# real	# im.	inv. unde # real	$\begin{array}{c c} { m r} \ U(1)_{L_i} - U(1)_{L_j} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	# CP-odd invariants
	LJPC OF OP.		// 1001	//	// 1001	//	
ars	Yukawa	3	27	27	21	21	21
bilinears	Dipoles	8	72	72	60	60	60
bi	current-current	8	51	30	42	21	21
	all bilinears	19	150	129	123	102	102

Minimal sets can be built explicitly — not a unique choice —

Minimal Sets for Fermion Bilinear Operators

Wilson coefficient	Number of phases	Minimal set
$C_e \equiv \begin{cases} C_{eH} \\ C_{eW} \\ C_{eB} \end{cases}$	3	$\left\{ L_0 \left(C_e Y_e^{\dagger} \right) L_1 \left(C_e Y_e^{\dagger} \right) I \right\}$
$C_{u} \equiv \begin{cases} C_{uH} \\ C_{uG} \\ C_{uW} \\ C_{uB} \end{cases}$ $C_{d} \equiv \begin{cases} C_{dH} \\ C_{dG} \\ C_{dW} \\ C_{dB} \end{cases}$	9	$\begin{cases} L_{0000} \left(C_u Y_u^{\dagger} \right) L_{1000} \left(C_u Y_u^{\dagger} \right) \\ L_{1100} \left(C_u Y_u^{\dagger} \right) L_{0110} \left(C_u Y_u^{\dagger} \right) \\ L_{0220} \left(C_u Y_u^{\dagger} \right) L_{1220} \left(C_u Y_u^{\dagger} \right) \end{cases}$ Same with $C_u Y_u^{\dagger} \rightarrow$
C_{Hud}		Same with $C_u Y_u^{\dagger} \to Y_u$
$C_{HL}^{(1,3)}, C_{He}$	0	Ø
$egin{aligned} C_{HQ}^{(1,3)} \ C_{Hu} \ C_{Hd} \end{aligned}$	3	$\begin{cases} L_{1100}\left(C_{HQ}^{(1,3)}\right) L_{2200}\left(C_{HQ}^{(1,3)}\right)\\ \text{Same with } C_{HQ}^{(1,3)} \to Y_{HQ}\\ \text{Same with } C_{HQ}^{(1,3)} \to Y_{HQ} \end{cases}$

One explicit basis of invariants

 $^{\dagger} L_2 \left(C_e Y_e^{\dagger} \right)$

$$\begin{array}{c} \stackrel{\cdot}{} & L_{0100} \left(C_u Y_u^{\dagger} \right) \\ \stackrel{\cdot}{} & L_{2200} \left(C_u Y_u^{\dagger} \right) \\ \stackrel{\cdot}{} & L_{0122} \left(C_u Y_u^{\dagger} \right) \end{array}$$

 $L_{abcd}(\tilde{C}) \equiv \operatorname{Im} \operatorname{Tr} \left(X_u^a X_d^b X_u^c X_d^d \tilde{C} \right)$

 $\rightarrow C_d Y_d^{\dagger}$

 $Y_u C_{Hud} Y_d^{\dagger}$

 $\binom{3}{2} L_{1122} \left(C_{HQ}^{(1,3)} \right)$ $\cdot Y_u C_{Hu} Y_u^{\dagger}$ $\cdot Y_d C_{Hd} Y_d^{\dagger}$

Minimal vs Maximal Basis Transfer matrix of maximal rank: interference with CKM phase

• If $J_4=0$, we can find 102 independent invariants \Rightarrow minimal basis of invariants.

"CP is conserved iff J₄ and the invariants of a minimal basis are all vanishing"

of invariants.

dim (maximal basis) = number of physical (real and imaginary) parameters that can interfere with SM and thus can show up in observables at leading $O(1/\Lambda^2)$

• If $J_{4}\neq 0$, we can actually build more independent invariants! Not surprising, because CPeven BSM can interfere with CP-odd SM. But what was maybe unexpected is that we can build more than 102 (independent) invariants that are larger than $J_4 \rightarrow maximal$ basis

Scaling of Collective CPV BSM Effects The new invariants don't suffer from the same suppression factors

The invariants can be evaluated in e.g. the up-flavour basis:

dim.6 up-Yukawa operator

16 independent invariants larger than J₄

 $\Lambda \sim 10$ TeV $\rightarrow 14$ invariants larger than J₄ $\Lambda \sim 1000 \text{ TeV} \rightarrow 10 \text{ invariants larger than } J_4$

$$+ y_{c}^{2n+1} \eta_{c} + y_{t}^{2n+1} \eta_{t} \qquad \qquad I_{n} = \operatorname{Im} \operatorname{Tr} \left(Y_{u}^{\dagger} \left(Y_{u} Y_{u}^{\dagger} \right)^{n} C_{uH} \right) \\ \overbrace{\mathcal{O} \left(\lambda^{8n+4} \right)}^{\prime} \quad \overbrace{\mathcal{O} \left(\lambda^{0} \right)}^{\prime} \\ - c_{12}^{2} y_{d}^{2} - s_{12}^{2} y_{s}^{2} \right) y_{t} \rho_{ut} + \dots \qquad \qquad I_{1,1} = \operatorname{Im} \operatorname{Tr} \left(Y_{u}^{\dagger} \left(Y_{u} Y_{u}^{\dagger} \right) \left(Y_{d} Y_{d}^{\dagger} \right) C_{uH} \right)$$

Scaling of Collective CPV BSM Effects # independent invariants at O(λⁿ) for the quark bilinear operators

Models of Flavours MFV, first

- Other constraints from CP-even observables: totally flavour generic/anarchic dim-6 operators are severely constrained. How additional flavour structure will affect the orders of CPV computed above in the generic case?
- Let's first stick to the canonical flavour "model": Minimal Flavour Violation

$$c_{uH} = aY_u + b\left(Y_u Y_u^{\dagger}\right)Y_u + c\left(Y_d Y_d^{\dagger}\right)Y_u + \dots$$

Generic Flavour

Rank $1 \to \mathcal{O}(\lambda^0)$ Rank $2 \to \mathcal{O}(\lambda^4)$ Rank $3 \to \mathcal{O}(\lambda^8)$

MFV

Rank
$$1 \to \mathcal{O}(\lambda^0)$$

Rank $2 \to \mathcal{O}(\lambda^8)$
Rank $3 \to \mathcal{O}(\lambda^{18})$

CPV Orders in Alignment Models Froggatt-Nielsen-type & U(2)³ Flavour Structure

- Another popular flavour structure is alignment inherited e.g. from U(1)_{FN} symmetry
- The U(1) charges of the quarks will imprint a particular scaling of the dim.6 WC:

4-Fermi Operators 4F invariants from bilinear invariants

J₄ for a total of 700 phases)

$$C_{QuQd} \bar{Q} u \bar{Q} d = \frac{SU(3)_Q}{1+3+6} = \frac{SU(3)_u}{\bar{3}} = \frac{SU(3)_d}{\bar{3}}$$

One can build two types of 4F-invariants out of the bilinear invariants:

e.g.

$$\operatorname{Im}\left(M_{ij}^{uH}M_{kl}^{dH}C_{ijkl}^{QuQd}\right)$$

An explicit basis of 597 invariants for the 4F operators can be built (see bonus slides)

• In the Warsaw basis, Manohar et al. also counted the free-parameters in 4F operators: 1014 phases. As before, not all these phases can show up at leading order when the neutrino masses are taken to vanish: only 597 survive (adding to the 102 bilinear ones and

$$\begin{array}{c} \mathsf{B-type} \\ \mathrm{Im}\left(M_{il}^{dH}M_{jk}^{uH^{\dagger}}C_{ijkl}^{QuQd}\right) \end{array}$$

matrices built out of Yu and Yd that to form bilinear invariants, e.g., Im $ext{Tr} \left(M^{uH} C_{uH}
ight)$

4-Fermi Operators # independent invariants at O(λⁿ) for some 4F operators

Theta QCD Can we build new invariants using \Theta_{QCD}?

	$\parallel SU(3)_{Q_L}$	$U(1)_{Q_L}$	$SU(3)_{u_R}$	$U(1)_{u_R}$	$SU(3)_{d_R}$	$U(1)_{d_R}$
Q_L	3	1	1	0	1	0
u_R	1	0	3	1	1	0
d_R	1	0	1	0	3	1
Y_u	3	1	3	-1	1	0
Y_d	3	1	1	0	$\overline{3}$	-1
$e^{i\theta_{QCD}}$	\parallel 1	6	1	-3	1	-3

- \bullet
- In SM₆, in principle, new structure can emerge \bullet

 $\operatorname{Im}\left(e^{-i\theta_{QCD}}\epsilon^{ABC}\epsilon^{ab}\right)$

- \bullet
- Relevant at low scale?

Given that $\bar{\theta} = \theta - \arg \det (Y_u Y_d)$ is a flavour invariant, no new SM₄ invariant can be constructed

$${}^{bc}Y_{u,Aa}Y_{u,Bb}C_{uH,Cc}\det Y_d$$

Probably highly suppressed in the perturbative regime of QCD ($e^{-8\pi^2/g_s^2}\sim\lambda^{37}$)

ALP shift-symmetry ALP=Goldstone boson → shift-symmetry

$$a \rightarrow a + \epsilon f \qquad \mathcal{L} = \mathcal{L}_{SN}$$

ALP shift-symmetry ALP=Goldstone boson → shift-symmetry

$$a \rightarrow a + \epsilon f \qquad \mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2} (\partial_{\mu} a) (\partial^{\mu} a) + \frac{\partial_{\mu} a}{f} \sum_{\psi \in SM} \overline{\psi} c_{\psi} \gamma^{\mu} \psi + \mathcal{O} \left(\frac{1}{f^{2}} \right)$$

$$hermitian matrices$$
(26 CP-even and 13 CP-odd couplings)

But shift-symmetry cannot be exact (PQ as approximate symmetry) What are the allowed couplings of an ALP after (soft) breaking of shift-symmetry?

ALP shift-symmetry ALP=Goldstone boson → shift-symmetry

$$a \rightarrow a + \epsilon f \qquad \mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2} (\partial_{\mu} a) (\partial^{\mu} a) + \frac{\partial_{\mu} a}{f} \sum_{\psi \in SM} \overline{\psi} \psi \psi + \mathcal{O} \left(\frac{1}{f^{2}}\right)$$

hermitian matrices
(26 CP-even and 13 CP-odd couplings)

But shift-symmetry cannot be exact (PQ as approximate symmetry) What are the allowed couplings of an ALP after (soft) breaking of shift-symmetry?

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{a}{f} \left(\bar{Q} \tilde{Y}_{u} \tilde{H} u + \bar{Q} \tilde{Y}_{d} H d + \bar{L} \tilde{Y}_{e} H e + \text{h.c.} \right)$$

What is the power cour What are the conditions

generic matrices (27 CP-even and 25 CP-odd couplings)

- What is the power counting of these new couplings?
- What are the conditions to recover a shift-symmetry?

Conditions for shift-symmetry Conditions to enforce ALP shift-symmetry

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) + \frac{\partial_{\mu} a}{f} \sum_{\psi \in \rm SM} \bar{\psi} c_{\psi} \gamma^{\mu} \psi + \mathcal{O} \left(\frac{1}{f^2} \right) \longrightarrow \mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{a}{f} \left(\bar{Q} \tilde{Y}_{u} \tilde{H} u + \bar{Q} \tilde{Y}_{d} H d + \bar{L} \tilde{Y}_{e} H e \right)$$

$$\tilde{Y}_{u,d} = i(Y_{u,d}c_{u,d} - c_Q Y_{u,d})$$
, $\tilde{Y}_e = i(Y_e c_e - c_L Y_e)$

+ h.c.)

Conditions for shift-symmetry Conditions to enforce ALP shift-symmetry

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) + \frac{\partial_{\mu} a}{f} \sum_{\psi \in \rm SM} \bar{\psi} \mathcal{C}_{\psi} \gamma^{\mu} \psi + \mathcal{O} \left(\frac{1}{f^2} \right) \longrightarrow \mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{a}{f} \left(\bar{Q} \tilde{Y}_{u} \tilde{H} u + \bar{Q} \tilde{Y}_{d} H d + \bar{L} \tilde{Y}_{e} H e \right)$$

$$\tilde{Y}_{u,d} = i(Y_{u,d}c_{u,d} - c_Q Y_{u,d}), \quad \tilde{Y}_e = i(Y_e c_e - c_L Y_e)$$

Numbers of physical parameters

ses)	ses) generic matrices (9 angles and 9 phases)							
u,d,L,e	$_{d,L,e}$ Generic Wilson coefficients $\tilde{Y}_{u,d,e}$ Number of constraints							
	CP-even	CP-odd	CP-even	CP-odd				
	18	18	1	9				
	9	7	0	3				
	#L _i remove 2 phases							

Conditions for shift-symmetry Conditions to enforce ALP shift-symmetry

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) + \frac{\partial_{\mu} a}{f} \sum_{\psi \in \rm SM} \bar{\psi} c_{\psi} \gamma^{\mu} \psi + \mathcal{O} \left(\frac{1}{f^2} \right) \longrightarrow \mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{a}{f} \left(\bar{Q} \tilde{Y}_{u} \tilde{H} u + \bar{Q} \tilde{Y}_{d} H d + \bar{L} \tilde{Y}_{e} H e \right)$$

$$\tilde{Y}_{u,d} = i(Y_{u,d}c_{u,d} - c_Q Y_{u,d}), \quad \tilde{Y}_e = i(Y_e c_e - c_L Y_e)$$

Numbers of physical parameters

ses) generic matrices (9 angles and 9 phases)							
u,d,L,e	$_{d,L,e}$ Generic Wilson coefficients $\tilde{Y}_{u,d,e}$ Number of constraints						
	CP-even	CP-odd	CP-even	CP-odd			
	18	18	1	9			
	9	7	0	3			
		#L _i remove 2 phases					

13 conditions on Y to recover a shift symmetry (1 CP-even and 12 CP-odd)

Flavour invariant conditions for shift-symmetry The conditions for shift-symmetry can be written in an invariant way $X_x = Y_x Y_x^{\dagger}$

Lepton sector

$$\operatorname{Re}\operatorname{Tr}\left(X_{e}^{0,1,2}\tilde{Y}_{e}Y_{e}^{\dagger}\right) = 0 \qquad \qquad 3 \text{ invaria}$$

Quark sector

$$I_{u}^{(1)} = \operatorname{Re}\operatorname{Tr}\left(\tilde{Y}_{u}Y_{u}^{\dagger}\right), \qquad I_{u}^{(2)} = \operatorname{Re}\operatorname{Tr}\left(X_{u}\tilde{Y}_{u}Y_{u}^{\dagger}\right),$$
$$I_{d}^{(1)} = \operatorname{Re}\operatorname{Tr}\left(\tilde{Y}_{d}Y_{d}^{\dagger}\right), \qquad I_{d}^{(2)} = \operatorname{Re}\operatorname{Tr}\left(X_{d}\tilde{Y}_{d}Y_{d}^{\dagger}\right),$$
$$I_{ud}^{(1)} = \operatorname{Re}\operatorname{Tr}\left(X_{d}\tilde{Y}_{u}Y_{u}^{\dagger} + X_{u}\right),$$
$$I_{ud,u}^{(2)} = \operatorname{Re}\operatorname{Tr}\left(X_{u}^{2}\tilde{Y}_{d}Y_{d}^{\dagger} + \{X_{u}, X_{u}\right),$$
$$I_{ud,d}^{(2)} = \operatorname{Re}\operatorname{Tr}\left(X_{d}^{2}\tilde{Y}_{u}Y_{u}^{\dagger} + \{X_{u}, X_{u}\right),$$
$$I_{ud,d}^{(3)} = \operatorname{Re}\operatorname{Tr}\left(X_{d}X_{u}X_{d}\tilde{Y}_{u}Y_{u}^{\dagger} + X_{u}\right),$$
$$I_{ud}^{(4)} = \operatorname{Im}\operatorname{Tr}\left(\left[X_{u}, X_{d}\right]^{2}\left(\left[X_{d}, \tilde{Y}_{u}Y_{u}^{\dagger}\right], X_{u}\right),$$

one algebraic relation \Rightarrow only **10 independent invariants**

13 flavour invariants all linear in Y (CP ensure that all but $I_{ud}^{(4)}$ vanish)

ants

 $I_u^{(3)} = \operatorname{Re}\operatorname{Tr}\left(X_u^2 \tilde{Y}_u Y_u^\dagger\right),$), $I_d^{(3)} = \operatorname{Re}\operatorname{Tr}\left(X_d^2 \tilde{Y}_d Y_d^{\dagger}\right),$ $_{u}\tilde{Y}_{d}Y_{d}^{\dagger}$), $X_d \} \tilde{Y}_u Y_u^\dagger \Big),$ $X_d \} \tilde{Y}_d Y_d^\dagger \Big),$ $_{u}X_{d}X_{u}\tilde{Y}_{d}Y_{d}^{\dagger}$ $\left[X_{u}^{\dagger}\right] - \left[X_{u}, \tilde{Y}_{d}Y_{d}^{\dagger}\right]$

4 entangled conditions between up and down sectors \Rightarrow collective nature

RG invariance The set of invariants is closed under RG

$$\begin{split} \dot{I}_{e}^{(1)} &= 2\gamma_{e}I_{e}^{(1)} + 6I_{e}^{(2)} + 2\operatorname{Tr}(X_{e}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{e}^{(2)} &= 4\gamma_{e}I_{e}^{(2)} + 9I_{e}^{(3)} + 2\operatorname{Tr}(X_{e}^{2}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{e}^{(3)} &= 6\gamma_{e}I_{e}^{(3)} + 12I_{e}^{(4)} + 2\operatorname{Tr}(X_{e}^{3}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{u}^{(1)} &= 2\gamma_{u}I_{u}^{(1)} + 6I_{u}^{(2)} - 3I_{ud}^{(1)} - 2\operatorname{Tr}(X_{u}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{u}^{(2)} &= 4\gamma_{u}I_{u}^{(2)} + 9I_{u}^{(3)} - 3I_{ud,u}^{(2)} - 2\operatorname{Tr}(X_{u}^{2}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{u}^{(3)} &= 6\gamma_{u}I_{u}^{(3)} + 12I_{u}^{(4)} - 3I_{u}' - 2\operatorname{Tr}(X_{u}^{3}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{u}^{(3)} &= 6\gamma_{u}I_{u}^{(3)} + 12I_{u}^{(4)} - 3I_{u}' - 2\operatorname{Tr}(X_{u}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{d}^{(1)} &= 2\gamma_{d}I_{d}^{(1)} + 6I_{d}^{(2)} - 3_{ud}^{(1)} + 2\operatorname{Tr}(X_{d}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{d}^{(2)} &= 4\gamma_{d}I_{d}^{(2)} + 9I_{d}^{(3)} - 3I_{ud,d}^{(2)} + 2\operatorname{Tr}(X_{d}^{2}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{d}^{(3)} &= 6\gamma_{d}I_{d}^{(3)} + 12I_{d}^{(4)} - 3I_{d}' + 2\operatorname{Tr}(X_{d}^{2}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{d}^{(3)} &= 6\gamma_{d}I_{d}^{(3)} + 12I_{d}^{(4)} - 3I_{d}' + 2\operatorname{Tr}(X_{d}^{3}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{ud}^{(1)} &= 2(\gamma_{u} + \gamma_{d})I_{ud}^{(1)}, \\ \dot{I}_{ud}^{(2)} &= (4\gamma_{u} + 2\gamma_{u})I_{ud,u}^{(2)} + 3I_{u}' - 6I_{ud}^{(3)} - 2\operatorname{Tr}(X_{u}X_{d}X_{u}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{d}^{(1)})\right), \\ \dot{I}_{ud}^{(2)} &= (4\gamma_{d} + 2\gamma_{u})I_{ud,u}^{(2)} + 3I_{d}' - 6I_{ud}^{(3)} + 2\operatorname{Tr}(X_{d}X_{u}X_{d}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{d}^{(1)})\right), \\ \dot{I}_{ud}^{(3)} &= 4(\gamma_{u} + \gamma_{d})I_{ud}^{(3)}, \\ \dot{I}_{ud}^{(4)} &= 6\left(\gamma_{u} + \gamma_{d} + \frac{1}{2}\operatorname{Tr}(X_{u} + X_{d})\right)I_{ud}^{(4)} - \operatorname{Im}\operatorname{Tr}\left([X_{u}, X_{d}]^{3}\right)\left(I_{u}^{(1)} + I_{d}^{(1)}\right)\right)$$

$$\gamma_e = -\frac{15}{4}g_1^2 - \frac{9}{4}g_2^2 + \operatorname{Tr}\left(X_e + 3(X_u + X_d)\right)$$

$$\gamma_u \equiv -\frac{17}{12}g_1^2 - \frac{9}{4}g_2^2 - 8g_3^2 + \operatorname{Tr}(X_e + 3(X_u + X_d))$$

$$\gamma_d \equiv -\frac{5}{12}g_1^2 - \frac{9}{4}g_2^2 - 8g_3^2 + \operatorname{Tr}(X_e + 3(X_u + X_d))$$

$$-I_u^{(1)})\Big),\ -I_u^{(1)})\Big),$$

RG invariance The set of invariants is closed under RG

$$\begin{split} \dot{I}_{e}^{(1)} &= 2\gamma_{e}I_{e}^{(1)} + 6I_{e}^{(2)} + 2\operatorname{Tr}(X_{e}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{e}^{(2)} &= 4\gamma_{e}I_{e}^{(2)} + 9I_{e}^{(3)} + 2\operatorname{Tr}(X_{e}^{2}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{e}^{(3)} &= 6\gamma_{e}I_{e}^{(3)} + 12I_{e}^{(1)} + 2\operatorname{Tr}(X_{e}^{3}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{u}^{(1)} &= 2\gamma_{u}I_{u}^{(1)} + 6I_{u}^{(2)} - 3I_{ud}^{(1)} - 2\operatorname{Tr}(X_{u}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{u}^{(2)} &= 4\gamma_{u}I_{u}^{(2)} + 9I_{u}^{(3)} - 3I_{ud,u}^{(2)} - 2\operatorname{Tr}(X_{u}^{2}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{u}^{(3)} &= 6\gamma_{u}I_{u}^{(3)} + 12I_{u}^{(4)} - 3I_{u}^{(2)} - 2\operatorname{Tr}(X_{u}^{3}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{d}^{(1)} &= 2\gamma_{d}I_{d}^{(1)} + 6I_{d}^{(2)} - 3_{ud}^{(1)} + 2\operatorname{Tr}(X_{d}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{d}^{(2)} &= 4\gamma_{d}I_{d}^{(2)} + 9I_{d}^{(3)} - 3I_{ud,d}^{(2)} + 2\operatorname{Tr}(X_{d}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{d}^{(2)} &= 4\gamma_{d}I_{d}^{(2)} + 9I_{d}^{(3)} - 3I_{ud,d}^{(2)} + 2\operatorname{Tr}(X_{d}^{2}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{d}^{(3)} &= 6\gamma_{d}I_{d}^{(3)} + 12I_{d}^{(4)} - 3I_{d}^{(4)} + 2\operatorname{Tr}(X_{d}^{3}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{d}^{(3)} &= 6\gamma_{d}I_{d}^{(3)} + 12I_{d}^{(4)} - 3I_{ud,d}^{(4)} + 2\operatorname{Tr}(X_{d}^{3}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{ud,u}^{(1)} &= 2(\gamma_{u} + \gamma_{d})I_{ud,u}^{(2)} + 3I_{u}^{(2)} - 6I_{ud}^{(3)} - 2\operatorname{Tr}(X_{u}X_{d}X_{u}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{ud,u}^{(2)} &= (4\gamma_{d} + 2\gamma_{u})I_{ud,u}^{(2)} + 3I_{u}^{(2)} - 6I_{ud}^{(3)} + 2\operatorname{Tr}(X_{d}X_{u}X_{d}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{ud}^{(3)} &= 4(\gamma_{u} + \gamma_{d})I_{ud}^{(3)}, \\ \dot{I}_{ud}^{(4)} &= 6\left(\gamma_{u} + \gamma_{d} + \frac{1}{2}\operatorname{Tr}(X_{u} + X_{d})\right)I_{ud}^{(4)} - \operatorname{Im}\operatorname{Tr}\left([X_{u}, X_{d}]^{3}\right)\left(I_{u}^{(1)} + I_{d}^{(1)}\right)$$

$$\gamma_e = -\frac{15}{4}g_1^2 - \frac{9}{4}g_2^2 + \operatorname{Tr}\left(X_e + 3(X_u + X_d)\right)$$

$$\gamma_u \equiv -\frac{17}{12}g_1^2 - \frac{9}{4}g_2^2 - 8g_3^2 + \operatorname{Tr}(X_e + 3(X_u + X_d))$$

$$\gamma_d \equiv -\frac{5}{12}g_1^2 - \frac{9}{4}g_2^2 - 8g_3^2 + \operatorname{Tr}(X_e + 3(X_u + X_d))$$

closed set except for:

$$I_e^{(4)} = \operatorname{Re}\operatorname{Tr}\left(X_e^3 \tilde{Y}_e Y_e^\dagger\right)$$
$$I_u' = \operatorname{Re}\operatorname{Tr}\left((X_u X_d X_u + \{X_d, X_u^2\})\tilde{Y}_u Y_u^\dagger + X_u^3 \tilde{Y}_d Y_d^\dagger\right)$$
$$I_d' = I_u'(u \leftrightarrow d)$$

 $(I_u^{(1)})),$ $I_u^{(1)})),$

 $^{()}).$

RG invariance The set of invariants is closed under RG

$$\begin{split} \dot{I}_{e}^{(1)} &= 2\gamma_{e}I_{e}^{(1)} + 6I_{e}^{(2)} + 2\operatorname{Tr}(X_{e}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{e}^{(2)} &= 4\gamma_{e}I_{e}^{(2)} + 9I_{e}^{(3)} + 2\operatorname{Tr}(X_{e}^{2}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{e}^{(3)} &= 6\gamma_{e}I_{e}^{(3)} + 12I_{e}^{(1)} + 2\operatorname{Tr}(X_{e}^{3}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{u}^{(1)} &= 2\gamma_{u}I_{u}^{(1)} + 6I_{u}^{(2)} - 3I_{ud}^{(1)} - 2\operatorname{Tr}(X_{u}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{u}^{(2)} &= 4\gamma_{u}I_{u}^{(2)} + 9I_{u}^{(3)} - 3I_{ud,u}^{(2)} - 2\operatorname{Tr}(X_{u}^{2}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{u}^{(3)} &= 6\gamma_{u}I_{u}^{(3)} + 12I_{u}^{(4)} - 3I_{u}^{(2)} - 2\operatorname{Tr}(X_{u}^{3}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{d}^{(1)} &= 2\gamma_{d}I_{d}^{(1)} + 6I_{d}^{(2)} - 3_{ud}^{(1)} + 2\operatorname{Tr}(X_{d}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{d}^{(2)} &= 4\gamma_{d}I_{d}^{(2)} + 9I_{d}^{(3)} - 3I_{ud,d}^{(2)} + 2\operatorname{Tr}(X_{d}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{d}^{(2)} &= 4\gamma_{d}I_{d}^{(2)} + 9I_{d}^{(3)} - 3I_{ud,d}^{(2)} + 2\operatorname{Tr}(X_{d}^{2}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{d}^{(3)} &= 6\gamma_{d}I_{d}^{(3)} + 12I_{d}^{(4)} - 3I_{d}^{(4)} + 2\operatorname{Tr}(X_{d}^{3}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{d}^{(3)} &= 6\gamma_{d}I_{d}^{(3)} + 12I_{d}^{(4)} - 3I_{ud,d}^{(4)} + 2\operatorname{Tr}(X_{d}^{3}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{ud,u}^{(1)} &= 2(\gamma_{u} + \gamma_{d})I_{ud,u}^{(2)} + 3I_{u}^{(2)} - 6I_{ud}^{(3)} - 2\operatorname{Tr}(X_{u}X_{d}X_{u}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{ud,u}^{(2)} &= (4\gamma_{d} + 2\gamma_{u})I_{ud,u}^{(2)} + 3I_{u}^{(2)} - 6I_{ud}^{(3)} + 2\operatorname{Tr}(X_{d}X_{u}X_{d}) \left(I_{e}^{(1)} + 3(I_{d}^{(1)} - I_{u}^{(1)})\right), \\ \dot{I}_{ud}^{(3)} &= 4(\gamma_{u} + \gamma_{d})I_{ud}^{(3)}, \\ \dot{I}_{ud}^{(4)} &= 6\left(\gamma_{u} + \gamma_{d} + \frac{1}{2}\operatorname{Tr}(X_{u} + X_{d})\right)I_{ud}^{(4)} - \operatorname{Im}\operatorname{Tr}\left([X_{u}, X_{d}]^{3}\right)\left(I_{u}^{(1)} + I_{d}^{(1)}\right)$$

$$\gamma_e = -\frac{15}{4}g_1^2 - \frac{9}{4}g_2^2 + \operatorname{Tr}\left(X_e + 3(X_u + X_d)\right)$$

$$\gamma_u \equiv -\frac{17}{12}g_1^2 - \frac{9}{4}g_2^2 - 8g_3^2 + \operatorname{Tr}(X_e + 3(X_u + X_d))$$

$$\gamma_d \equiv -\frac{5}{12}g_1^2 - \frac{9}{4}g_2^2 - 8g_3^2 + \operatorname{Tr}(X_e + 3(X_u + X_d))$$

closed set except for:

$$\begin{split} I_e^{(4)} &= \operatorname{Re}\operatorname{Tr}\left(X_e^3 \tilde{Y}_e Y_e^{\dagger}\right) \\ I_u' &= \operatorname{Re}\operatorname{Tr}\left((X_u X_d X_u + \{X_d, X_u^2\})\tilde{Y}_u Y_u^{\dagger} + X_u^3 \tilde{Y}_d Y_d^{\dagger}\right) \\ I_d' &= I_u'(u \leftrightarrow d) \end{split}$$

 $(I_u^{(1)})$ $I_u^{(1)})\Big)$

but Caley-Hamilton eq. tells us that these 3 invariants are actually linear combinations of the our original set

<u>'</u>)).

shift-invariance conditions are closed under RG

Non-pertubative condition Θ_{QCD} again

 $-\frac{C_g g_3^2}{16\pi^2} \frac{a}{f} \operatorname{Tr} \left(G_{\mu\nu} \tilde{G}^{\mu\nu} \right)$

breaks shift-invariance non-perturbatively (instanton effects) (in the operator basis where fermion couplings are derivative)

Non-pertubative condition **O**QCD again

$$- rac{C_g g_3^2}{16\pi^2} rac{a}{f} \operatorname{Tr} \left(G_{\mu\nu} \tilde{G}^{\mu\nu}
ight)$$
 break (in the

is the basis independent condition for the shift-invariance to be maintained at the non-perturbative level

ks shift-invariance non-perturbatively (instanton effects) e operator basis where fermion couplings are derivative)

$I_g \equiv C_g + \operatorname{Im} \operatorname{Tr} \left(Y_u^{-1} \tilde{Y}_u + Y_d^{-1} \tilde{Y}_d \right) = \mathbf{0}$

Non-pertubative condition **O**QCD again

$$- \frac{C_g g_3^2}{16\pi^2} \frac{a}{f} \operatorname{Tr} \left(G_{\mu\nu} \tilde{G}^{\mu\nu} \right)$$
 break (in the

is the basis independent condition for the shift-invariance to be maintained at the non-perturbative level

It can be shown again that this condition is **RG invariant**

$$\mu rac{dI_g}{d\mu}$$
 = 0 whenever shift

ks shift-invariance non-perturbatively (instanton effects) e operator basis where fermion couplings are derivative)

$I_q \equiv C_q + \operatorname{Im} \operatorname{Tr} \left(Y_u^{-1} \tilde{Y}_u + Y_d^{-1} \tilde{Y}_d \right) = \mathbf{0}$

t-symmetry holds ($I_g = I_i = 0$ for i=1...13)

Conclusions

EDM constraints don't exclude all sources of CPV

- CPV is a collective effect.
- CP is not an accidental symmetry but CPV is accidentally small in SM₄.
- Many new possible sources of CPV at dim-6 level.
- Shift-symmetry of an ALP reduces to Jarlskog-like invariant conditions
- ALP shift-symmetry is surprisingly closed connected to CP-symmetry

We now have a proper map to explore BSM effects systematically

Conclusions

EDM constraints don't exclude all sources of CPV

- CPV is a collective effect.
- CP is not an accidental symmetry but CPV is accidentally small in SM₄.
- Many new possible sources of CPV at dim-6 level.
- Shift-symmetry of an ALP reduces to Jarlskog-like invariant conditions
- ALP shift-symmetry is surprisingly closed connected to CP-symmetry

We now have a proper map to explore BSM effects system

- without proper map, we'll be lost in our BSM exploration!

BONUS

Minimal Set

parameters for the different types of operators

					inv. under $U(1)_{L_i} - U(1)_{L_j}$		# pr	rima	ary	SC	ouro	ces	50	of C	P\	/	
	Type of op.	# of ops	# real	# im.	# real	# im.			Bilin	0.0 7 9					4-Fer	mi	
urs	Yukawa	3	27	27	21	21			C_{uH}	lears					4-rer		
bilinears	Dipoles	8	72	72	60	60		$\begin{array}{ c c }\hline & C_{uG} \\ & C_{uW} \end{array}$							$\left \begin{array}{c} C_{LQ}^{1,3} \\ C \end{array}\right $		
bi	current-current	8	51	30	42	21	Flavour symmetries	$\begin{vmatrix} C_{eH} \\ C_{eW} \end{vmatrix}$	C_{uB} C_{dH}	\circ_{HL}	$\begin{vmatrix} C_{HQ}^{1,3} \\ C_{Hu} \end{vmatrix}$	\cup LL	C_{Le}	$\left \begin{array}{c} C_{QQ}^{1,3} \\ C_{uu} \end{array}\right $	$ \begin{array}{ c c } C_{Qe} \\ C_{Lu} \end{array} $	$\begin{vmatrix} C_{ud}^{1,8} \\ C_{Qu}^{1,8} \end{vmatrix}$	C_{LedQ}
	all bilinears	19	150	129	123	102	of the quark sector of the SM	C_{eB}	C_{dG}	C_{He}	C_{Hd}	Cee		C_{dd}	$\begin{array}{ c c } C_{eu} \\ C_{Ld} \end{array}$	$\begin{array}{c} Qu\\ C_{Qd}^{1,8}\end{array}$	$C_{LeQu}^{1,3}$
	LLLL	5	171	126	99	54			C_{dW} C_{dB}						C_{ed}		
ni	RRRR	7	255	195	186	126	$U(1)_B$	3	C_{Hud} 9	0	3	0	3	18	9	36	27
-Fermi	LLRR	8	360	288	246	174	$U(1)^2 U(1)^3$	3	5 3	0	1 0	0 0	3	5	3	12 3	15 9
4	LRRL	1	81	81	27	27	$U(2) \times U(1)$	3	2	0	0	0	3	0	0	1	6
	LRLR	4	324	324	216	216	U(3) Two degenerate electron-type leptons	3 $\times \frac{2}{3}$	1 ×1	0	0 ×1	0	$\begin{array}{c c} 3 \\ \times \frac{2}{3} \end{array}$	0 ×1	$\begin{array}{c c} 0 \\ \times \frac{2}{3} \end{array}$	0 ×1	$3 \times \frac{2}{3}$
	all 4-Fermi	25	1191	1014	774	597	All electron-type leptons degenerate	$\times \frac{1}{3}$	×1		×1		$\times \frac{1}{3}$	×1	$\times \frac{1}{3}$	×1	$\times \frac{1}{3}$
	all		1341	1143	897	699											

. 11

CPV for Degenerate Spectrum

• As noticed already in SM₄, degenerate spectra (equal mass, zero or maximal mixing angle) have different CPV counting than generic case

	Parameter values	Flavor symmetries of the SM ₄ Lagrangian
	Generic $V_{\rm CKM}$	$U(1)_B$
$m_u \neq m_c \neq m_t$	$\begin{aligned} V_{\text{CKM},i_0j_0} &= 1 , \ V_{\text{CKM},ij_0} = V_{\text{CKM},i_0j} = 0 \\ i \neq i_0, \ j \neq j_0 \end{aligned}$	$U(1)^{2}$
$m_d \neq m_s \neq m_b$	$ V_{\text{CKM},i_1j_1} = V_{\text{CKM},i_2j_2} = V_{\text{CKM},i_3j_3} = 1 \text{for} \begin{aligned} i_1 \neq i_2 \neq i_3 \\ j_1 \neq j_2 \neq j_3 \end{aligned}$	$U(1)^{3}$
	$V_{\text{CKM},ij} = 0$ elsewhere	
	Generic V_{CKM} (see Eq. (4.16))	$U(1)_B$
$m_u \neq m_c = m_t$	$\begin{aligned} V_{\text{CKM},i_0j_0} &= 1 , \ V_{\text{CKM},ij_0} = V_{\text{CKM},i_0j} = 0 \\ i \neq i_0, \ j \neq j_0 \end{aligned}$	$U(1)^{2}$
$m_d \neq m_s \neq m_b$	$ V_{\text{CKM},i_1j_1} = V_{\text{CKM},i_2j_2} = V_{\text{CKM},i_3j_3} = 1 \text{for} \begin{aligned} i_1 \neq i_2 \neq i_3 \\ j_1 \neq j_2 \neq j_3 \end{aligned}$	$U(1)^{3}$
	$V_{\text{CKM},ij} = 0$ elsewhere	
$m_u \neq m_c \neq m_t$ $m_d = m_s \neq m_b$	Same as the previous case with $V_{\rm CKM} \leftrightarrow V_{\rm CKM}^{\dagger}$	
	Generic $V_{\rm CKM}$	$U(1)^2$
$m_u \neq m_c = m_t$	$ V_{\text{CKM},11} = V_{\text{CKM},22} = V_{\text{CKM},33} = 1$ $V_{\text{CKM},ij} = 0 \text{ elsewhere}$	$U(1)^{3}$
$m_d = m_s \neq m_b$	$ V_{\text{CKM},13} = V_{\text{CKM},22} = V_{\text{CKM},31} = 1$ $V_{\text{CKM},ij} = 0 \text{ elsewhere}$	$U(2) \times U(1)$
	$m_d \neq m_s \neq m_b$	$U(1)^{3}$
m_u = m_c = m_t	$m_d = m_s \neq m_b$	$U(2) \times U(1)$
	$m_d = m_s = m_b$	<i>U</i> (3)
	$m_u \neq m_c \neq m_t$	$U(1)^{3}$
$m_d = m_s = m_b$	$m_u \neq m_c = m_t$	$U(2) \times U(1)$
	$m_u = m_c = m_t$	U(3)

		Bilin	ears	
Flavour symmetries of the quark sector of the SM	C_{eH} C_{eW} C_{eB}	C_{uH} C_{uG} C_{uW} C_{uB} C_{dH} C_{dG} C_{dW} C_{dB} C_{Hud}	$C_{HL}^{1,3}$ C_{He}	$C_{HQ}^{1,3}$ C_{Hu} C_{Hd}
$U(1)_B$	3	9	0	3
$U(1)^2$	3	5	0	1
$U(1)^3$	3	3	0	0
U(2) imes U(1)	3	2	0	0
U(3)	3	1	0	0
Two degenerate electron-type leptons	$\times \frac{2}{3}$	×1		×1
All electron-type leptons degenerate	$\times \frac{1}{3}$	×1		×1

maximal rank of transfer matrix for different flavour symmetries of the Yukawa matrices

Minimal Sets for 4-Fermi Operators

			Wilson coefficient	t Number of phases	Minimal set			
	t Number of phases	Minimal set	$C_{QQ}^{(1,3)}$	18	$ \left\{ \begin{array}{l} A_{1100}^{0000}\left(C_{QQQQ}\right) \ A_{1100}^{1000}\left(C_{QQQQ}\right) \ A_{1100}^{0100}\left(C_{QQQQ}\right) \\ A_{2200}^{0000}\left(C_{QQQQ}\right) \ A_{1100}^{1100}\left(C_{QQQQ}\right) \ A_{2200}^{1000}\left(C_{QQQQ}\right) \\ A_{2200}^{0100}\left(C_{QQQQ}\right) \ A_{1122}^{0000}\left(C_{QQQQ}\right) \ A_{2200}^{1100}\left(C_{QQQQ}\right) \\ A_{2100}^{1200}\left(C_{QQQQ}\right) \ A_{1122}^{1000}\left(C_{QQQQ}\right) \ A_{1122}^{1000}\left(C_{QQQQ}\right) \\ A_{1122}^{1100}\left(C_{QQQQ}\right) \ A_{2200}^{2000}\left(C_{QQQQ}\right) \ B_{1100}^{0000}\left(C_{QQQQ}\right) \\ B_{2200}^{0000}\left(C_{QQQQ}\right) \ B_{1122}^{00000}\left(C_{QQQQ}\right) \ A_{1122}^{2200}\left(C_{QQQQ}\right) \\ B_{2200}^{0000}\left(C_{QQQQ}\right) \ B_{1122}^{00000}\left(C_{QQQQ}\right) \ A_{1122}^{2200}\left(C_{QQQQ}\right) \\ \end{array} \right\} $	Wilson coefficient	Number of phases	$\begin{array}{c} \text{Minimal set} \\ \left(\begin{array}{c} A_{0000}^{1100}\left(C_{\tilde{u}\tilde{u}dd}\right) & A_{1100}^{0000}\left(C_{uu\tilde{d}\tilde{d}}\right) & A_{1100}^{1000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) \\ A_{1000}^{1100}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) & A_{0000}^{2200}\left(C_{\tilde{u}\tilde{u}dd}\right) & A_{1100}^{0100}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) \\ A_{2200}^{0000}\left(C_{uu\tilde{d}\tilde{d}}\right) & A_{1100}^{1100}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) & A_{0110}^{1100}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) \\ A_{2200}^{1000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) & A_{2100}^{1100}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) & A_{0000}^{1122}\left(C_{\tilde{u}\tilde{u}dd}\right) \\ A_{2000}^{0100}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) & A_{2100}^{0000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) & A_{00000}^{1100}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) \\ A_{2000}^{0100}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) & A_{2000}^{0000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) & A_{00000}^{1100}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) \\ A_{2000}^{0100}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) & A_{2000}^{0000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) & A_{00000}^{1100}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) \\ A_{2000}^{0100}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) & A_{2000}^{0000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) & A_{00000}^{1100}\left(C_{\tilde{u}\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) \\ A_{2000}^{0100}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) & A_{2000}^{0000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) & A_{00000}^{000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) \\ A_{2000}^{0100}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) & A_{2000}^{000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) & A_{2000}^{000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) \\ A_{2000}^{0000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}\right) & A_{2000}^{0000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) & A_{2000}^{0000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) \\ A_{2000}^{0000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}\right) & A_{2000}^{0000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}\right) \\ A_{2000}^{0000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}\right) & A_{2000}^{0000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}\right) \\ A_{2000}^{0000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}\right) & A_{2000}^{0000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}\right) \\ A_{2000}^{0000}\left(C_{\tilde{u}\tilde{u}$
C_{LL}, C_{ee} C_{Le} C_{Qe}	0 3	$ \begin{array}{c} \varnothing \\ \left\{ \begin{array}{c} B_{0}^{0}\left(C_{LL\tilde{e}\tilde{e}}\right) B_{0}^{1}\left(C_{LL\tilde{e}\tilde{e}}\right) B_{0}^{2}\left(C_{LL\tilde{e}\tilde{e}}\right) \right\} \\ \\ \left\{ \begin{array}{c} A_{0}^{1100}\left(C_{QQee}\right) & A_{1}^{1100}\left(C_{QQee}\right) & A_{2}^{1100}\left(C_{QQee}\right) \\ A_{0}^{2200}\left(C_{QQee}\right) & A_{1}^{2200}\left(C_{QQee}\right) & A_{2}^{2200}\left(C_{QQee}\right) \\ A_{0}^{1122}\left(C_{QQee}\right) & A_{1}^{1122}\left(C_{QQee}\right) & A_{2}^{1122}\left(C_{QQee}\right) \end{array} \right\} $	C_{uu}	18	$ \left\{ \begin{array}{l} A_{1100}^{0000}\left(C_{uu\tilde{u}\tilde{u}}\right) \ A_{1100}^{1000}\left(C_{\tilde{u}\tilde{u}\tilde{u}\tilde{u}\tilde{u}}\right) \ A_{2200}^{0000}\left(C_{uu\tilde{u}\tilde{u}}\right) \ A_{1100}^{1100}\left(C_{\tilde{u}\tilde{u}\tilde{u}\tilde{u}\tilde{u}}\right) \ A_{2200}^{0000}\left(C_{uu\tilde{u}\tilde{u}}\right) \ A_{1100}^{0100}\left(C_{\tilde{u}\tilde{u}\tilde{u}\tilde{u}}\right) \ A_{2200}^{0100}\left(C_{\tilde{u}\tilde{u}\tilde{u}\tilde{u}}\right) \ A_{122}^{0100}\left(C_{\tilde{u}\tilde{u}\tilde{u}\tilde{u}}\right) \ A_{2200}^{0100}\left(C_{\tilde{u}\tilde{u}\tilde{u}\tilde{u}}\right) \ A_{1122}^{0100}\left(C_{uu\tilde{u}\tilde{u}}\right) \ A_{1220}^{0100}\left(C_{\tilde{u}\tilde{u}\tilde{u}\tilde{u}}\right) \ A_{1122}^{0100}\left(C_{\tilde{u}\tilde{u}\tilde{u}\tilde{u}}\right) \ A_{1122}^{0100}\left(C_{\tilde{u}\tilde{u}\tilde{u}\tilde{u}}\right) \ A_{1122}^{1200}\left(C_{\tilde{u}\tilde{u}\tilde{u}\tilde{u}}\right) \ A_{1220}^{0100}\left(C_{\tilde{u}\tilde{u}\tilde{u}\tilde{u}}\right) \ B_{1000}^{0100}\left(C_{u\tilde{u}\tilde{u}\tilde{u}}\right) \ B_{1100}^{0100}\left(C_{\tilde{u}\tilde{u}\tilde{u}\tilde{u}}\right) \ B_{2100}^{0200}\left(C_{\tilde{u}\tilde{u}\tilde{u}\tilde{u}}\right) \ A_{1122}^{1200}\left(C_{\tilde{u}\tilde{u}\tilde{u}\tilde{u}}\right) \ B_{1200}^{0100}\left(C_{\tilde{u}\tilde{u}\tilde{u}\tilde{u}}\right) \ B_{1200}^{000}\left(C_{\tilde{u}\tilde{u}\tilde{u}\tilde{u}}\right) \ B_{1200}^{0100}\left(C_{\tilde{u}\tilde{u}\tilde{u}\tilde{u}}\right) \ B_{1000}^{0100}\left(C_{\tilde{u}\tilde{u}\tilde{u}\tilde{u}}\right) \ B_{100}^{0100}\left(C_{\tilde{u}\tilde{u}\tilde{u}\tilde{u}}\right) \ B_{100}^{0100}\left(C_{\tilde{u}\tilde{u}\tilde{u}\tilde{u}}\right) \ $	$C_{ud}^{(1,8)}$	36	$ \left\{ \begin{array}{c} A_{2200}^{0100}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) A_{1122}^{0000}\left(C_{uu\tilde{d}\tilde{d}}\right) A_{2200}^{1100}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) \\ A_{1122}^{1000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) A_{1122}^{0100}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) A_{1122}^{1100}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) \\ B_{0100}^{0000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) B_{1000}^{0000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) B_{0110}^{0000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) \\ B_{1100}^{0000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) B_{0221}^{0000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) B_{2200}^{0000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) \\ B_{1000}^{0100}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) B_{0110}^{0100}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) B_{2110}^{0100}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) \\ B_{2000}^{0200}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) B_{2110}^{0200}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) B_{0110}^{1000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) \\ B_{0221}^{1000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) B_{1200}^{1000}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) B_{2200}^{1100}\left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}}\right) \\ \end{array} \right\}$
C_{ed} C_{eu}	9	Same with $C_{QQee} \rightarrow C_{ee\tilde{d}\tilde{d}}$ (exchanging upper with lower indices and with $Y_e \leftrightarrow Y_e^{\dagger}$) Same with $C_{QQee} \rightarrow C_{ee\tilde{u}\tilde{u}}$ (exchanging upper with lower indices and with $Y_e \leftrightarrow Y_e^{\dagger}$) $\left(A_{1100}^0 \left(C_{LQ}^{(1,3)} \right) A_{1100}^1 \left(C_{LQ}^{(1,3)} \right) A_{1100}^2 \left(C_{LQ}^{(1,3)} \right) \right)$	C_{dd}	18	$ \left\{ \begin{array}{l} A_{1100}^{0000}\left(C_{dd\tilde{d}\tilde{d}}\right) A_{1100}^{1000}\left(C_{d\tilde{d}\tilde{d}\tilde{d}}\right) A_{2200}^{0000}\left(C_{dd\tilde{d}\tilde{d}}\right) \\ A_{2000}^{1100}\left(C_{d\tilde{d}\tilde{d}\tilde{d}}\right) A_{1100}^{0100}\left(C_{d\tilde{d}\tilde{d}\tilde{d}}\right) A_{1100}^{1100}\left(C_{d\tilde{d}\tilde{d}\tilde{d}}\right) \\ A_{2200}^{1000}\left(C_{d\tilde{d}\tilde{d}\tilde{d}}\right) A_{1122}^{0000}\left(C_{dd\tilde{d}\tilde{d}}\right) A_{2200}^{1000}\left(C_{d\tilde{d}\tilde{d}\tilde{d}}\right) \\ A_{1220}^{1000}\left(C_{d\tilde{d}\tilde{d}\tilde{d}}\right) A_{1220}^{1000}\left(C_{d\tilde{d}\tilde{d}\tilde{d}}\right) A_{2200}^{1000}\left(C_{d\tilde{d}\tilde{d}\tilde{d}}\right) \\ A_{1220}^{2100}\left(C_{d\tilde{d}\tilde{d}\tilde{d}}\right) A_{1220}^{1000}\left(C_{d\tilde{d}\tilde{d}\tilde{d}}\right) A_{2110}^{1200}\left(C_{d\tilde{d}\tilde{d}\tilde{d}}\right) \\ A_{0122}^{2100}\left(C_{d\tilde{d}\tilde{d}\tilde{d}}\right) A_{1220}^{2000}\left(C_{d\tilde{d}\tilde{d}\tilde{d}}\right) B_{1000}^{0000}\left(C_{d\tilde{d}\tilde{d}\tilde{d}}\right) B_{2000}^{1000}\left(C_{d\tilde{d}\tilde{d}\tilde{d}}\right) \\ B_{2100}^{0100}\left(C_{d\tilde{d}\tilde{d}\tilde{d}}\right) B_{1000}^{1000}\left(C_{d\tilde{d}\tilde{d}\tilde{d}}\right) B_{2000}^{1200}\left(C_{d\tilde{d}\tilde{d}\tilde{d}}\right) \end{array} \right\} $			$\begin{bmatrix} B_{2211}^{1100} \left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}} \right) & B_{2100}^{1200} \left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}} \right) & B_{1200}^{2100} \left(C_{\tilde{u}\tilde{u}\tilde{d}\tilde{d}} \right) \\ A_{0000}^{0000} \left(C_{Q\tilde{u}Q\tilde{d}} \right) & A_{1000}^{0000} \left(C_{Q\tilde{u}Q\tilde{d}} \right) & A_{0000}^{1000} \left(C_{Q\tilde{u}Q\tilde{d}} \right) \\ A_{1000}^{1000} \left(C_{Q\tilde{u}Q\tilde{d}} \right) & A_{0100}^{0000} \left(C_{Q\tilde{u}Q\tilde{d}} \right) & A_{0000}^{0100} \left(C_{Q\tilde{u}Q\tilde{d}} \right) \\ A_{1100}^{0000} \left(C_{Q\tilde{u}Q\tilde{d}} \right) & A_{0110}^{0000} \left(C_{Q\tilde{u}Q\tilde{d}} \right) & A_{1000}^{0100} \left(C_{Q\tilde{u}Q\tilde{d}} \right) \\ A_{0100}^{1000} \left(C_{Q\tilde{u}Q\tilde{d}} \right) & A_{0000}^{0100} \left(C_{Q\tilde{u}Q\tilde{d}} \right) & A_{0000}^{0110} \left(C_{Q\tilde{u}Q\tilde{d}} \right) \\ A_{0100}^{1000} \left(C_{Q\tilde{u}Q\tilde{d}} \right) & A_{0000}^{0100} \left(C_{Q\tilde{u}Q\tilde{d}} \right) & A_{0000}^{0110} \left(C_{Q\tilde{u}Q\tilde{d}} \right) \\ A_{0100}^{0100} \left(C_{Q\tilde{u}Q\tilde{d}} \right) & A_{0000}^{0100} \left(C_{Q\tilde{u}Q\tilde{d}} \right) & A_{00000}^{0110} \left(C_{Q\tilde{u}Q\tilde{d}} \right) \\ A_{0100}^{0100} \left(C_{Q\tilde{u}Q\tilde{d}} \right) & A_{0000}^{0100} \left(C_{Q\tilde{u}Q\tilde{d}} \right) \\ A_{0000}^{0100} \left(C_{Q\tilde{u}Q\tilde{d}} \right) & A_{0000}^{0100} \left(C_{Q\tilde{u}Q\tilde{d}} \right) \\ A_{0000}^{0100} \left(C_{Q\tilde{u}Q\tilde{d}} \right) & A_{0000}^{0100} \left(C_{Q\tilde{u}Q\tilde{d}} \right) \\ A_{0000}^{0100} \left(C_{Q\tilde{u}Q\tilde{d}} \right) & A_{0000}^{0100} \left(C_{Q\tilde{u}Q\tilde{d}} \right) \\ A_{0000}^{0100} \left(C_{Q\tilde{u}Q\tilde{d}} \right) \\ A_{0000}^{0100} \left(C_{Q\tilde{u}Q\tilde{d}} \right) & A_{0000}^{0100} \left(C_{Q\tilde{u}Q\tilde{d}} \right) \\ A_{0000}^{0100} \left(C_{Q\tilde{u}Q\tilde{d} \right$
$C_{LQ}^{(1,3)}$ C_{Ld} C_{Lu} $C_{Lu}^{(1,3)}$ $C_{LeQu}^{(1,3)}$	27	$\begin{cases} A_{2200}^{0} \left(C_{LQ}^{(1,3)} \right) & A_{2200}^{1} \left(C_{LQ}^{(1,3)} \right) & A_{2200}^{2} \left(C_{LQ}^{(1,3)} \right) \\ A_{1122}^{0} \left(C_{LQ}^{(1,3)} \right) & A_{1122}^{1} \left(C_{LQ}^{(1,3)} \right) & A_{1122}^{2} \left(C_{LQ}^{(1,3)} \right) \\ & \text{Same with } C_{LQ}^{(1,3)} \to C_{LL\tilde{d}\tilde{d}} \\ & \text{Same with } C_{LQ}^{(1,3)} \to C_{LL\tilde{u}\tilde{u}} \\ \end{cases} \\ \begin{cases} A_{0000}^{0} \left(C_{L\tilde{e}Q\tilde{u}} \right) & A_{0000}^{1} \left(C_{L\tilde{e}Q\tilde{u}} \right) & A_{0000}^{2} \left(C_{L\tilde{e}Q\tilde{u}} \right) \\ A_{1000}^{0} \left(C_{L\tilde{e}Q\tilde{u}} \right) & A_{1000}^{1} \left(C_{L\tilde{e}Q\tilde{u}} \right) & A_{1000}^{2} \left(C_{L\tilde{e}Q\tilde{u}} \right) \\ A_{0100}^{0} \left(C_{L\tilde{e}Q\tilde{u}} \right) & A_{1000}^{1} \left(C_{L\tilde{e}Q\tilde{u}} \right) & A_{0100}^{2} \left(C_{L\tilde{e}Q\tilde{u}} \right) \\ A_{0100}^{0} \left(C_{L\tilde{e}Q\tilde{u}} \right) & A_{1100}^{1} \left(C_{L\tilde{e}Q\tilde{u}} \right) & A_{1100}^{2} \left(C_{L\tilde{e}Q\tilde{u}} \right) \\ A_{0110}^{0} \left(C_{L\tilde{e}Q\tilde{u}} \right) & A_{1100}^{1} \left(C_{L\tilde{e}Q\tilde{u}} \right) & A_{0110}^{2} \left(C_{L\tilde{e}Q\tilde{u}} \right) \\ A_{0110}^{0} \left(C_{L\tilde{e}Q\tilde{u}} \right) & A_{0110}^{1} \left(C_{L\tilde{e}Q\tilde{u}} \right) & A_{0110}^{2} \left(C_{L\tilde{e}Q\tilde{u}} \right) \\ A_{2200}^{0} \left(C_{L\tilde{e}Q\tilde{u}} \right) & A_{2200}^{1} \left(C_{L\tilde{e}Q\tilde{u}} \right) & A_{2200}^{2} \left(C_{L\tilde{e}Q\tilde{u}} \right) \\ \end{cases}$	$C_{Qu}^{(1,8)}$	36	$ \left\{ \begin{array}{l} A_{0000}^{1100}\left(C_{QQuu}\right) A_{1100}^{0000}\left(C_{QQ\tilde{u}\tilde{u}}\right) A_{1100}^{1100}\left(C_{QQ\tilde{u}\tilde{u}}\right) \\ A_{1000}^{1100}\left(C_{QQ\tilde{u}\tilde{u}}\right) A_{1100}^{1100}\left(C_{QQ\tilde{u}\tilde{u}}\right) A_{0110}^{1100}\left(C_{QQ\tilde{u}\tilde{u}}\right) \\ A_{1000}^{1200}\left(C_{QQ\tilde{u}\tilde{u}}\right) A_{0000}^{2200}\left(C_{QQuu}\right) A_{2200}^{1100}\left(C_{QQ\tilde{u}\tilde{u}}\right) \\ A_{1000}^{1200}\left(C_{QQ\tilde{u}\tilde{u}}\right) A_{00110}^{2200}\left(C_{QQ\tilde{u}\tilde{u}}\right) A_{1122}^{1200}\left(C_{QQ\tilde{u}\tilde{u}}\right) \\ A_{0220}^{1200}\left(C_{QQ\tilde{u}\tilde{u}}\right) A_{0110}^{2200}\left(C_{QQ\tilde{u}\tilde{u}}\right) A_{1122}^{1200}\left(C_{QQ\tilde{u}\tilde{u}}\right) \\ A_{1220}^{1200}\left(C_{QQ\tilde{u}\tilde{u}}\right) A_{0110}^{2200}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{0000}^{0000}\left(C_{QQ\tilde{u}\tilde{u}}\right) \\ B_{1000}^{0000}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{0110}^{0000}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{0220}^{0100}\left(C_{QQ\tilde{u}\tilde{u}}\right) \\ B_{1000}^{0100}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{0221}^{0000}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{1000}^{0100}\left(C_{QQ\tilde{u}\tilde{u}}\right) \\ B_{1000}^{0100}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{2200}^{0200}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{2110}^{0100}\left(C_{QQ\tilde{u}\tilde{u}}\right) \\ B_{0100}^{0100}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{0220}^{0200}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{0221}^{0100}\left(C_{QQ\tilde{u}\tilde{u}}\right) \\ B_{0100}^{1000}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{2200}^{1000}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{0221}^{1000}\left(C_{QQ\tilde{u}\tilde{u}}\right) \\ B_{1000}^{1100}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{2200}^{1000}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{0221}^{1000}\left(C_{QQ\tilde{u}\tilde{u}}\right) \\ B_{1100}^{1000}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{2200}^{1000}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{2100}^{1000}\left(C_{QQ\tilde{u}\tilde{u}}\right) \\ B_{1100}^{1000}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{2200}^{1000}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{2100}^{1000}\left(C_{QQ\tilde{u}\tilde{u}}\right) \\ B_{1200}^{1200}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{2100}^{1000}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{2200}^{1000}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{2200}^{1000}\left(C_{QQ\tilde{u}\tilde{u}}\right) \\ B_{2210}^{1200}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{2200}^{1000}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{0221}^{100}\left(C_{QQ\tilde{u}\tilde{u}}\right) \\ B_{2210}^{1200}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{2200}^{1000}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{0221}^{1000}\left(C_{QQ\tilde{u}\tilde{u}}\right) \\ B_{2210}^{1200}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{1200}^{1000}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{0221}^{1000}\left(C_{QQ\tilde{u}\tilde{u}}\right) \\ B_{2210}^{1200}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{1200}^{1000}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{0221}^{1000}\left(C_{QQ\tilde{u}\tilde{u}}\right) \\ B_{1000}^{1000}\left(C_{QQ\tilde{u}\tilde{u}}\right) B_{$	$C^{(1,8)}_{QuQd}$	81	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
C_{LedQ}		$\begin{bmatrix} A_{0220}^{0}(C_{L\tilde{e}Q\tilde{u}}) & A_{0220}^{1}(C_{L\tilde{e}Q\tilde{u}}) & A_{0220}^{2}(C_{L\tilde{e}Q\tilde{u}}) \\ A_{1220}^{0}(C_{L\tilde{e}Q\tilde{u}}) & A_{1220}^{1}(C_{L\tilde{e}Q\tilde{u}}) & A_{1220}^{2}(C_{L\tilde{e}Q\tilde{u}}) \\ A_{0122}^{0}(C_{L\tilde{e}Q\tilde{u}}) & A_{0122}^{1}(C_{L\tilde{e}Q\tilde{u}}) & A_{0122}^{2}(C_{L\tilde{e}Q\tilde{u}}) \\ \text{Same with } C_{L\tilde{e}Q\tilde{u}} \rightarrow C_{L\tilde{e}\tilde{d}Q} \text{ and } A_{bcde}^{a} \rightarrow A_{edcb}^{a} \\ \end{bmatrix}$	$C_{Qd}^{(1,8)}$	36	$ \left\{ \begin{array}{l} A_{0000}^{1100}\left(C_{QQdd}\right) A_{1100}^{0000}\left(C_{QQd\tilde{d}}\right) A_{1100}^{1000}\left(C_{QQd\tilde{d}}\right) \\ A_{1000}^{1100}\left(C_{QQd\tilde{d}}\right) A_{0000}^{2000}\left(C_{QQdd}\right) A_{1100}^{0100}\left(C_{QQd\tilde{d}}\right) \\ A_{1000}^{0000}\left(C_{QQd\tilde{d}}\right) A_{1000}^{1100}\left(C_{QQd\tilde{d}}\right) A_{2100}^{1100}\left(C_{QQd\tilde{d}}\right) \\ A_{2000}^{0000}\left(C_{QQd\tilde{d}}\right) A_{1100}^{1100}\left(C_{QQd\tilde{d}}\right) A_{2100}^{1100}\left(C_{QQd\tilde{d}}\right) \\ A_{00000}^{1122}\left(C_{QQd\tilde{d}}\right) A_{1122}^{0000}\left(C_{QQd\tilde{d}}\right) A_{2200}^{1100}\left(C_{QQd\tilde{d}}\right) \\ A_{0122}^{2100}\left(C_{QQd\tilde{d}}\right) B_{0100}^{0000}\left(C_{QQd\tilde{d}}\right) B_{1000}^{0000}\left(C_{QQd\tilde{d}}\right) \\ B_{0110}^{0000}\left(C_{QQd\tilde{d}}\right) B_{0220}^{0000}\left(C_{QQd\tilde{d}}\right) B_{1000}^{0000}\left(C_{QQd\tilde{d}}\right) \\ B_{0000}^{0000}\left(C_{QQd\tilde{d}}\right) B_{2200}^{0000}\left(C_{QQd\tilde{d}}\right) B_{2210}^{0000}\left(C_{QQd\tilde{d}}\right) \\ B_{1000}^{0100}\left(C_{QQd\tilde{d}}\right) B_{0120}^{0100}\left(C_{QQd\tilde{d}}\right) B_{1000}^{0100}\left(C_{QQd\tilde{d}}\right) \\ B_{0221}^{0100}\left(C_{QQd\tilde{d}}\right) B_{0100}^{0100}\left(C_{QQd\tilde{d}}\right) B_{0220}^{0100}\left(C_{QQd\tilde{d}}\right) \\ B_{0100}^{0100}\left(C_{QQd\tilde{d}}\right) B_{0100}^{1000}\left(C_{QQd\tilde{d}}\right) B_{0220}^{0100}\left(C_{QQd\tilde{d}}\right) \\ B_{0221}^{0100}\left(C_{QQd\tilde{d}}\right) B_{1200}^{1000}\left(C_{QQd\tilde{d}}\right) B_{2210}^{1000}\left(C_{QQd\tilde{d}}\right) \\ B_{0221}^{1100}\left(C_{QQd\tilde{d}}\right) B_{1200}^{1000}\left(C_{QQd\tilde{d}}\right) B_{2210}^{1000}\left(C_{QQd\tilde{d}}\right) \\ B_{0221}^{1100}\left(C_{QQd\tilde{d}}\right) B_{1200}^{1000}\left(C_{QQd\tilde{d}}\right) B_{2210}^{1000}\left(C_{QQd\tilde{d}}\right) \\ B_{2210}^{1100}\left(C_{QQd\tilde{d}}\right) B_{1200}^{1000}\left(C_{QQd\tilde{d}}\right) B_{2210}^{1000}\left(C_{QQd\tilde{d}}\right) \\ B_{2210}^{1100}\left(C_{QQd\tilde{d}}\right) B_{2100}^{1000}\left(C_{QQd\tilde{d}}\right) B_{2210}^{1000}\left(C_{QQd\tilde{d}}\right) \\ B_{2210}^{1000}\left(C_{QQd\tilde{d}}\right) B_{2100}^{1000}\left(C_{QQd\tilde{d}}\right) B_{2210}^{1000}\left(C_{QQd\tilde{d}}\right) \\ B_{2210}^{1000}\left(C_{QQd\tilde{d}}\right) B_{2200}^{1000}\left(C_{QQd\tilde{d}}\right) B_{2200}^{1000}\left(C_{QQd\tilde{d}}\right) \\ B_{2210}^{1000}\left(C_{QQd\tilde{d}}\right) B_{2100}^{1000}\left(C_{QQd\tilde{d}}\right) B_{2200}^{1000}\left(C_{QQd\tilde{d}}\right) \\ B_{2210}^{1000}\left(C_{QQd\tilde{d}}\right) B_{2200}^{1000}\left(C_{QQd\tilde{d}}\right) B_{2200}^{1000}\left(C_{QQd\tilde{d}}\right) \\ B_{2210}^{1000}\left(C_{QQd\tilde{d}}\right) B_{2200}^{1000}\left(C_{QQd\tilde{d}}\right) B_{2200}^{1000}\left(C_{QQd\tilde{d}}\right) \\ B_{2200}^{1000}\left(C_{QQd\tilde{d}}\right) B_{2200}^{1000$			$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

the 597 invariants associated to the 4F operators

Minimal set

$\left(egin{array}{c} \widetilde{a} \ $		
$Q \tilde{d}$)	
$Q \tilde{d}$		
$Q \tilde{d}$)	
$Q \tilde{d}$		
$Q \tilde{d}$	、	
$Q\tilde{d}$		
$Q ilde{d}$ $Q ilde{d}$		
Qa $Q ilde{d}$		
$Qa Q ilde{d}$		
\mathbb{Q}^{d}		
$Q\tilde{d}$		
$Q \tilde{d}$		
$Q\tilde{d}$		
$Q\tilde{d}$		
$Q \tilde{d}$		
$Q \tilde{d}$)	
$Q \tilde{d}$)	
$Q \tilde{d}$)	
$Q\tilde{d}$))

4-Fermi Operators Minimal and maximal bases

As for the bilinears, one can construct a minimal basis of invariants: \bullet

"CP is conserved iff J₄ and the invariants of a minimal basis are all vanishing"

- . . .
- 162, LLuu \rightarrow 81/27 (w/wo neutrino masses) ...

• The dimension of the **minimal** basis is always equal to the number of physical phases associated to an operator: QQQQ \rightarrow 18, QuQd \rightarrow 81, LLuu \rightarrow 36/9 (w/wo neutrino masses)

But the real coefficients also contribute to CPV: the dimension of the **maximal** basis is equal to the total number of parameters associated to an operator: QQQQ \rightarrow 45, QuQd \rightarrow

