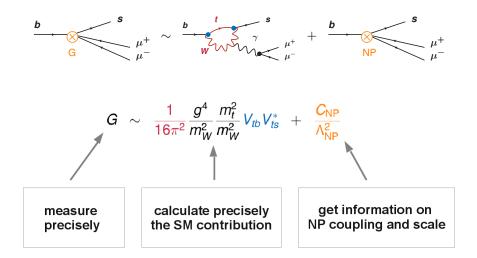
Hints for New Physics in Rare B Decays and How to Test Them at a Muon Collider

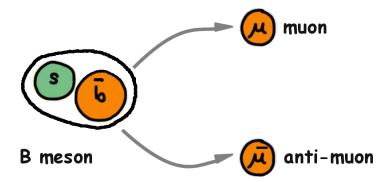

Wolfgang Altmannshofer waltmann@ucsc.edu

💷 UC SANTA CRUZ

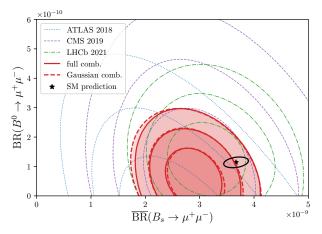

The 2022 CERN-CKC workshop on physics beyond the Standard Model

Jeju Island, South Korea June 5 - 10, 2022

Rare *B* Decays as a Probe of New Physics


Rare *B* Decays as a Probe of New Physics

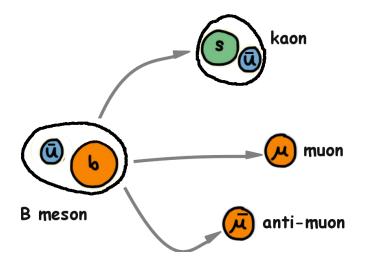
Anomalies in rare decays could establish a new scale in particle physics!


Overview of the Rare B Decay Anomalies

The $B_{s} ightarrow \mu^{+} \mu^{-}$ Decay

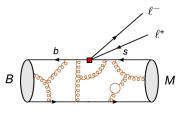
The $B_s \rightarrow \mu^+ \mu^-$ Branching Ratio

WA, Stangl 2103.13370; combination of LHCb 2108.09284, CMS 1910.12127, ATLAS 1812.03017



 $\sim 2\sigma$ tension between SM and experiment

(Hadronic physics is under good control. Largest uncertainty is from CKM input.)

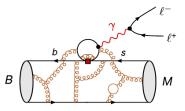

Wolfgang Altmannshofer (UCSC)

Semileptonic Decays $b \rightarrow s \mu \mu$

SM Predictions for Exclusive $b \rightarrow s\ell\ell$ Decays

amplitudes \sim Wilson coefficients \times form factors

- form factors from
 - lattice QCD (high q^2)
 - light-cone sum rules (low q^2)
 - combined fits available

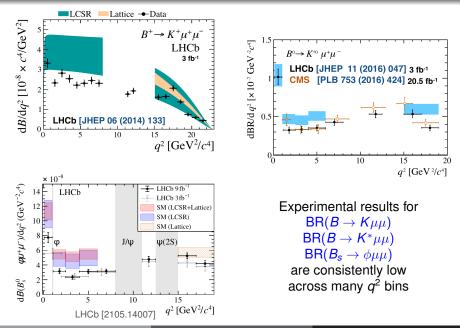

(Bharucha, Straub, Zwicky 1503.05534;

Gubernari, Kokulu, van Dyk 1811.00983)

• typical uncertainties $\lesssim 10\%$

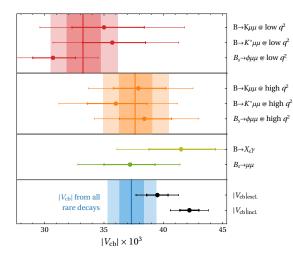
SM Predictions for Exclusive $b \rightarrow s\ell\ell$ Decays

amplitudes \sim Wilson coefficients \times form factors + non-local terms (aka "charm loops")


various model approaches:

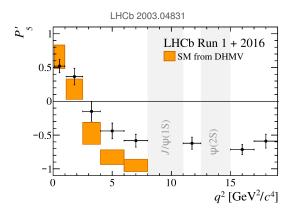
• sum of resonances

(Blake et al. 1709.03921)


- polynomial fit to data (Ciuchini et al. 1512.07157)
- LCSR estimates (Khodjamirian et al. 1006.4945; Gubernari et al. 2011.09813)
- analytic function fit to data (Bobeth et al. arXiv:1707.07305; Gubernari et al. 2011.09813)
- uncertainties ~ 10%?

Semileptonic Branching Ratios

Wolfgang Altmannshofer (UCSC)

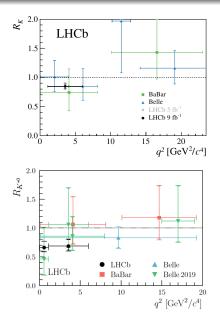

The Role of V_{cb}

WA, Lewis 2112.03437

- Predictions for $b \rightarrow s\mu\mu$ rates depend sensitively on $|V_{cb}|$.
- For many years there are tensions between inclusive and exclusive determinations of V_{cb}.
- The rare *B* decay rates could be partially explained by a (very) low |*V*_{cb}|.
- Emphazises the importance of precision CKM determinations.

 $P_5' \sim$ a moment of the $B \rightarrow K^* \mu^+ \mu^-$ angular distribution

~ $2\sigma - 3\sigma$ anomaly persists in the latest update of $B^0 \to K^{*0}\mu^+\mu^-$. (Anomaly also seen in $B^{\pm} \to K^{*\pm}\mu^+\mu^-$ LHCb 2012.13241)


Distinguishing New Physics from Hadronic Effects

(heavy) New Physics	Hadronic Contributions
described by local four fermion operator	a non-local and non-perturbative effect
universal for all processes	could be process dependent
universal for all final state helicities	could be helicity dependent
independent on q^2	could be q^2 dependent

Distinguishing New Physics from Hadronic Effects

(heavy) New Physics	Hadronic Contributions
described by local four fermion operator	a non-local and non-perturbative effect
universal for all processes	could be process dependent
universal for all final state helicities	could be helicity dependent
independent on q^2	could be q ² dependent
could be leptonic axial-vector current	leptonic vector current
could be RH quark current	LH quark current
could be CP violating	CP conserving
could violate lepton flavor universality	lepton flavor universal

Evidence for Lepton Flavor Universality Violation

$$R_{K^{(*)}} = rac{BR(B o K^{(*)} \mu \mu)}{BR(B o K^{(*)} ee)} \stackrel{ ext{SM}}{\simeq} 1$$

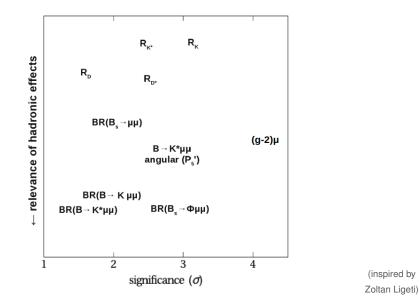
$$\mathsf{R}_{\mathcal{K}^+}^{[1,6]} = 0.846^{+0.042}_{-0.039}{}^{+0.013}_{-0.012} \; (3.1\sigma)$$

$$\begin{split} R^{[0.045,1.1]}_{\mathcal{K}^{\ast 0}} &= 0.66^{+0.11}_{-0.07} \pm 0.03 \; (\sim 2.5\sigma) \\ R^{[1.1,6]}_{\mathcal{K}^{\ast 0}} &= 0.69^{+0.11}_{-0.07} \pm 0.05 \; (\sim 2.5\sigma) \\ R^{[1.1,6]}_{\mathcal{K}_S} &= 0.66^{+0.20}_{-0.14}_{-0.04} \; (\sim 1.5\sigma) \\ R^{[0.045,6]}_{\mathcal{K}^{\ast +}} &= 0.70^{+0.18}_{-0.13}_{-0.04} \; (\sim 1.5\sigma) \\ R^{[0.1,6]}_{\mathcal{\rho}\mathcal{K}} &= 0.86^{+0.14}_{-0.11} \pm 0.05 \; (\sim 1\sigma) \end{split}$$

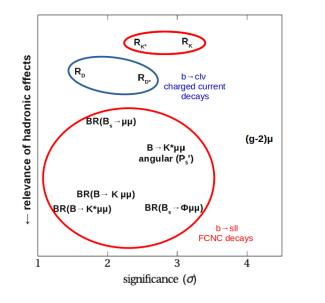
LHCb 2103.11769, LHCb 1705.05802, 1912.08139, 2110.09501; also Belle 1904.02440, 1908.01848

$B_{s} ightarrow \mu \mu$ rate	semileptonic rates	angular observables	LFU ratios

	$egin{array}{c} {\cal B}_{m s} o \mu \mu \ m rate \end{array}$	semileptonic rates	angular observables	LFU ratios
experimental issues?	?	?	?	?


	$egin{array}{c} B_s ightarrow \mu \mu \ m rate \end{array}$	semileptonic rates	angular observables	LFU ratios
experimental issues?	?	?	?	?
statistical fluctuations?	\checkmark	\checkmark	\checkmark	\checkmark

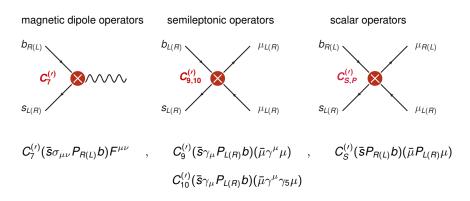
	$egin{array}{c} {\cal B}_{s} ightarrow \mu \mu \ m rate \end{array}$	semileptonic rates	angular observables	LFU ratios
experimental issues?	?	?	?	?
statistical fluctuations?	\checkmark	\checkmark	\checkmark	\checkmark
parametric uncertainties?	\checkmark	\checkmark	×	×


	$B_{s} ightarrow \mu \mu$ rate	semileptonic rates	angular observables	LFU ratios
experimental issues?	?	?	?	?
statistical fluctuations?	\checkmark	\checkmark	\checkmark	\checkmark
parametric uncertainties?	\checkmark	\checkmark	×	×
underestimated hadronic effects?	×	\checkmark	\checkmark	×

	$B_{s} ightarrow \mu \mu$ rate	semileptonic rates	angular observables	LFU ratios
experimental issues?	?	?	?	?
statistical fluctuations?	\checkmark	\checkmark	\checkmark	\checkmark
parametric uncertainties?	\checkmark	\checkmark	×	X
underestimated hadronic effects?	×	\checkmark	\checkmark	×
New Physics?	\checkmark	\checkmark	\checkmark	\checkmark

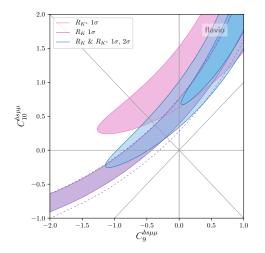
Summary of the Anomalies

Summary of the Anomalies



Model Independent Fits

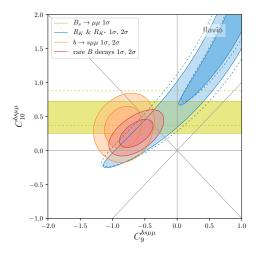
Model Independent New Physics Analysis


$$\mathcal{H}_{\text{eff}}^{b \to s} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i \left(C_i \mathcal{O}_i + C_i' \mathcal{O}_i' \right)$$

neglecting tensor operators and additional scalar operators (they are dimension 8 in SMEFT: Alonso, Grinstein, Martin Camalich 1407.7044)

Wolfgang Altmannshofer (UCSC)

Rare B Decays and Muon Collider

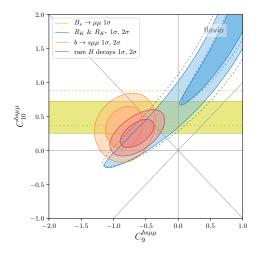


 $C_9^{bs\mu\mu}(\bar{s}\gamma_{\alpha}P_Lb)(\bar{\mu}\gamma^{\alpha}\mu)$

 $C_{10}^{bs\mu\mu}(\bar{s}\gamma_{\alpha}P_{L}b)(\bar{\mu}\gamma^{lpha}\gamma_{5}\mu)$

• LFU ratios prefer non-standard *C*₁₀, but large degeneracy

WA, Stangl 2103.13370



WA, Stangl 2103.13370

 $C_9^{bs\mu\mu}(\bar{s}\gamma_{lpha}P_Lb)(\bar{\mu}\gamma^{lpha}\mu)$

 $C_{10}^{bs\mu\mu}(\bar{s}\gamma_{\alpha}P_{L}b)(\bar{\mu}\gamma^{\alpha}\gamma_{5}\mu)$

- LFU ratios prefer non-standard *C*₁₀, but large degeneracy
- B_s → μ⁺μ[−] branching ratio shows slight preference for non-standard C₁₀
- $b \rightarrow s\mu\mu$ observables prefer non-standard C_9
- overall remarkable consistency

WA, Stangl 2103.13370

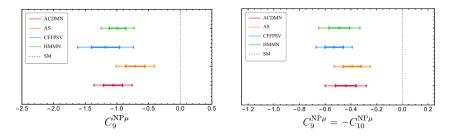
 $C_9^{bs\mu\mu}(\bar{s}\gamma_{lpha}P_Lb)(\bar{\mu}\gamma^{lpha}\mu)$

 $C_{10}^{bs\mu\mu}(\bar{s}\gamma_{\alpha}P_{L}b)(\bar{\mu}\gamma^{\alpha}\gamma_{5}\mu)$

- LFU ratios prefer non-standard *C*₁₀, but large degeneracy
- B_s → μ⁺μ[−] branching ratio shows slight preference for non-standard C₁₀
- b → sµµ observables prefer non-standard C₉
- overall remarkable consistency
- Note: LFU ratios could also be explained by new physics in electrons

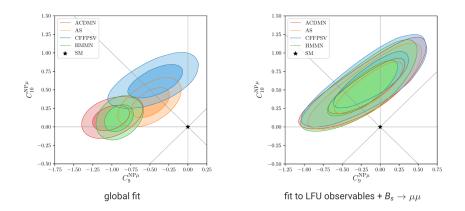
Comparison of Global Fits

(B. Capdevilla, M. Fedele, S. Neshatpour, P. Stangl @ Flavour Anomaly Workshop, CERN, Oct. 20 2021)


•	ACDMN (M. Algueró, B. Capdevila, S. Descotes-Genon, J. Matias, M. Novoa-Brunet) Statistical framework: χ^2 -fit, based on private code	arXiv:2104.08921
	AS (W. Altmannshofer, P. Stangl) Statistical framework: χ^2 -fit, based on public code flavio	arXiv:2103.13370
	CFFPSV (M. Ciuchini, <u>M. Fedele</u> , E. Franco, A. Paul, L. Silvestrini, M. Valli) Statistical framework: Bayesian MCMC fit, based on public code HEPfit	arXiv:2011.01212
	HMMN (T. Hurth, F. Mahmoudi, D. Martínez-Santos, <u>S. Neshatpour</u>) Statistical framework: χ^2 -fit, based on public code <code>SuperIso</code>	arXiv:2104.10058
see :	also similar fits by other groups:	

Geng et al., arXiv:2103.12738, Alok et al., arXiv:1903.09617, Datta et al., arXiv:1903.10086, Kowalska et al., arXiv:1903.10932, D'Amico et al., arXiv:1704.05438, Hiller et al., arXiv:1704.05444, ...

 Global fits have reached a high level of sophistication. Are done by many groups with different statistical approaches, different treatment of theory uncertainties, different selection of observables, ...


Fits of One Single Wilson Coefficient

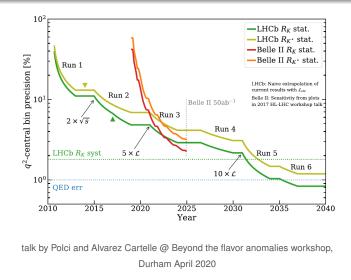
(B. Capdevilla, M. Fedele, S. Neshatpour, P. Stangl @ Flavour Anomaly Workshop, CERN, Oct. 20 2021)

- small differences among the groups due to different approaches, but overall very good agreement
- NP scenarios are preferred over SM with pulls $> 5\sigma$
- Warning: pull ≠ global significance.
- Global significance $\simeq 4.3\sigma$ estimated in Isidori et al. arXiv:2104.05631

(B. Capdevilla, M. Fedele, S. Neshatpour, P. Stangl @ Flavour Anomaly Workshop, CERN, Oct. 20 2021)

Perfect agreement if only theoretically clean observables are used.

Wolfgang Altmannshofer (UCSC)

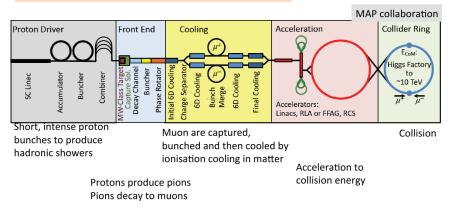

Implications for the New Physics Scale

unitarity bound
$$\frac{4\pi}{\Lambda_{NP}^2}(\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$$
 $\Lambda_{NP} \simeq 120 \text{ TeV} \times (C_9^{NP})^{-1/2}$ generic tree $\frac{1}{\Lambda_{NP}^2}(\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$ $\Lambda_{NP} \simeq 35 \text{ TeV} \times (C_9^{NP})^{-1/2}$ MFV tree $\frac{1}{\Lambda_{NP}^2} V_{tb}V_{ts}^* (\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$ $\Lambda_{NP} \simeq 7 \text{ TeV} \times (C_9^{NP})^{-1/2}$ generic loop $\frac{1}{\Lambda_{NP}^2} \frac{1}{16\pi^2} (\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$ $\Lambda_{NP} \simeq 3 \text{ TeV} \times (C_9^{NP})^{-1/2}$ MFV loop $\frac{1}{\Lambda_{NP}^2} \frac{1}{16\pi^2} V_{tb}V_{ts}^* (\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$ $\Lambda_{NP} \simeq 0.6 \text{ TeV} \times (C_9^{NP})^{-1/2}$

(MFV = Minimal Flavor Violation)

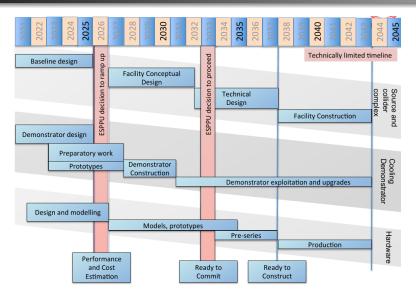
Future Prospects for $R_{\mathcal{K}}$ and $R_{\mathcal{K}^*}$

- LHCb and Belle II can push uncertainties down to few percent
- (can ATLAS and CMS say something?)
- with sufficient statistics, LFU of angular distributions can be tested



► LHCb can cross check in other modes: R_{ϕ} , R_{pK} , ...

Testing the Anomalies at a Muon Collider


A Muon Collider?

Muon collider design is driven by finite muon lifetime

talk by D. Schulte @ Muon Collider Agora, Feb 16 2022

A Muon Collider!

talk by D. Schulte @ Muon Collider Agora, Feb 16 2022

Wolfgang Altmannshofer (UCSC)

Non-Standard $\mu^+\mu^- \rightarrow bs$ at a Muon Collider

$$\frac{d\sigma(\mu^+\mu^- \to b\bar{s})}{d\cos\theta} = \frac{3}{16}\sigma(\mu^+\mu^- \to bs)\Big(1 + \cos^2\theta + \frac{8}{3}A_{\text{FB}}\cos\theta\Big)$$
$$\frac{d\sigma(\mu^+\mu^- \to \bar{b}s)}{d\cos\theta} = \frac{3}{16}\sigma(\mu^+\mu^- \to bs)\Big(1 + \cos^2\theta - \frac{8}{3}A_{\text{FB}}\cos\theta\Big)$$

Total cross section increases with the center of mass energy

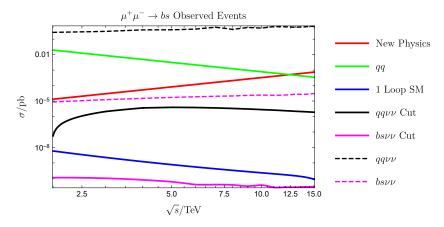
$$\sigma(\mu^+\mu^- o bs) = rac{G_F^2 lpha^2}{8\pi^3} |V_{tb}V_{ts}^*|^2 \ s \left(|C_9|^2 + |C_{10}|^2\right)$$

Non-Standard $\mu^+\mu^- \rightarrow bs$ at a Muon Collider

$$\frac{d\sigma(\mu^+\mu^- \to b\bar{s})}{d\cos\theta} = \frac{3}{16}\sigma(\mu^+\mu^- \to bs)\Big(1 + \cos^2\theta + \frac{8}{3}A_{\text{FB}}\cos\theta\Big)$$
$$\frac{d\sigma(\mu^+\mu^- \to \bar{b}s)}{d\cos\theta} = \frac{3}{16}\sigma(\mu^+\mu^- \to bs)\Big(1 + \cos^2\theta - \frac{8}{3}A_{\text{FB}}\cos\theta\Big)$$

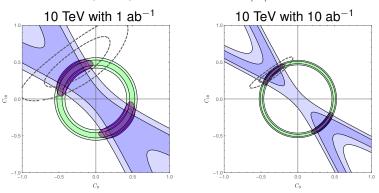
Total cross section increases with the center of mass energy

$$\sigma(\mu^+\mu^- \to bs) = \frac{G_F^2 \alpha^2}{8\pi^3} |V_{tb}V_{ts}^*|^2 \ s \left(|C_9|^2 + |C_{10}|^2\right)$$


Forward backward asymmetry is sensitive to the chirality strcuture

$$m{A}_{ ext{FB}} = rac{-3 ext{Re}(C_9C_{10}^*)}{2(|C_9|^2+|C_{10}|^2)}$$

Need charge tagging to measure the forward backward asymmetry


Wolfgang Altmannshofer (UCSC)

WA, Gadam, Profumo 2203.07495 and in preparation

backgrounds fall with c.o.m. energy; new physics signal increases
S/B ~ 1 for a c.o.m. energy of ~ 10 TeV.

Sensitivity Projections

WA, Gadam, Profumo 2203.07495 and in preparation

- branching ratio (green) and forward backward asymmetry (blue) are highly complementary
- 10 TeV muon collider has better sensitivity than the current and projected rare B decay results (dashed)

(see also Huang et al. 2103.01617; Asadi et al. 2104.05720

Azatov et al. 2205.13552 for related studies)

Wolfgang Altmannshofer (UCSC)

Rare B Decays and Muon Collider

- B decay data shows persistent discrepancies with SM predictions (almost a decade now!).
- ► If significance of LFU violation continues to grow with more statistics ⇒ clear indication of new physics. (Last year's updates by LHCb are reassuring!)
- A 10 TeV muon collider would conclusively test explanations with 4 fermion operators.