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✦ Standard WIMPs: simple explanation of DM relic abundance that can arise from 
model-building efforts to address hierarchy problem
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✦ “Nightmare scenario”: DM has effectively no interactions with Standard Model
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How do we proceed?
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from “Moments of Inspiration” https://xkcd.com/1584/

✦ Secluded dark sectors can leave 
gravitational signatures! 

✦ Rich phenomenology: multiple 
dark particles & new dark forces 

✦ DM can easily have sizable self 
interactions

Focus on impact of self-interacting dark matter (SIDM) 
on halo formation and evolution

e.g., composite states 
Khlopov, Kouvaris (PRD 2008); Kribs, Roy, Terning, Zurek (PRD 2010); 
Cline, Liu, Moore, Xue (PRD 2014); KB, Feng, Kaplinghat, Tait (PRD 2014); 
KB, Feng, Kaplinghat, Shadmi, Tait (PRD 2014); Antipin, Redi, Strumia, 
Vigiani (JHEP 2015); Kribs, Neil (IJMPA 2016); Ko, Nagata, Tang (PLB 
2017); Tsai, McGehee, Murayama (2020) 

e.g., atomic dark matter 
Goldberg, Hall (PLB 1986), Kaplan, Krnjaic, Rehermann, Wells (JCAP 
2010, 2011); Cline, Liu, Xue (PRD 1012); Cline, Liu, Moore, Xue (PRD 
2014); Fan, Katz, Randall, Reece (PDU 2013, PRL 2013); Cyr-Racine, 
Sigurdson (PRD 2013); Cyr-Racine, dePutter, Raccanelli, Sigurdson (PRD 
2014); KB, Kaplinghat, Kwa, Peter (PRD 2016); Gresham, Lou, Zurek (PRD 
2018)



Small-Scale Structure
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Dwarf Spheroidals Low-Surface Brightness (LSB) Clusters

Small-scale structure puzzles arise in various systems: 
missing satellites, core-cusp, too-big-to-fail, diversity 

Attempt to address with SIDM Spergel, Steinhardt (PRL 2000)



✦ DM-only simulations produce ~NFW profiles, which are cuspy 
✦ Observe galaxies with lower-density cores 
✦ Address issues with baryonic physics, SIDM

Core-Cusp & Too-Big-To-Fail
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Oh+ (ApJ 2010) Elbert+ (MNRAS 2015)



Diversity Problem

Kimberly Boddy 6

✦ Rotation curves of spiral galaxies exhibit large diversity for systems of similar 
halo mass and stellar content 

✦ SIDM + baryonic feedback can help explain diversity

Oman+ (MNRAS 2015) Creasey+ (MNRAS 2017)
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Millennium-II, Boylan-Kolchin+ (2009)

Can we understand SIDM halo evolution 
without needing to run N-body simulations?

Yes! Use semianalytic methods.

e.g., in globular clusters: Lynden-Bell, Eggleton (1980) 
e.g., in SIDM halos: Balberg, S. Shapiro, Inagaki (2002); Koda, P. Shapiro (2011); Pollack, Spergel, Steinhardt (2015)



Gravothermal Evolution
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✦ Mass conservation 

 
✦ Hydrostatic equilibrium 

 
✦ Laws of thermodynamics 

 

✦ Heat conduction 

   with   

∂M
∂r

= 4πr2ρ

∂(ρν2)
∂r

= − G
Mρ
r2

∂L
∂r

= − 4πr2ρν2 ( ∂
∂t )

M
ln ( ν3

ρ )
L

4πr2
= − κ

∂T
∂r

κ−1 = κ−1
LMFP + κ−1

SMFP
Self-gravitating systems have 

negative heat capacity 

Unstable system  gravothermal catastrophe→



Heat Conductivity
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✦ Particle physics contained in expression for κ
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✦ Short mean free path regime: Calculate thermal conductivity perturbatively 
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κSMFP =
3
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Heat Conductivity
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✦ Particle physics contained in expression for κ
✦ Short mean free path regime: Calculate thermal conductivity perturbatively 

with Chapman-Enskog expansion 

κSMFP =
3
2

bν
σ0

✦ Long mean free path regime: Thermal conductivity is sensitive to “size of box”, 
which is not well-defined for halos 

 

where  is order unity and must be determined via calibration to simulations

κLMFP =
3aC
8πG

σ0

m2
χ

ρν3

C



Parameters
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✦ Reduce all equations to dimensionless form 

,   ,   ,      

where  
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∂ṽ2

∂r̃

κ̃ = ρ̃ṽ3 [1 + ̂σ2ρ̃ṽ2]−1
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✦ Reduce all equations to dimensionless form 

,   ,   ,      
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ρ̃ ) L̃ = − r̃2κ̃
∂ṽ2

∂r̃

κ̃ = ρ̃ṽ3 [1 + ̂σ2ρ̃ṽ2]−1

✦ Need to set 2 scales (e.g.,  and )rs ρs
✦ Assume initial NFW profile: ρ̃initial(r̃) = r̃−1(1 + r̃)−2

✦ Gravothermal equations fully specified by 1 parameter: ̂σ
✦ In LMFP regime, no free parameters — evolution is universal for all halos



Evolution of Density Profile
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Outmezguine, KB, Gad-Nasr, Kaplinghat, Sagunski (2204.06568)
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Central Density Evolution
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Nishikawa, KB, Kaplinghat (PRD 2020)

Obtain self-similar behavior in LMFP regime!



Accelerate Core Collapse
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✦ Collapsed cores produce high central densities: bug or feature? 
✦ Observe some systems with larger central densities than expected from CDM 
✦ Various ways of accelerating collapse: 

✦ Tidal stripping of subhalos 

✦ Dark matter dissipation 

✦ Baryonic potential 

✦ Semianalytic methods can inform simulators and explore new regimes 
✦ Simulations are needed for calibration

Nishikawa, KB, Kaplinghat (PRD 2020)

Essig, Yu, Zhong, McDermott (PRL 2019)

ongoing with Kaplinghat and Necib



Central Density Evolution with Truncation
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Simulations with Infall
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Field halos

Satellites

(long period orbit)

Satellites

(short period orbit)

Kahlhoefer, Kaplinghat, Slatyer, Wu (JCAP 2019) 
see also Sameie+ (PRL 2020)
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Revisit Particle Physics of SIDM
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Need to model halo formation and evolution 
with velocity-dependent SIDM



Yukawa Scattering
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✦ Vector or scalar mediator gives rise to Yukawa potential 

 (attractive for scalar; attractive or repulsive for vector) 
✦ Consider Born regime only 

for this talk 
✦ Differential cross section: 

 

where  
✦ Isotropic, hard-sphere scattering 

for 

V(r) = ±
αχ

r
e−mϕr

dσ
dΩ

=
σ0

4π (1 +
v2

rel

w2
sin2 θ

2 )
−2

w = mϕ/mχ

w → ∞
Tulin, Yu, Zurek (PRD 2013)



Heat Conductivity (revisited)
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✦ Particle physics contained in expression for  
✦ Short mean free path regime: Calculate thermal conductivity perturbatively with Chapman-

Enskog expansion 

 

✦ Long mean free path regime: Thermal conductivity is sensitive to “size of box”, which is not 
well-defined for halos 

 

where  is order unity and must be determined via calibration to simulations 
✦ Define  to easily recover hard-sphere scattering limit 

κ

κSMFP =
3
2

bν
σ0

1
K5

κLMFP =
3aC
8πG

σ0

m2
χ

ρν3K3

C
Kp

Kp ( ν
w ) =

⟨σvv
p
rel⟩

limw→∞⟨σvvp
rel⟩

Outmezguine, KB, Gad-Nasr, Kaplinghat, Sagunski (2204.06568)



Parameters (revisited)
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✦ Reduce all equations to dimensionless form 

,   ,   ,      

where    and   
✦ Need to set 2 scales (e.g.,  and ) 
✦ Assume initial NFW profile:  
✦ Gravothermal equations fully specified by 2 parameters:  and  
✦ For hard-sphere scattering in LMFP regime, no free parameters — evolution is 

universal for all halos 
✦ But for Yukawa scattering, there is dependence on  in LMFP regime

∂M̃
∂r̃

= r̃2ρ̃
∂(ρ̃ṽ2)

∂r̃
= −

M̃ρ̃
r̃2

∂L̃
∂r̃

= − r̃2ρ̃ṽ2 ( ∂
∂t̃ )

M̃
log ( ṽ3

ρ̃ ) L̃ = − r̃2κ̃
∂ṽ2
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κ̃ = ρ̃ṽ3K̃3 [1 + ̂σ2ρ̃ṽ2K̃3K̃5]−1 K̃p = Kp(ṽ/w̃)/Kp(1/w̃)
rs ρs

ρ̃initial(r̃) = r̃−1(1 + r̃)−2

̂σ ŵ

ŵ

Outmezguine, KB, Gad-Nasr, Kaplinghat, Sagunski (2204.06568)



Incorporate Velocity Dependence
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Outmezguine, KB, Gad-Nasr, Kaplinghat, Sagunski (2204.06568)

Obtain ~self-similar behavior in LMFP regime! 
(dependence on  is mild)n

⟨σ⟩ ∼ ν̃−n



✦ We can systematically map constant-cross-section simulations to velocity-
dependent cases 

✦ Recent simulations support this idea, with proper calibration

Universality Permits Mapping
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modified from Yang+ (2205.02957)



Food for Thought
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Snowmass 2021 Cosmic Frontier White Paper: 
Cosmological Simulations for Dark Matter Physics (2203.07049)



Food for Thought
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Snowmass 2021 Cosmic Frontier White Paper: 
Cosmological Simulations for Dark Matter Physics (2203.07049)

Talk to your friendly neighborhood 
simulator!


