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Conference

e Fantastic conference

* Great detailed look at many phenomena and
measurements

* But this also a great time to think about big
guestions
— Not stupidly (I hope)

— But with focus on specific questions, apparent
puzzles or inconsistencies



This Talk:

* Notoriously difficult to find string theory
backgrounds with positive cosmological parameter

— After 20 years not entirely clear
— Key question for string theory, and de Sitter space theory

— Very likely related to needing supersymmetry for
tractable solutions

— Can be deeply in nonperturbative (noncalculable) regime

e Other question: role of extra dimensions and
warped geometry: new phenomena?

* Final question: How to construct (in more detail)
low energy EFT when warped compactification



KKLT to address first

* An important question whether there are
tractable de Sitter solutions .

e KKLT paradigm proposed construction E?:lf;h'
— Questions because of “many moving parts” ;g\g;d'
— No one has full Lagrangian
— Hard to explicitly construct the 10d model of de
Sitter space
* Yet exist compelling probe approximation and

effective 4d theory arguments



Moreover (and theme of new work
and last questions)

Warped compactifications are intrinsically

Interesting

Exhibit new phenomena that have not yet
been fully understood

Here we will see construction of EFT is subtle

And exhibits new phenomena that might well
have important implications for BSM physics



New Work

This talk (based on recent work with S Lust)
— Effective potentials in warped compactifications more subtle
— Need to take account of constraints
— Significant change in IR of throat
— Related to light KK modes in IR, even of the stabilized Kahler moduli

Turns out effective theories for warped compactifications much
more subtle

Alternatively need to account for KK modes that are light owing to
warping

Low energy potential construction requires understanding full
metric

Qualitative change of potential behavior
IN IR!



Big Lesson

Kahler moduli appearing in string
construction stabilized

— Was big point of KKLT construction
But in warped geometries their KK modes are
still light

Comparable in mass to conifold deformation
parameter

Runaway behavior (that | will review) goes
away



Outline

* |Introduce KKLT: way of finding
perturbative/manageable loophole for dS
construction

* Review potential instabiilty

— “conifold destabilization”

— 5d EFT radion IS conifold deformation parameter

— Seemed uplift destabilizes conifold (radion) if M (flux)
too small--Really a runaway radion

 Show why IR EFT must be modified
— And how it resolves issue



KKLT: Construction of de Sitter
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* 10d Calabi-Yau /F-theory construction

— Fluxes stabilize all complex structure moduli

— But Kahler (volume) modulus o remains undetermined
e KKLT resolution

— Step 1: Break no-scale structure with nonperturbative
gauge contributions to stabilize Kahler modulus at
large volume

* Yields AdS4 as low-energy theory

e Uplift energy

— Anti D3 brane; but in warped geometry (KS throat)
e Suppresses uplift
* Warped geometry gives smaller energy density to match AdS



RS Refresher

Warp
factor of
metric

IR brane

UV brane



Warped Geometry (String Theory)

(Kachru, Polchinski, Verlinde)
Cartoon: RS warped AdS throat glued onto CY
CY compactification acts as UV brane

But Klebanov-Strassler AdS space

— Constantly changing (increasing) AdS curvature

— AdS. but with “running N_¢"
* N,,=MK; N.= M; hierarchy from e2Mk/Mg

Caps off at a critical length
Conifold deformation region is “IR brane”
KPV paper: 4d Mink space as low-energy EFT



Klebanov-Strassler Solution

*K, M set by fluxes internal to compact geometry

*Total flux runs from KM to M

*K/M sets the hierarchy

*Note that role of GW in this warped geometry played by geometry itself
*Reshift 1/51/3

redshift

Calabi-

Yau/UV *IRset by S

*Conifold deformation
parameter



Goldberger-Wise Potential for Radion

Guarantees radion moves so that

Both junction conditions are satisfied
— And entire bulk can be consistently sliced

Radion is localized in IR

Responding to mismatch in boundary conditions
Clearly any stabilized geometry needs analog field
GW bulk field, and radion



Can Identify Radion in KKLT!

e S: Conifold deformation parameter

4
Z*‘“'i — 5. (3.10)
a=1

The deformation parameter 5 is the complex structure modulus whose absolute value corre-
sponds to the size of the 3-sphere at the tip of the cone.

j =S, (3.11)
A



Potential for S

The supersymmetric potential for this field induced by the Klebanov-Strassler geometry is

[
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where g i3 the stabilized vev of the dilaton, fmp = {1-’|:)1r3]3-""9, » as we argne below is not
relevant here (and is in any case suppressed in the small S region), whereas the constant ¢/,
multiplyving the term coming solely from the warp factor, denotes an order one coefficient,
whose approximate numerical value was determined in [46] to be ¢ &= 1.18.

Add potential from antibrane:
The antibrane contributes a perturbation

pl/2 1 28 |g4s

Vow = T : (3.18)
gaz) ,H1|:| I:;I?H-P;IS IL_TJI gsl:;t-lul'_ﬂlf;lz L ,.I
1/3
We follow [56] and define ¢ = ?m; 1.75. For p anti-D3 branes the potential is multiplied

hv p, and this is taken care by simply replacing &' — ¢'p.



“Conifold” instability

The general form of the potential {we factor out Ajmg./c’) is

2
V= g3 (1 + € h;;g'ig) + 55473 (3.28)
Ay
The barrier disappears when rj,-“'fg = 0/16.

We zee that the perturbation from the antibrane (yielding the & type perturbation above]
vields the potential proportional to the above with § = ¢'¢gs/mK? and |e| = Mgs/27K. By
writing it this way we keep € and 4 as small parameters. This gives preciselv the stability
condition found in [59], namely

&
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(2019) no.1-2, 1800100 [arXiv:1809.06861 [hep-thll.

L. Randall, “The Boundaries of KKLT,” Fortsch. Phys. 68 (2020} no.3-4, 1900105
[arXiv:- 1912 06693 Then-thll



S Potential

Figure 1: The potential Vi g of [16] for the complex structure modulus S of the Klebanov-
Strassler throat given in (2.17). The solid blue line corresponds to the full potential, while
the dotted orange line does shows the naive potential that does not take into account the
effects of warping (¢’ = 0). Both potentials have the same supersymmetric minimum but

differ drastically at small S.

The potential (2.17) has a supersymmetric minimum, corresponding to dg¥ = 0, which,

for S < .-"'LS, 15 at
2r K ,
- § 3 — —
sgs == Ajexp ( Qsﬂf) : (2.19)




With Uplift

Figure 2: The contribution Vg (solid blue line) of an D3-brane placed in the Klebanov-
Strassler throat to the potential for S. The two other lines represent the original potential
Vis (dotted orange line) for the specific value |/g;M = 6 as well as the superposition
Viks + V3 (dashed green line)

K



Runaway radion if too big a
perturbation

The general form of the potential (we factor out }J‘f;rgs;'r’ is

V= &3 (1 + elog %) + 4843 (3.19)
0
The barrier disappears when rj_,-“'fg = 9/16.

We see that the perturbation from the antibrane (yielding the & tyvpe perturbation above|
vields the potential proportional to the above with & = z“"f"_,-“'_r,esrr.l% and |e| = Mgs /27K . By
writing it this way we keep € and & as small parameters. This gives preciselv the stability
condition found in [56], namely

b :
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Real potential instability

Need largish g, M?
But hard to satisfy

Hierarchy problematic

— K/Mg.~KM/M?%g,

— KM bounded in a given geometry
Another potential problem

— Cosmological phase transition for RS like geometries
* Cremenelli, Nicolis, Rattazzi//Hassanain, March-Russell, Schellvinger

— High temperature AdS/Schwarschild

— Cosmological phase transition won’t complete
— Need to evolve to RS

— Upper bound on M?~21 for this geometry

Caveat: We are assuming supergravity solution applies even for
small M

— However if it doesn’t we still have to work out solution to have
example



Solution !!
Warped Conifold Potential

e Turns out the assumed S potential is not
correct

— In IR
— Off-shell

* Need to impose various constraints
e Let’s get a taste of how this wokrs



A CLOSER LOOK AT THE CONIFOLD POTENTIAL
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— S = complex structure modulus

> Superpotential:
M 3 : § ~ vol(S?)
W ~ jf_?rj AL = —‘S(]ﬂgﬁ+ 1) + LKS
2mi S 2,

» Kihler portential requires knowledge of warp factor:
Klebanov-Strassler solution:
—4:'1“-'} gS(HrM)

4

|SI*

_I(2)

e




A CLOSER LOOK AT THE CONIFOLD POTENTIAL

-------------------------------------------------------------------------------------------------------

» Kihler metric: [Douglas, Shelton, Torroba, '07, "08]
! 2
g(aM)

NE

Gz = 050K ~ [E_MXS A X5~ e A ~

» Anti-brane instability:
Requires knowledge of the (oft-shell)

potential away from the minimum]/

can we use the KS
warp factor here?!

&

KES
minimum

i




COMPLEX STRUCTURE OF THE DEFORMED CONIFOLD

-------------------------------------------------------------------------------------------------------

» Deformed conifold in C*: T 5 §2
4
Z ?=S5
=1
S = complex structure modulus

S ~ vol(5%)
» metric on the deformed conifold:

. 89
A8 = —KI:'I:I|:

: |dz* + (°)°] + cosh? (%) (2”7 + ("] + sinh:(%) gy + tng]]

3K3(1)

\ complex structure just a conformal factor?!

Answer: did not fix gauge (coordinates) yet!




COMPLEX STRUCTURE OF THE DEFORMED CONIFOLD

-------------------------------------------------------------------------------------------------------

» First: understand gauge fixing without warping:

L | L | .2
ﬂ’jm = {1’34 + d_'rﬂl._q

» Gauge fixing of Calabi-Yau deformations:

g; — 8 +908; [Candelas, de la Ossa '91]
= g'5g,; =0 Visg,; =0
(traceless) (harmonic)

(will get modified in the presence of warping!)  [Giddings, Maharana '05],
[Shiu et al. "08],

»> ] OT i I = . - e F0T
Deformed conifold: [Douglas, Torroba ‘08
: 1 -
With warp factor no®8ij = 9s8i ~ 55i harmonic but not traceless!
longer traceless! -




COMPLEX STRUCTURE OF THE DEFORMED CONIFOLD

-------------------------------------------------------------------------------------------------------

» Add compensating diffeomorphism:

Solution:
Ansatz:

T 1 sinh(27)— 27
f? — {"?TTL{:L{:}J}J}J}} r‘rr{r} — —?
28 sinh=t

» Interpretation:
Replace ¢ with “new” S-dependent radial variable: 7 — T(7,5)

Analytic solution:

EiT f .
r . -1 | 5
_.5' =n"(T(r,5),5) Iz.5)=F|F I.'r]——4 lﬂg—%]

1
with F(x) = —log [sinh(2x) — 2x|

£1



COMPLEX STRUCTURE OF THE DEFORMED CONIFOLD

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

» The radial coordinate as a funcrion of 5:
Tiz. 5)

5::-’:-."_,-"5"-(

» UV behavior (t — o0): T(7,5) = 7—log8/§

» Compare with UV expansion of the metric:
dsZelc — o) = S¥P ($dT>+ 2ds},, ) = S3e>® (gde+2ds?,

Deformation acts only in the IR!



— 5/5, =035
— 5/5,=05
— 5/5,=075
— 5i5=1

— Si5,=15

Figure 1: The three independent components of the inverse metric on the deformed conifold

for different values of S/Sg, taking into account the effect of the S-dependent diffeomorphism
(4.22) and (4.25). (a) ¢77 = g°% = %2 (b) g = g*? = e7*1¥, (¢) g* =g = 777,

20}
— 55y =01 — S5i5; =01
15 — 5/53=05 — Sl5p =035
[ — 55 =1 — 55 =05
I I - — S5, =0.75
10 S/Sy=2.0 So
0sf
r _ T
L] 8 10 2 4 i a 10
(b)
44

as a function of the radial coordinate 7 for
different values of S/Sy. (b) The integrand of the potential (5.23) for different values of
S/Sp. In both figures the IR-tip of the throat geometry is located at 7 = 0 and 7 — oo
corresponds to 1ts UV,

Figure 3: (a) The mverse warp factor e~



Deformations of warped geometries

The most general form of a background which preserves all 1sometries of a four-dimensional
maximally-symmetric spacetime takes the form

, - UV
dsiy = e AWg drtda” 4 e 24Wg - (y)dy™dy™ (4.1)

5 K

We need to consider both the variations of the warp factor 44 and the varnations of the

nternal metric dgp,y,. It was found in [9,10] that these are not independent but related by
[ J' mn ¢ 1
':I _'4. —_ _1!'" "Js:-"?nn . |.r4-|3':|

n K

This can be understood as an extension of the traceless condition (2.3) to the warped case.

The harmonic gauge condition (2.2) also needs to be modified accordingly and becomes

v?nft'-‘iﬂrj?l'?mj — . |f44}

n K



Solve using diffeomorpism

To find solutions 4 A and dgmy, satisfying these conditions, one can start from a deformation
§gY and add an infinitesimal diffeomorphism which acts as a compensating gauge transfor-
mation,

OGmn = fli,fﬁm + Vmiin + Vaiim . (4.6)

5 K

With this ansatz the modified harmonic gange condition (4.4) becomes a set of second order
differential equations on 1, which have to be solved to find dgmy. Subsequently, one can use
(4.3) to determine 4A.



Even More General

Here, u'(2") denotes a set of four-dimensional scalar fields, parametrizing moduli or also
massive excitations of the background solution. It seems to be natural to mtroduce a similar
x* dependence for the warp factor as A [r. ul (r“J] However, as we will see this notation has
to be taken with a grain of salt.

The general space-time dependent ansatz for the metric now reads

. o a(r.ul (z) , - S 2 ;
ds? = 2™ @) g (r)detdz” + [-f-*f("” @)dr + K, (r, x)dz"| | (8.2)

where gi; denotes the components of an a-priorl undetermined four-dimensional metric and
we also allow for possible off-diagonal components K.

Satisfy higher d
a2 4 L pr An2 apy b | 917(a 1 oa 4y f ti
3DZA+6(D-A) + gap D" Drd” + 2V () — 1(—‘ RS =0. €g Oor motion

LAY IS Ol LLLe \.Jll_l.llﬂgl..lllﬂl LG5 L.-'l..l'lllt.”..lllln.:llL |‘|\_IIU".| LU IR I S R i I8 Rl AR 0 Y I S e Wl W R'Lllll'.'LLl'l.Jlll_J-
We recall that it takes the form
i No off-
300D A+ Egjat.D;(rﬁa DT-{I_-"?'E' =10, (8.15) .
diagonal
- . . constraint arises from the traceless part of the five-dimensional Einstein equatior. .

vanishing four-dimensional momenta, Oﬂuf = {1, and a symmetric background spa
R = %gm,f?. 1t reduces to

(V! — g, [QD;_.-{ +Dif] =0.
Traceless EE

The constraint therefore reads

2D;A+ Dif =0,



E a 0

Figure 2: Left: The potential as a function of S/S;. Right: The warp factor e 447 for
S5/S; = 2.0,1.0,0.5,0.1 Both plots are created using the differential constraints (8.15) and

(8.17) but 1ignoring the Hamiltonian constrain (8.13).



No Second Minimum

Figure 3: Comparison of the potential computed by [10] (blue) and our potential {red). The
solid line 1s the potential for the conifold modulus S and the dashed line the contribution

from the antibrane. Their superposition is illustrated i Figure 4.



Punchline

/
oo 0.z 0.4 0.E 0.8 10 12 oo oz 0.4 0.6 0.8 1d 12
— -
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.
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Figure 4: Superposition of the potential for S and the antibrane potential for different values
of M? (from large to small). The “old” potential is in blue, for small values of M its minimum
disappears. The red potential, which was computed using the constraint (8.15), always has

a minimum, irrespective of the value of M.



Putting it Togehter

Low energy effective theory nontrivial in context of
warped compactifications

Solving Einstein’s Equations consistently even off-shell
leads to qualitative change in form of potential

Here related to fact that warped compactification
shape can change in the IR

Not determined solely by the UV stabilization
Essentially allows for KK modes of volume moduli
Though not yet explicit in our formalism

Resolves the mysterious and now-seen-to-be spurious
instability



Conclusions

General Lesson is that warped
compactifications are subtle

Low energy effective theory still valid
— But requires including KK modes of all fields

Even heavy structure moduli

— KK modes of heavy fields in warped geometries
can be light

Can perhaps have important implications for
potentials, hierarchies in the future



