MQXFA Welding Shim
FE Analysis

G. Vallone, G. Ambrosio, S. Feher, P. Ferracin, J. Ferradas Troitino
8-Mar-2022
LBNL
Index

- Introduction
- 2D model results
- 3D model results
- Conclusion
We want to evaluate the effect of the welding shim on the magnet. Main questions:

- Can this shim allow to better control the coil peak stress variation as a function of the magnet/vessel interference?
- Thanks to the shim, can friction can prevent relative displacements of the magnet w.r.t the ss vessel?
2D Model Description

- Full 2D, variable welding shim size and shell/vessel interference
- Welding shim introduced as shell/vessel interference
Circ. interf. computed on the ‘loaded’ magnet
The welding shim allows for a lower sensitivity to the circumferential interference especially in the regions with low vessel stress
Allowed stress increase on the coil: ~4 MPa at R.T.
What is the expected tolerance?
Radial contact force can be used to estimate the frictional force
- Total force in cross-section
- Can be used to prevent motion during transportation and during test at cold temperature
- This would easily work, but is not the critical case – same force required as during a quench, with higher interference.

The relationship between vessel/pole/force is linear – not affected by shim thickness
- From the required force, we can easily compute the minimum vessel and pole stress
- 3D and 2D models give similar results, also close to analytic estimate
- Increase in circular interference to get back to the same stresses: 1.2 mm
 - Integral contraction of the magnet: 3.54 mm/m
 - Stainless steel contraction: 2.95 mm/m
- In the range below 10 MPa, shims < 1 mm might be too sensitive to the interference
 - Easy to ‘loose’ contact with small errors
 - Need to estimate the real ‘control range’
- Non-linear relationship between R.T. pole stress and radial force at cold
- This is expected as we are in the ‘non-linear’ region of the shim
How much force do we need at cold?
- 123 kN long, with 0.1 friction: 1230 kN, or 307 kN/m
- 154 kN/m with 0.2, 51 kN/m with 0.6

Stress increase required is below 3 MPa with a shim of at least 1 mm

However, the available ‘error band’ is significantly reduced
- Using a 0.2 friction coefficient, this is equal to ~0.5 mm on the R.T. interference
- With higher friction coefficients it increases (~doubles at 0.6)
- We would need to evaluate the friction coefficient experimentally, possibly as a function of the normal load
3D Model – Description and validation

- Simplified 3D model to check effects during thermal cycles
 - Octant model would not be sufficient
 - Loading as interference between the collar and the yoke
- Main results compared with the usual octant model
 - Average vertical pole and shell stress on the mid-plane, radius variation after loading and after cooldown
 - Surprisingly close, no?

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Step</th>
<th>Model</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>sy avg coil</td>
<td>RT</td>
<td>Full</td>
<td>30</td>
<td>MPa</td>
</tr>
<tr>
<td>sy avg coil</td>
<td>RT</td>
<td>Simple</td>
<td>31</td>
<td>MPa</td>
</tr>
<tr>
<td>dR shell</td>
<td>RT</td>
<td>Full</td>
<td>0.208</td>
<td>mm</td>
</tr>
<tr>
<td>dR shell</td>
<td>RT</td>
<td>Simple</td>
<td>0.172</td>
<td>mm</td>
</tr>
<tr>
<td>sy avg coil</td>
<td>CD</td>
<td>Full</td>
<td>67</td>
<td>MPa</td>
</tr>
<tr>
<td>sy avg coil</td>
<td>CD</td>
<td>Simple</td>
<td>69</td>
<td>MPa</td>
</tr>
<tr>
<td>dR shell</td>
<td>CD</td>
<td>Full</td>
<td>-0.879</td>
<td>mm</td>
</tr>
<tr>
<td>dR shell</td>
<td>CD</td>
<td>Simple</td>
<td>-0.877</td>
<td>mm</td>
</tr>
</tbody>
</table>
Checking, during a thermal cycle, the impact on:

- Coil stress → Negligible
- Shell stress → Negligible
- Shell longitudinal displacement (at z=0) → 20 µm reduction
- Vessel contact force → ~10% reduction after the first t.c.
- More thermal cycles in the additional slides
Conclusion

- The welding shim allows for a better control on the coil stress
 - For the same magnet/vessel interference variation, the coil stress variation is reduced
 - We can allow for larger ‘errors’ in the interference
 - E.g. magnet size, vessel circumferential length

- With the welding shim, it might be possible to hold the magnet by friction with no significant impact on the coil stress
 - However, this possibility is strongly dependent on the friction coefficient considered

- We built a simplified 3D model to check the impact of thermal cycles on the magnet
 - Negligible effects on the coil and the shell stresses
 - Slight reduction of the longitudinal displacement of the shell
 - Vessel contact force reduced after the first thermal cycle ~ 10%

- Further checks, in progress:
 - 2D: Sensitivity analysis to vessel t.c. (2.8 to 3.2 mm/m)
 - 3D: Thermal cycle in standard model
 - 3D: More thermal cycles with the vessel shim
The relationship between the vessel stress and the pole stress does not depend on the shim thickness.
Vessel stress / Pole Stress

<table>
<thead>
<tr>
<th>Step</th>
<th>scoil</th>
<th>sshell</th>
<th>svessel</th>
<th>fx_cont</th>
<th>fy_cont</th>
<th>uz_shell</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MPa</td>
<td>MPa</td>
<td>MPa</td>
<td>kN/m</td>
<td>kN/m</td>
<td>mm</td>
</tr>
<tr>
<td>RT</td>
<td>-33.0</td>
<td>39.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.054</td>
</tr>
<tr>
<td>CD</td>
<td>-70.1</td>
<td>109.8</td>
<td>-0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.808</td>
</tr>
<tr>
<td>RT</td>
<td>-31.8</td>
<td>40.2</td>
<td>-0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.088</td>
</tr>
<tr>
<td>CD</td>
<td>-69.9</td>
<td>110.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.810</td>
</tr>
<tr>
<td>RT</td>
<td>-31.8</td>
<td>40.4</td>
<td>-0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.088</td>
</tr>
<tr>
<td>CD</td>
<td>-69.8</td>
<td>110.7</td>
<td>-0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.810</td>
</tr>
<tr>
<td>RT</td>
<td>-31.7</td>
<td>40.5</td>
<td>-0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.089</td>
</tr>
<tr>
<td>CD</td>
<td>-69.7</td>
<td>110.8</td>
<td>-0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.810</td>
</tr>
<tr>
<td>RT</td>
<td>-31.6</td>
<td>40.5</td>
<td>-0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.089</td>
</tr>
</tbody>
</table>

- Results, 3D, no vessel
If want to keep the pole stress below 5 MPa at warm (2 mm shim), very roughly:

- With 0.1 friction coefficient it does not work
- With 0.2 it can work. Range of acceptable circular interference ~ 0.5 mm.
- With 0.6 close to 2 mm
- We would need to prove that the friction coefficient is so high!

<table>
<thead>
<tr>
<th>cinterf [mm]</th>
<th>spole_rt [MPa]</th>
<th>spole_cd [MPa]</th>
<th>svessel_rt [MPa]</th>
<th>svessel_cd [MPa]</th>
<th>fcont_rt [kN/m]</th>
<th>fcont_cd [kN/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-10.000652</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.181895</td>
<td>0.119995</td>
<td>-7.1</td>
</tr>
<tr>
<td>1</td>
<td>-9.058174</td>
<td>-0.0101</td>
<td>-0.021</td>
<td>0.244450</td>
<td>0.216150</td>
<td>-6.2</td>
</tr>
<tr>
<td>2</td>
<td>-8.115696</td>
<td>-0.0199</td>
<td>-0.025</td>
<td>0.307100</td>
<td>0.247050</td>
<td>-7.8</td>
</tr>
<tr>
<td>3</td>
<td>-7.173218</td>
<td>-0.0297</td>
<td>-0.036</td>
<td>0.369750</td>
<td>0.315150</td>
<td>-9.3</td>
</tr>
<tr>
<td>4</td>
<td>-6.230741</td>
<td>-0.1970</td>
<td>-0.046</td>
<td>1.027600</td>
<td>0.383250</td>
<td>-44.6</td>
</tr>
<tr>
<td>5</td>
<td>-5.288263</td>
<td>-0.5178</td>
<td>-0.173</td>
<td>2.142574</td>
<td>0.885150</td>
<td>-114.8</td>
</tr>
<tr>
<td>6</td>
<td>-4.345785</td>
<td>-1.5304</td>
<td>-0.492</td>
<td>6.916215</td>
<td>1.960935</td>
<td>-348.1</td>
</tr>
<tr>
<td>7</td>
<td>-3.403307</td>
<td>-5.3706</td>
<td>-1.473</td>
<td>28.406000</td>
<td>5.933310</td>
<td>-1397.9</td>
</tr>
<tr>
<td>8</td>
<td>-2.460829</td>
<td>-14.0235</td>
<td>-5.301</td>
<td>79.548200</td>
<td>24.568700</td>
<td>-3746.8</td>
</tr>
</tbody>
</table>